
mathematics

Article

A Shuffle-Based Artificial Bee Colony Algorithm for Solving
Integer Programming and Minimax Problems

Ivona Brajević

����������
�������

Citation: Brajević, I. A Shuffle-Based

Artificial Bee Colony Algorithm for

Solving Integer Programming and

Minimax Problems. Mathematics 2021,

9, 1211. https://doi.org/10.3390/

math9111211

Academic Editor: Erik Valdemar

Cuevas, Francisco G. Montoya and

Alfredo Alcayde

Received: 25 March 2021

Accepted: 25 May 2021

Published: 27 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Applied Management, Economics and Finance, University Business Academy in Novi Sad,
Jevrejska 24, 11000 Belgrade, Serbia; ivona.brajevic@mef.edu.rs

Abstract: The artificial bee colony (ABC) algorithm is a prominent swarm intelligence technique
due to its simple structure and effective performance. However, the ABC algorithm has a slow
convergence rate when it is used to solve complex optimization problems since its solution search
equation is more of an exploration than exploitation operator. This paper presents an improved ABC
algorithm for solving integer programming and minimax problems. The proposed approach employs
a modified ABC search operator, which exploits the useful information of the current best solution
in the onlooker phase with the intention of improving its exploitation tendency. Furthermore,
the shuffle mutation operator is applied to the created solutions in both bee phases to help the
search achieve a better balance between the global exploration and local exploitation abilities and
to provide a valuable convergence speed. The experimental results, obtained by testing on seven
integer programming problems and ten minimax problems, show that the overall performance of
the proposed approach is superior to the ABC. Additionally, it obtains competitive results compared
with other state-of-the-art algorithms.

Keywords: artificial bee colony; swarm intelligence; shuffle mutation operator; integer programming
problems; minimax problems; global optimization

1. Introduction

A wide variety of problems from different areas can be formulated as integer pro-
gramming and minimax problems. Some applications in which integer programming
problems appear are system-reliability design, scheduling, capital budgeting, warehouse
location, portfolio analysis, automated production systems, mechanical design, transporta-
tion and cartography [1–5]. Furthermore, minimax optimization problems are found in
many applications, such as optimal control, engineering design, game theory, signal and
data processing [6–10].

Since integer programming is known to be NP-hard, solving these problems is con-
sidered a challenging task. Dynamic programming and branch-and-bound (BB) are well-
known exact integer programming methods [11,12]. These methods divide the feasible
region into smaller sub-regions or problems into sub-problems. The main drawback of dy-
namic programming is that the amount of computation necessary for an optimal solution
exponentially grows as the number of variables rises. Branch-and-bound techniques have
a high computational cost when solving large-scale problems that require the exploration
of a search tree containing hundreds of nodes [11].

Metaheuristic optimization algorithms provide high-quality solutions in an acceptable
amount of time. These techniques do not make any presumptions about the problem
and can be used to solve a broad class of challenging optimization problems [13–18].
One of the most notable classes of metaheuristics, swarm intelligence (SI) algorithms,
has foundations in imitating the collective behavior of biological agents. Particle swarm
optimization (PSO) [19], artificial bee colony (ABC) [20], harmony search (HS) [21], firefly
algorithm (FA) [22], gravitational search algorithm (GSA) [23], cuckoo search (CS) [24],

Mathematics 2021, 9, 1211. https://doi.org/10.3390/math9111211 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-2999-3187
https://www.mdpi.com/article/10.3390/math9111211?type=check_update&version=1
https://doi.org/10.3390/math9111211
https://doi.org/10.3390/math9111211
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9111211
https://www.mdpi.com/journal/mathematics

Mathematics 2021, 9, 1211 2 of 20

whale optimization algorithm (WOA) [25] and bat algorithm (BA) [26] are some of the
notable SI algorithms. In the last two decades, many SI algorithms were applied to solve
integer programming problems. For instance, the PSO was employed to solve integer
programming problems in [2]. On standard test problems, the PSO outperformed the
branch-and-bound method in most cases.

Sequential quadratic programming (SQP) and smoothing techniques are common
strategies for solving minimax problems [6]. These methods perform local minimization
and require derivatives information for the objective function, which in most applications
are not analytically available. Furthermore, SQP and smoothing techniques struggle to
achieve satisfactory solutions when the objective function is discontinuous. On the other
hand, metaheuristics are problem-independent optimization methods. Search operators of
these methods use some randomness, which enables the algorithm to move away from
a local optimum to search on a global scale [27]. Hence, metaheuristic optimization
algorithms are considered an adequate alternative for minimax problems.

Since their invention, the original variants of metaheuristic algorithms have been
modified to improve their performances. In [28], a memetic PSO algorithm that integrates
local search methods to the basic PSO was developed. The local and global variants
of the memetic PSO scheme were tested to solve minimax and integer programming
problems. The experimental results showed that the memetic PSO outperformed the
corresponding variants of the PSO algorithm in the majority of benchmarks. A hybrid
cuckoo search algorithm with the Nelder Mead method, named HCSNM, for solving integer
programming and minimax problems is proposed in [29]. In [29], it was concluded that the
use of the Nelder Mead method enhances the convergence speed of the basic CS technique.
A hybrid bat algorithm (HBDS) to solve integer programming is proposed in [30]. The
HBDS incorporates direct search methods in the BA to enhance the intensification ability
of the BA. Recently, a new hybrid harmony search algorithm with the multidirectional
search method, called MDHSA, is developed to enhance the performance of the standard
HS algorithm for solving integer programming and minimax problems [31].

The efficiency of the basic ABC algorithm for integer programming problems was
investigated in [11]. To our knowledge, the ABC is not tested on a minimax test function
in any of the studies. Therefore, investigating the performance of the standard ABC
algorithm for solving minimax problems and proposing suitable modifications with the
aim to further improve its performance for integer programming and minimax problems is
a research problem.

Motivated by these reasons, this paper presents a shuffle-based artificial bee colony
algorithm (SB-ABC) for solving integer programming and minimax problems. Although
ABC has achieved success in different research fields, it was noticed that the exploitation
ability of the ABC is deficient because of a randomly picked neighborhood food source in
its solution search equation [32]. Therefore, the ABC algorithm has a slow convergence
rate when it is applied to solve complex optimization problems. In order to enhance the
exploitation ability of the ABC algorithm, the proposed approach employs a modified
ABC search operator, which exploits the useful information of the current best solution
in the onlooker phase. Furthermore, in certain iterations, the shuffle mutation operator
is applied to the newly created solutions in both bee phases. In that way, the proposed
algorithm provides useful diversity in the population, which is crucial in finding a good
balance between exploitation and exploration. The SB-ABC algorithm is tested on seven
integer programming problems and ten minimax problems. The obtained results for
integer programming problems are compared to those of the ABC, BB method and 12 other
metaheuristics. For minimax problems, the achieved results are compared to those of the
ABC, SQP method and 11 other algorithms. Experimental results indicated that the SB-ABC
algorithm obtained highly competitive results in comparison with the other algorithms
presented in the literature.

The paper is organized as follows. In Section 2, definitions of minimax and integer
programming problems are given. The standard ABC is presented in Section 3. The

Mathematics 2021, 9, 1211 3 of 20

proposed shuffle-based artificial bee colony approach is explained in Section 4. In Section 5,
the optimization results are presented and analyzed. In Section 6, the influence of the
proposed modifications on the performance of the SB-ABC algorithm is discussed. Section 7
provides concluding remarks.

2. Problem Statements

An integer programming problem is a discrete optimization problem where all of the
variables are limited to integer values. A general integer programming problem can be
stated as [11]:

min f (x), x ∈ S ⊆ Zn (1)

where S is the feasible region and Z denotes the set of integers. A problem where some
variables are constrained to integers while some variables are not is a mixed integer
programming problem. A special instance of the integer programming problem is that in
which the variables are restricted to be either 0 or 1. This case is called the 0–1 programming
problem or the binary integer programming problem.

Minimax optimization deals with a composition of an inner maximization problem
and an outer minimization problem. A general form of the minimax problem can be stated
as [31]:

min F(x) (2)

where
F(x) = max fi(x), i = 1, . . . , m (3)

with fi(x): S ⊂ Rn → R, i = 1, . . . , m.
Furthermore, a nonlinear programming problem, with inequality constrains, of the

form

min F(x),

gi(x) ≥ 0, i = 1, . . . , m,
(4)

can be transformed to minimax problems as follows:

min max fi(x), i = 1, . . . , m (5)

where

f1(x) = F(x),

fi(x) = F(x)− αi · gi(x)

αi > 0

(6)

for i = 2, . . . , m. It has been shown that when αi is large enough, the optimum point of
the minimax problem coincides with the optimum point of the nonlinear programming
problem [6].

3. Artificial Bee Colony Algorithm

Foraging behavior of a honey bee swarm motivated the development of the ABC
algorithm [20]. The population of artificial bees is made of employed bees, onlooker bees
and scout bees. One-half of the population consists of employed bees. Onlookers and
scouts make the other half of the population. In the basic ABC, each food source represents
a possible solution for the problem, and the number of the employed bees is equal to the
number of food sources. All bees that are presently exploiting a food source are employed
bees. The onlooker bees aim to choose promising food sources from those discovered by
the employed bees according to the probability proportional to the quality of the food

Mathematics 2021, 9, 1211 4 of 20

source. After the selection of the food source, the onlookers further seek food in the vicinity
of the selected food source. The scout bees are transformed from several employed bees
that abandon their unpromising food sources to seek new ones.

The control parameters of the basic ABC algorithm are the size of the population (SP),
which is equal to the sum of employed and onlooker bees, the maximum cycle number
(MCN), and parameter limit, which represents the number of trials for abandoning the
food source. In the initialization phase, the ABC creates randomly distributed initial
population, which includes SP solutions. Following this step, three phases—employed,
onlooker and scout—are repeated for a certain number of iterations. After each iteration,
the best-discovered solution is saved.

Each employed bee seeks a better food source in the employed phase. The search
operator used to create a novel food source vi from the old one xi is given by:

vij = xij + ϕ · (xij − xl j) (7)

where j is arandomly picked index of a parameter, xl is a randomly selected food source
that is different from xi and ϕ is a uniform random number between (−1, 1). Greedy
selection between old and new food sources decides whether the old food source will be
replaced by the new one.

In the onlooker phase, each onlooker bee chooses a food source according to the
probability that is proportional to the fitness value. The same search strategy, which is
given by Equation (7), is used to generate a candidate food source from the picked one.
Greedy selection between old and new food sources decides whether the old food source
(solution) will be updated. In the scout phase, a solution that can not be updated through a
predetermined number of trials is replaced with a randomly created solution.

Many variants of ABC for solving continuous optimization problems were pro-
posed [33–40]. For instance, an enhanced version of ABC, which introduces modifications
related to elite strategy and dimension learning, is invented in [33]. The ABC variant, which
uses novel search strategies in employed and onlooker bee phases, is developed in [34].
In [35], a hybrid method, which combines firefly and multi-strategy ABC, is developed for
solving numerical optimization problems. An enhanced ABC based on the multi-strategy
fusion is ABC variant and is proposed to improve the search ability of ABC with a small
population [40].

Although the standard ABC was initially invented for continuous optimization prob-
lems, the modified variants have also been proposed for combinatorial and discrete prob-
lems [41–46]. Akay and Karaboga modified the ABC algorithm in order to solve integer
programming problems. In this version of the ABC, a new control parameter called modi-
fication rate (MR) is employed in its solution search strategy [11]. The modification rate
parameter controls the possible modifications of optimization parameters. In [41], an ABC
algorithm with a modified choice function for the traveling salesman problem is developed.
Two novel ABC algorithms in which a multiple colonies strategy is adopted are proposed
to solve the vehicle routing problem [43]. The ABC technique that integrates the initial
solutions, an elitism strategy, recovery and local search schemes is a newly developed
variant of ABC for solving the operating room scheduling problem [45]. An improved ABC
algorithm for solving the strength–redundancy allocation problem is presented in [46]. In
general, application fields of the ABC method are data mining, neural networks, image
processing, cryptanalysis, data clustering and engineering [47–53].

4. The Proposed Approach: SB-ABC

Important characteristics of each metaheuristic algorithm are exploitation and ex-
ploration [54]. Exploitation refers to the process of visiting areas of a search space in
the neighborhood of previously found satisfactory solutions. Exploration is the process
of generating solutions with ample diversity and far from the current solutions. A bal-
anced combination of these conflicting processes is essential for successful optimization
performance. According to Equation (7), the new individual is generated by moving the

Mathematics 2021, 9, 1211 5 of 20

old solution to a randomly picked solution, and the direction of the search is random.
Consequently, the solution search equation given by Equation (7) has good exploration
tendency, but it is not promising at exploitation. Since too much exploration tends to de-
crease the convergence speed of the algorithm [35], the proposed approach uses modified
ABC search equations in employed and onlooker bee phases. To obtain useful diversity
in the population, in each bee phase, the shuffle mutation operator is applied to new
candidate solutions.

To create a new solution vi from the solution xi in the employed bee phase, the
SB-ABC algorithm uses a search strategy that is described by [11]:

vij =

{
xij + ϕi · (xij − xkj) , if Rij < MR
xij , otherwise

(8)

where j ∈ {1, 2, . . . , D} and D is the number of optimization parameters or dimensions
of the problem. In Equation (8), xk is a randomly selected food source that is different
from xi, ϕi is a uniform random number between (−1, 1), Rij is a randomly chosen real
number in range (0, 1) and MR is modification rate control parameter whose value is in
the range (0, 1). A higher value of the MR parameter will enable more parameters to be
changed in the parent solution with the aim to increase the convergence speed of the basic
ABC algorithm.

In the onlooker bee phase of the SB-ABC algorithm, the solutions are chosen according
to the probability, which is given by [51]:

pi = 0.9 · (f iti/max f it) + 0.1 (9)

where the best fitness value in the population is denoted by maxfit, while f iti marks the
fitness value of the ith solution.

Inspired by the variant of the ABC proposed to solve numerical optimization, gbest-
guided artificial bee colony (GABC) algorithm [55], we modify the search equation de-
scribed by Equation (8) as follows:

vij =

{
xij + ϕij · (xij − xkj) + φij · (yj − xij) , if Rij < MR
xij , otherwise

(10)

where j ∈ {1, 2, . . . , D} and D is the number of optimization parameters, i.e., dimension of
the problem. In Equation (10), vi is a new candidate solution, xi is parent solution, ϕij is a
uniform random number in range (−1, 1), φij is a uniform random number in the segment
[0, 1.5], xk is a randomly selected food source that is different from xi, yj is the jth parameter
of the best solution found so far, and Rij is a randomly chosen real number within (0,1).
According to Equation (10), the third term can move the new potential solution towards
the global best solution. Hence, the modified search strategy given by Equation (10) can
enhance the exploitation tendency of the basic ABC algorithm.

The right amount of population diversity is of great significance in achieving a proper
balance between exploitation and exploration. In the SB-ABC algorithm, the exploitation
is increased by using the modified search equation in the onlooker bee phase. Thus, the
differences among individuals of a population are decreased since the search process is
quite focused on a local region of good solutions. To promote diversity at certain stages
of the search process, a new parameter called random permutation production interval
(RPPI) is introduced in the SB-ABC. This parameter is used as follows: after each RPPIth
cycle, the shuffle mutation operator is applied to new candidate solutions at employed
and onlooker bee phases. The shuffle mutation is a mutation operator where the mutated
solution takes the components of the original solution, applying a permutation to them [56].
Usage of the shuffle mutation operator enables a better exploration of solutions but only
every RPPI iterations.

Mathematics 2021, 9, 1211 6 of 20

The proposed approach computes a value triali for each solution xi during the search
process. A value triali characterizes the non-advanced number of the solution xi used
for the abandonment. In the scout phase of the SB-ABC algorithm, one solution with the
highest trial value that is greater than the value of limit control parameter, if such solution
occurs, is exchanged with a randomly generated solution.

The pseudo-code of the employed bee phase is presented in Algorithm 1, while the
procedure of the onlooker bee phase is described in Algorithm 2. The input of Algorithm 1
involves the current solutions xi with corresponding values triali, i = 1, 2, . . . , SP/2, current
cycle value, values of MR and RPPI parameters, and the objective function f . The output
of Algorithm 1 is the updated population of solutions xi and triali values, i = 1, 2, . . . , SP/2,
which will be employed in the onlooker bee phase. The input of Algorithm 2 includes
the current population of solutions xi with corresponding values triali, i = 1, 2, . . . , SP/2,
current cycle value, values of MR and RPPI parameters, and the objective function f .
The output of Algorithm 2 is the updated population of solutions xi and triali values,
i = 1, 2, . . . , SP/2, which will be used in the next iteration. The pseudo-code of the SB-ABC
algorithm is presented in Algorithm 3. The input of Algorithm 3 includes the values of SP,
MCN, MR, limit and RPPI control parameters and the objective function f . The output of
Algorithm 3 is the best solution found.

It is important to mention that the proposed approach SB-ABC introduces two modifi-
cations in comparison with the ABC algorithm adjusted for integer programming problems:
use of the modified ABC search operator described by Equation (10) and the application
of the shuffle mutation operator. The crucial difference between these two approaches
consists in the different balance of exploitation and exploration. Exploitation is enhanced
in the onlooker phase by applying the global best solution to guide the search process.
Useful diversity of the population and better exploration of solutions is achieved on the
global level by applying the shuffle mutation operator every RPPIth iteration.

The SB-ABC algorithm employs three specific control parameters to manage the
search process: modification rate MR, limit and RPPI, which determines the cycles in
which the shuffle mutation operator is applied to candidate solutions. It also uses
standard control parameters for all population-based metaheuristics, the population size
and maximum number of cycles. In order to solve the integer programming problems,
the SB-ABC rounds the parameter values to the closest integer after evolution according
to Equations (8) and (10). Solutions were also rounded after the initialization phase and
scout phase of the algorithm. Therefore, they were considered as integer numbers for
all operations.

Algorithm 1 Employed bee phase of the SB-ABC algorithm

for i = 1 to SP/2 do
Create candidate solution vi for xi by Equation (8);
if (cycle mod RPPI = 0) then

Create a random permutation rp of {1, 2, . . . , D};
for j = 1 to D do

vi,j = vi,rpj ;
end for

end if
Evaluate the solution vi;
if f (vi) < f (xi) then

xi = vi;
triali = 0;

else
triali = triali + 1;

end if
end for

Mathematics 2021, 9, 1211 7 of 20

Algorithm 2 Onlooker bee phase of the SB-ABC algorithm

for i = 1 to SP/2 do
Calculate the probability pi by Equation (9);

end for
t = 1;
i = 1;
while (t ≤ SP/2) do

if (rand(0, 1) < pi) then
t = t + 1;
Create candidate solution vi for xi by by Equation (10);
if (cycle mod RPPI = 0) then

Create a random permutation rp of {1, 2, . . . , D};
for j = 1 to D do

vi,j = vi,rpj ;
end for

end if
Evaluate the solution vi;
if f (vi) < f (xi) then

xi = vi;
triali = 0;

else
triali = triali + 1;

end if
end if
i = i + 1;
if (i = SP/2) then

i = 1;
end if

end while

Algorithm 3 Pseudo-code of the SB-ABC algorithm

Initial control parameters of the SB-ABC;
Generate initial population of solutions xi, i = 1, 2, . . . , SP/2 randomly in the search
space;
Calculate objective function value of each solution xi, i = 1, 2, . . . , SP/2;
Set triali = 0, i = 1, 2, . . . , SP/2;
cycle = 0;
repeat

Execute Algorithm 1;
Execute Algorithm 2;
One solution with the highest trial value that is greater than the abandonment thresh-
old, if such solution occurs, is exchanged with a randomly generated solution;
Save the current best solution;
cycle = cycle + 1;

until (cycle = MCN)

5. Experimental Study

The performance of the SB-ABC algorithm is evaluated through seven integer pro-
gramming problems and ten minimax problems widely used in the literature. The proposed
algorithm is implemented in Java, and it was run on a PC with an Intel(R) Core(TM) i5-4460
3.2 GHz processor. In order to show the efficiency of the SB-ABC algorithm, it is compared
with several algorithms that were previously applied to solve these problems. In the next
subsections, brief descriptions of the used benchmark problems and results of a comparison
between the SB-ABC and other state-of-the-art approaches are presented.

Mathematics 2021, 9, 1211 8 of 20

5.1. Benchmark Problems

In this section, the integer programming and minimax optimization test problems
are described. To test the performance of the SB-ABC algorithm on integer programming
problems, seven problems widely used in the literature are employed. The mathematical
models of these problems can be found in [11,28,31]. These problems are presented below:
Test problem FI1 is defined in [28]:

FI1(x) = |x1|+ |x2|+ . . . + |xD|

where D is the dimension of the problem or number of optimization parameters. The
global minimum is FI1(x∗) = 0.
Test problem FI2 is defined in [28]:

FI2(x) = xTx =
[
x1 x2 . . . xD

]


x1
x2
...

xD


where D is the dimension of the problem. The global minimum is FI2(x∗) = 0.
Test problem FI3 is defined in [28]:

FI3(x) = −
[
15 27 36 18 12

]
x + xT


35 −20 −10 32 −10
−20 40 −6 −31 32
−10 −6 11 −6 −10
32 −31 −6 38 −20
−10 32 −10 −20 31

x

The global minimum is FI3(x∗) = −737.
Test problem FI4 is defined in [28]:

FI4(x) = (9x2
1 + 2x2

2 − 11)2 + (3x1 + 4x2
2 − 7)2

The global minimum is FI4(x∗) = 0.
Test problem FI5 is defined in [28]:

FI5(x) = (x1 + 10x2)
2 + 5(x3 − x4)

2 + (x2 − 2x3)
4 + 10(x1 − x4)

4

The global minimum is FI5(x∗) = 0.
Test problem FI6 is defined in [28]:

FI6(x) = 2x2
1 + 3x2

2 + 4x1x2 − 6x1 − 3x2

The global minimum is FI6(x∗) = −6.
Test problem FI7 is defined in [28]:

FI7(x) = −3803.84− 138.08x1 − 232.92x2 + 123.08x2
1 + 203.64x2

2 + 182.25x1x2

The global minimum is FI7(x∗) = −3833.12.
To investigate the efficiency of the SB-ABC algorithm on minimax problems, ten

benchmark functions are considered [6,28,31]. These benchmarks are presented as follows:
Test problem FM1 is defined in [31,57]:

FM1(x) = max fi(x), i = 1, 2, 3

Mathematics 2021, 9, 1211 9 of 20

f1(x) = x2
1 + x4

2

f2(x) = (2− x1)
2 + (2− x2)

2

f3(x) = 2exp(−x1 + x2)

The desired error goal for this problem is FM1(x∗) = 1.9522245.
Test problem FM2 is defined in [31]:

FM2(x) = max fi(x), i = 1, 2, 3

f1(x) = x4
1 + x2

2

f2(x) = (2− x1)
2 + (2− x2)

2

f3(x) = 2exp(−x1 + x2)

The desired error goal for this problem is FM2(x∗) = 2.
Test problem FM3 is defined in [6,57]:

FM3(x) = x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4

g2(x) = −x2
1 − x2

2 − x2
3 − x2

4 − x1 + x2 − x3 + x4 + 8

g3(x) = −x2
1 − 2x2

2 − x2
3 − 2x2

4 + x1 + x4 + 10

g4(x) = −x2
1 − x2

2 − x2
3 − 2x1 + x2 + x4 + 5

The desired error goal for this problem is FM3(x∗) = –40.1.
Test problem FM4 is defined in [31]:

FM4(x) = max fi(x), i = 1, 2

f1(x) = |x1 + 2x2 − 7|
f2(x) = |2x1 + x2 − 5|

The desired error goal for this problem is FM4(x∗) = 10−4.
Test problem FM5 is defined in [31]:

FM5(x) = max fi(x)

fi(x) = |xi|, i = 1, . . . , 10

The desired error goal for this problem is FM5(x∗) = 10−4.
Five other test problems were selected from [57]. The name of the minimax benchmark

problems, the dimension of the problem, the number of fi(x) functions and desired error
goal are reported in Table 1.

Table 1. Properties of the minimax test problems FM1–FM10.

Function Dimension (D) # fi(x) Desired Error Goal

FM1 (CB2) 2 3 1.9522245
FM2 2 3 2
FM3 (Rosen-Suzuki) 4 4 –40.1
FM4 2 2 10−4

FM5 10 10 10−4

FM6 (SPIRAL) 2 2 10−4

FM7 (Polak 6) 4 4 −40.1
FM8 (Wong 1) 7 5 680.9
FM9 (OET6) 4 21 0.1
FM10 (Filter) 9 41 0.61852848 · 10−2

Mathematics 2021, 9, 1211 10 of 20

5.2. The General Performance of the SB-ABC for Integer Programming Problems

Because the SB-ABC is an improved variant of the ABC, in this section, a comparison
between the SB-ABC and ABC algorithm adjusted to solve integer programming problems
through seven integer programming problems is presented. The common traditional
technique, the branch-and-bound (BB) method, is also included in the comparison with the
proposed approach.

The preliminary testing of the SB-ABC was done with the aim of obtaining suitable
combinations of parameter values. The SP parameter was set to 20. This value was detected
to be a proper selection for all executed tests. The increasing value of this control parameter
will increase the computational cost without any enhancement in the reached results. Our
tests verified the previous reasoning that a value 0.8 for the MR parameter is a good
choice for solving these optimization problems [11]. Additionally, it was experimentally
determined that a value of 50 for the parameter limit and a value of 3 for the parameter
RPPI are suitable for the SB-ABC algorithm. It was observed that significantly lower or
higher values of the limit parameter can deteriorate the obtained results. Higher values of
the RPPI parameter would lead to the less frequent use of the shuffle mutation operator
and consequently weaker performance of the SB-ABC algorithm. In the SB-ABC, during
the initialization step, SP/2 solutions are evaluated, and there are SP/2 employed bees,
SP/2 onlookers and a maximum of one scout bee per iteration. Therefore, the maximum
number of function evaluations for the SB-ABC is SP/2 + (SP + 1) ·MCN. The maximum
number of function evaluations executed by the SB-ABC for all benchmarks was set to
20,000 and the SB-ABC was terminated when the global minimum was reached.

The results of the BB method and ABC algorithm were taken from their original
papers [2,11]. For these comparisons, in the BB method and ABC algorithm, the maximum
number of function evaluations was set to 25,000. When an accuracy of 10−6 was achieved,
these methods were terminated. The BB method, ABC and SB-ABC algorithms are conducted
for 30 independent runs for each benchmark problem.

The following metrics are used to estimate the performances of the BB, ABC and
SB-ABC. The convergence speed of each algorithm is compared by recording the mean
number of function evaluations (mean) required to reach the acceptable value. If the mean
value is smaller, the convergence speed is faster. Since SI algorithms are stochastic, the
obtained mean results are not the same in each run. To examine the stability of each method,
standard deviation (SD) values are measured. The performance of an algorithm is more
stable if the standard deviation value is lower. The success rate (SR) is used as a metric for
robustness or reliability of methods. This rate is defined as the ratio of successful runs in
the total number of executed runs. A run is considered successful if an algorithm obtains
a solution for which the value of the objective function is less than the corresponding
acceptable value. If the value of SR is greater, the reliability of the algorithm is better. In
Table 2, the mean, corresponding standard deviation (SD) values and SR values of the
BB method, ABC and SB-ABC for the benchmark problems FI1 with 5, 10, 15, 20, 25 and
30 variables and test problems FI2–FI7 over 30 runs are given. The best mean results are
indicated in bold.

As shown in Table 2, with respect to the SR results reached by these methods, the
SB-ABC performs the most reliably since, for each test case, the obtained SR result of the
SB-ABC is 100%. The BB method performance is less robust than the SB-ABC for problem
FI1 with 30 variables, since it achieved only 14 successful runs out of 30, while in the
remaining test cases, both approaches obtained the same SR results. The SB-ABC and ABC
algorithms obtained the same SR results on all test problems, with the exception of problem
FI3, where the ABC performance was less robust. With respect to the mean results, from
Table 2, it can be observed that the SB-ABC performs better than its rivals in the majority
of cases. To be exact, the SB-ABC is better than the BB method and ABC in 12 and 11 test
cases, respectively. On the other hand, the BB method has better mean results for problem
FI2, while the ABC outperformed the SB-ABC for test functions FI5 and FI7. With respect

Mathematics 2021, 9, 1211 11 of 20

to the standard deviation results, from Table 2, it can be seen that the SB-ABC performance
is more stable than the BB and ABC methods in most cases.

Table 2. Comparison results of the BB method, ABC and SB-ABC for the FI1–FI7 integer program-
ming problems.

BB ABC SB-ABC

Prob D Mean SD SR Mean SD SR Mean SD SR

FI1 5 1167.83 659.8 30/30 376 64.6 30/30 216.0 62.05 30/30
10 5495.8 1676.3 30/30 727.3 64.4 30/30 381.33 51.62 30/30
15 10,177.1 2393.4 30/30 974 60.5 30/30 508.67 65.05 30/30
20 16,291.3 3797.9 30/30 1275.3 97.7 30/30 624.0 86.01 30/30
25 23,689.7 2574.2 20/30 1554.7 108.6 30/30 725.33 93.94 30/30
30 25,908.6 755.5 14/30 1906 129.9 30/30 796.67 77.13 30/30

FI2 5 139.7 102.6 30/30 449.3 56.7 30/30 239.33 52.53 30/30
FI3 2 4185.5 32.8 30/30 13850 6711.3 24/30 3916.67 1773.67 30/30
FI4 4 316.9 125.4 30/30 240.7 79.4 30/30 90.0 62.34 30/30
FI5 2 2754 1030.1 30/30 193.3 53.5 30/30 421.33 163.62 30/30
FI6 2 211 15 30/30 258.7 113.6 30/30 140.67 57.38 30/30
FI7 2 358.6 14.7 30/30 106.7 44.8 30/30 177.33 130.20 30/30

5.3. Comparison against Other State-of-the-Art Algorithms for Integer Programming Problems

To further demonstrate the efficiency of the SB-ABC, it is benchmarked against 12
other metaheuristic algorithms that were previously successfully used to solve integer pro-
gramming problems. These algorithms are the basic PSO and its four variants RWMPSOg,
RWMPSOl, PSOg, PSOl [28], standard cuckoo search (CS), firefly algorithm (FA), gravita-
tional search algorithm (GSA), whale optimization algorithm (WOA), hybrid cuckoo search
algorithm with Nelder Mead method (HCSNM) [29], hybrid bat algorithm (HBDS) [30]
and the recently proposed hybrid harmony search algorithm with multidirectional search
method (MDHSA) [31].

The results obtained by the RWMPSOg, RWMPSOl, PSOg, PSOl are taken from [28],
the results reached by the HCSNM are taken from [29], the results achieved by HBDS are
taken from [30], while the results of the MDHSA and basic PSO, CS, FA, GSA and WOA
are taken from [31]. In Table 3, the mean, corresponding standard deviation values and SR
values of the RWMPSOg, RWMPSOl, PSOg, PSOl, HCSNM, MDHSA and SB-ABC for the
benchmark problems FI1 with 5 variables and test problems FI2–FI7 over 50 runs are given.
Table 4 presents the mean and standard deviation values obtained by the PSO, FA, CS,
GSA, WOA, HBDS and SB-ABC for problem FI1 with 5 variables and test problems FI2–FI7
over 50 runs. The best mean results are in bold. The metaheuristics used for comparison
with the SB-ABC also performed the maximum number of function evaluations of 20,000.
Since the results of these 12 algorithms are achieved over 50 runs, the statistical results of
the SB-ABC over 50 runs are presented in Tables 3 and 4.

The results from Tables 3 and 4 show that the proposed algorithm obtained better
mean results on the majority of benchmark problems in comparison with its competi-
tors. Precisely, the SB-ABC is better than RWMPSOg, RWMPSOl, PSOg, PSOl, MDHSA,
HCSNM, PSO, FA, CS, GSA, WOA and HBDS in six, six, seven, seven, five, four, seven,
seven, seven, seven, seven, and six test problems, respectively. In contrast, the SB-ABC is
outperformed by the RWMPSOg, RWMPSOl, PSOg, PSOl, MDHSA, HCSNM, PSO, FA,
CS, GSA, WOA and HBDS in one, one, zero, zero, two, three, zero, zero, zero, zero, zero
and one test problems, respectively. From the standard deviation values presented in
Tables 3 and 4, it can be observed that the proposed SB-ABC has lower standard deviation
values on the majority of benchmark problems in comparison with RWMPSOg, RWMPSOl,
PSOg PSOl, PSO, CS, GSA and WOA. On the other hand, the HCSNM, MDHSA, FA and
HBDS have lower standard deviations compared to the SB-ABC for most of the cases. In
addition, the SR results demonstrate that the SB-ABC achieved a 100% success rate on all
benchmark problems.

Mathematics 2021, 9, 1211 12 of 20

Table 3. Comparison results of the RWMPSOg, RWMPSOl, PSOg, PSOl, MDHSA, HCSNM and
SB-ABC for the FI1–FI7 integer programming problems.

Prob Metric RWMPSOg RWMPSOl PSOg PSOl HCSNM MDHSA SB-ABC

FI1 Mean 27,176.3 30,923.9 29,435.3 31,252 638.3 176.01 218.0
SD 8657 2405 42,039 1818 4.34 4.265 60.95
SR 50/50 50/50 34/50 50/50 50/50 50/50 50/50

FI2 Mean 578.5 773.9 606.4 830.2 232.64 152.48 240.8
SD 136.5 285.5 119 206 4.28 2.565 64.74
SR 50/50 50/50 50/50 50/50 50/50 50/50 50/50

FI3 Mean 6490.6 9292.6 12,681 11,320 1668.1 531.4 4034.8
SD 6913 2444 35,067 3803 43.2 30.74 2852.2
SR 50/50 50/50 50/50 50/50 50/50 50/50 50/50

FI4 Mean 215 218.7 369.6 390 174.04 182.74 107.6
SD 97.9 115.3 113.2 134.6 6.21 41.60 63.48
SR 50/50 50/50 50/50 50/50 50/50 50/50 50/50

FI5 Mean 1521.8 2102.9 1499 2472.4 884.48 449.12 425.2
SD 360.7 689.5 513.1 637.5 56.24 2.413 174.11
SR 50/50 50/50 43/50 50/50 50/50 50/50 50/50

FI6 Mean 110.9 112 204.8 256 155.89 188.3 144.0
SD 48.6 48.7 62 107.5 5.16 41.63 68.35
SR 50/50 50/50 50/50 50/50 50/50 50/50 50/50

FI7 Mean 242.7 248.9 421.2 466 210.3 192.6 185.2
SD 132.2 134.4 130.4 165 6.39 37.33 123.21
SR 50/50 50/50 50/50 50/50 50/50 50/50 50/50

Table 4. Comparison results of the PSO, FA, CS, GSA, WOA, HBDS and SB-ABC for the FI1–FI7

integer programming problems.

Prob Metric PSO FA CS GSA WOA HBDS SB-ABC

FI1 Mean 20,000 1617.13 11,880.15 2020 18,436.36 656.56 218.0
SD 0.00 114.77 623.41 112.45 568.47 88.65 60.95

FI2 Mean 17,540.17 834.15 7176.23 1060 10,134.53 344.22 240.8
SD 1054.56 146.85 637.75 78.69 483.25 43.32 64.74

FI3 Mean 20,000 1225.17 6400.25 5160 2946.63 1137.56 4034.8
SD 0.00 128.39 819.94 214.25 24.25 85.61 2852.2

FI4 Mean 16,240.36 476.16 4920.35 1680 9255.42 260.8 107.6
SD 1484.96 31.29 247.19 89.41 857.36 10.39 63.48

FI5 Mean 13,120.45 1315.53 7540.38 7250 6272.47 1177.12 425.2
SD 1711.83 113.01 440.82 425.36 925.35 111.6 174.11

FI6 Mean 1340.14 345.71 4875.35 1520.23 18,420.18 149.08 144.0
SD 265.21 35.52 865.11 231.56 869.25 8.21 68.35

FI7 Mean 1220.46 675.48 3660.45 1100.24 9248.12 222.91 185.2
SD 177.19 36.36 383.23 85.23 962.35 11.19 123.21

5.4. The General Performance of the SB-ABC for Minimax Problems

In this section, the performance of the SB-ABC for solving minimax problems is
investigated. The performance of the SB-ABC is compared to the performance of the
SQP method and standard ABC algorithm. The fair comparison is ensured since the SQP,
ABC and SB-ABC algorithms employed the maximum number of function evaluations of
20,000. The run is counted as successful when the desired error goal is reached within the
maximum number of function evaluations.

The specific parameter settings of the SB-ABC are kept the same, as mentioned in
Section 5.2. Since the standard ABC is not tested to solve minimax problems in any of

Mathematics 2021, 9, 1211 13 of 20

the studies, we have tested its performance in solving problems FM1–FM10. The ABC
employed the following parameter settings, SP is 20, MR is 0.8 and limit is 5 · SP ·D. These
values of control parameters were used in the standard ABC, adjusted to solve integer
programming problems [11]. The results of the SQP method were taken from the respective
paper [2].

In Table 5, the mean, corresponding standard deviation (SD) values and SR values
of the SQP method, ABC and SB-ABC for the benchmark problems FM1–FM10 over 30
runs are presented. The best mean results are in bold. The mark (-) for FM10 in the SQP
method means that the results are not reported in its original paper. From Table 5, it can be
noticed that the SB-ABC converges faster to the global minimum in comparison with the
SQP method and ABC for the majority of test problems.

Table 5. Comparison results of the ABC and SB-ABC for the FM1–FM10 minimax problems.

SQP ABC SB-ABC

Problem Mean SD SR Mean SD SR Mean SD SR

FM1 4044.5 8116.6 24/30 7522.0 5486.06 29/30 964.67 319.07 30/30
FM2 8035.7 9939.9 18/30 1997.2 741.59 30/30 586.67 110.55 30/30
FM3 135.5 21.1 30/30 600.8 130.71 30/30 314.67 88.38 30/30
FM4 140.6 38.5 30/30 1854.0 400.80 30/30 736.67 114.20 30/30
FM5 611.6 200.6 30/30 19,022.8 2028.13 24/30 1614.67 176.86 30/30
FM6 15,684.0 7302.0 10/30 2215.2 2197.82 30/30 348.66 214.45 30/30
FM7 20,000 0.0 0/30 2986.8 2327.84 30/30 422.0 148.80 30/30
FM8 20,000 0.0 0/30 18,442.8 3707.93 18/30 7288.0 4827.87 29/30
FM9 4886.5 8488.4 22/30 3244.4 2562.20 30/30 852.0 740.80 30/30
FM10 - - - 20,000.0 0.0 0/30 6584.0 5648.24 27/30

From the obtained mean values, it can be observed that the SB-ABC has better perfor-
mance than the SQP and ABC methods in 6 and 10 test problems, respectively. On the other
hand, the SB-ABC is outperformed by the SQP and ABC on three and zero benchmarks,
respectively. Furthermore, the SR results indicate that the SB-ABC performance is more
robust in comparison with the SQP on six test problems (FM1, FM2, FM6, FM7, FM8 and
FM9), while both methods reached the same SR results for the rest of the benchmarks. With
respect to the standard deviation results, from Table 5, it can be noticed that the SB-ABC
performance is more stable than the SQP and ABC methods in most cases. Furthermore,
from Table 5, it can be seen that the SB-ABC performs more reliably than the ABC on four
benchmark problems (FM1, FM5, FM8 and FM10), while both algorithms achieved the
same SR results for the remaining problems.

5.5. Comparison against Other State-of-the-Art Algorithms for Minimax Problems

In order to further examine the efficiency of the SB-ABC for minimax problems, its
performance is compared to the performance of 10 other algorithms that were previously
successfully used to solve these problems. These methods are the heuristic pattern search
algorithm HPS2, the basic PSO and its two variants RWMPSOg and UPSOm [58], HC-
SNM [29], MDHSA [31], CS, FA, GSA and WOA.

The results obtained by the RWMPSOg are taken from [28], the results reached by
the HPS2 are taken from [59], the results achieved by UPSOm are taken from [58], the
results obtained by the HCSNM are taken from [29], while the results of the MDHSA,
PSO, FA, CS, GSA and WOA are taken from [31]. In Table 6, the mean, standard deviation
values and SR values of the HPS2, UPSOm, RWMPSOg, HCSNM, MDHSA and SB-ABC
for the benchmark problems FM1–FM10 over 50 runs are given. Table 7 presents the mean
and standard deviation values obtained by the PSO, FA, CS, GSA, WOA and SB-ABC
for benchmark problems FM1–FM10 over 50 runs. The best mean results are in bold.
The metaheuristics used for comparison with the SB-ABC also performed the maximum
number of function evaluations of 20,000. The SB-ABC was configured with the specific

Mathematics 2021, 9, 1211 14 of 20

parameter values, as described in Section 5.2. Since the results of these 10 algorithms are
achieved over 50 runs, the statistical results of the SB-ABC over 50 runs are presented in
Tables 6 and 7. In Table 6, the mark (-) indicates that the results are not presented in the
corresponding paper.

The results from Tables 6 and 7 show that the proposed algorithm obtained better
mean results on the majority of benchmark problems in comparison with its competitors.
Concretely, the SB-ABC outperformed the HPS2, UPSOm, RWMPSOg, HCSNM, MDHSA,
PSO, FA, CS, GSA and WOA in 5, 8, 6, 6, 7, 9, 8, 10, 9 and 10 test problems, respectively.
In contrast, the SB-ABC is outperformed by the HPS2, UPSOm, RWMPSOg, HCSNM,
MDHSA, PSO, FA, CS, GSA and WOA in three, one, zero, three, three, one, two, zero, one
and zero benchmark problems, respectively. From standard deviation values presented
in Tables 6 and 7, it can be seen that the SB-ABC has lower standard deviation values for
most of the cases in comparison with the UPSOm, RWMPSOg, CS and WOA. On the other
hand, the HPS2, HCSNM, MDHSA, PSO, FA and GSA have lower standard deviations
compared to the SB-ABC in most cases. With respect to the SR results reached by these
methods, the SB-ABC performs the same or more reliably in comparison with the HPS2,
UPSOm, RWMPSOg, HCSNM and MDHSA in these minimax problems.

Table 6. Comparison results of the HPS2, UPSOm, RWMPSOg, HCSNM, MDHSA, HCSNM and
SB-ABC for the FM1–FM10 minimax problems.

Problem Metric HPS2 UPSOm RWMPSOg HCSNM MDHSA SB-ABC

FM1 Mean 1848.7 1993.8 2415.3 705.62 1564.86 986.4
SD 2619.4 853.7 1244.2 14.721 56.89 470.92
SR 99% 100% 100% 100% 100% 100%

FM2 Mean 635.8 1775.6 - 624.24 555.64 599.6
SD 114.3 241.9 - 20.83 55.33 124.55
SR 94% 100% - 100% 85% 100%

FM3 Mean 141.2 1670.4 3991.3 906.28 1839.6 329.6
SD 28.4 530.6 2545.2 98.24 83.65 119.01
SR 37% 100% 100% 100% 100% 100%

FM4 Mean 772.0 1701.6 2947.8 670.22 633.9 743.6
SD 60.8 184.9 257.0 11.07 63.04 125.77
SR 100% 100% 100% 100% 81% 100%

FM5 Mean 1809.1 18294.5 18,520.1 4442.76 8382.58 1722.0
SD 2750.3 2389.4 776.9 87.159 198.26 332.82
SR 94% 100% 100% 95% 75% 100%

FM6 Mean 4114.7 3435.5 1308.8 1103.86 2064.44 392.4
SD 1150.2 1487.6 505.5 125.36 73.10 359.93
SR 100% 100% 100% 95% 95% 100%

FM7 Mean - 6618.50 - 2629.336 4706.32 476.0
SD - 2597.54 - 84.80 174.03 113.91
SR - 100% - 75% 80% 100%

FM8 Mean 283.0 2128.5 - 2724.78 4175 8736.0
SD 123.9 597.4 - 227.24 96.90 5178.29
SR 64% 100% - 95% 75% 98%

FM9 Mean 324.1 3332.5 4404.0 977.56 2253.5 934.8
SD 173.1 1775.4 3308.9 176.82 130.58 765.36
SR 100% 100% 100% 100% 95% 100%

FM10 Mean - - - - 9432.24 6730.4
SD - - - - 156.39 5065.53
SR - - - - - 94%

Mathematics 2021, 9, 1211 15 of 20

Table 7. Comparison results of the PSO, FA, CS, GSA, WOA and SB-ABC for the FM1–FM10

minimax problems.

Problem Metric PSO FA CS GSA WOA SB-ABC

FM1 Mean 3535.46 1125.61 5375.52 1620.4 10,126.36 986.4
SD 491.66 189.56 613.35 126.25 1583.65 470.92

FM2 Mean 20,000 785.17 6150.34 1980.5 10,263.45 599.6
SD 0.00 31.94 519.65 253.69 758.58 124.55

FM3 Mean 2920.15 695.54 3745.19 1800.7 1523.36 329.6
SD 269.48 50.03 878.09 45.58 121.89 119.01

FM4 Mean 5680.17 782.52 5845.23 1680.4 10,253.58 743.6
SD 937.44 86.77 804.36 58.78 980.45 125.77

FM5 Mean 20,000 13,692.13 7895.14 11,800.6 11,458.36 1722.0
SD 0.00 900.12 1077.07 25.36 1785.36 332.82

FM6 Mean 5643.65 2685.25 11,915.24 1860.6 1235.69 392.4
SD - 610.07 341.45 253.69 48.69 359.93

FM7 Mean 20,000 7659.45 20,000 7200.4 19,465.35 476.0
SD 0.00 583.21 1788.18 1986.25 2568.39 113.91

FM8 Mean 6220.25 8147.45 14,754.14 8500.6 9186.25 8736.0
SD 727.44 1026.22 1391.58 1453.67 485.79 5178.29

FM9 Mean 6680.19 748.17 6765.24 1440.7 3648.69 934.8
SD 509.34 98.59 843.49 245.36 896.47 765.36

FM10 Mean 18,125.360 11,124.55 10,436.22 11,254.6 13,242.24 6730.4
SD 2356.58 1254.58 23.15 2145.25 2536.36 5065.53

6. Discussion

The impact of the introduced modifications on the SB-ABC will be examined in this
section. Seven integer programming problems and ten minimax problems were solved by
two diverse variants of the SB-ABC. The obtained results of each variant are compared
with respect to the same of the developed SB-ABC approach. In the following text, these
variants are presented:

1. Variant 1: To examine the effectiveness of employing the modified ABC operator
in the onlooker bee phase given by Equation (10), an SB-ABC version that uses the
standard ABC search equation is tested. The label SB-ABC1 is used for this variant.

2. Variant 2: To investigate the effectiveness of employing the shuffle mutation operator
in employed and onlooker bee phases, an SB-ABC version that does not include this
operator is tested. The label SB-ABC2 is used for this variant.

Each SB-ABC version is run 50 times for each test problem. The maximum number
of function evaluations was 20,000 for each method. The tested methods were configured
with specific parameter values, as described in Section 5.2. The mean, standard deviation
values and SR values obtained by the SB-ABC1, SB-ABC2 and SB-ABC for seven integer
programming problems and ten minimax problems are presented in Tables 8 and 9. A
result in boldface denotes the best mean result. The convergence graphs achieved by the
SB-ABC1, SB-ABC2 and SB-ABC on the four picked integer programming functions and
the four selected minimax optimization problems are given in Figures 1 and 2, respectively.

From the mean results presented in Table 8, it can be seen that the SB-ABC results
outperform SB-ABC1 and SB-ABC2 versions on all integer programming benchmark
problems. With respect to the SR values, it can be noticed that each algorithm achieved
a 100% success rate on all FI1–FI7 integer programming problems. From the standard
deviation values presented in Table 8, it can be observed that the SB-ABC has lower
standard deviation values for most of the cases in comparison with the SB-ABC1 and
SB-ABC2 versions.

Mathematics 2021, 9, 1211 16 of 20

(a) FI1 (b) FI2

(c) FI5 (d) FI7

Figure 1. Convergence graphs of SB-ABC1, SB-ABC2 and SB-ABC for the selected integer program-
ming problems.

(a) FM1 (b) FM2

(c) FM5 (d) FM9

Figure 2. Convergence graphs of SB-ABC1, SB-ABC2 and SB-ABC for the selected minimax problems.

Mathematics 2021, 9, 1211 17 of 20

Table 8. Comparison results of the SB-ABC1, SB-ABC2 and SB-ABC for the FI1–FI7 integer program-
ming problems.

SB-ABC1 SB-ABC2 SB-ABC

Prob D Mean SD SR Mean SD SR Mean SD SR

FI1 5 284.8 68.30 100% 427.6 163.60 100% 218.0 60.95 100%
10 506.4 88.67 100% 1690.8 653.42 100% 387.6 49.13 100%
15 653.2 71.95 100% 2896.0 940.17 100% 511.2 53.54 100%
20 815.33 124.75 100% 4967.33 1347.21 100% 644.4 70.68 100%
25 893.2 137.78 100% 6350.0 1369.01 100% 732.8 82.43 100%
30 1014.8 140.96 100% 8222.0 1491.48 100% 816.8 76.03 100%

FI2 5 326.8 84.25 100% 511.6 241.86 100% 240.8 64.74 100%
FI3 2 7524.4 5462.02 100% 4165.6 2647.41 100% 4034.8 2852.2 100%
FI4 4 131.2 77.68 100% 163.6 107.68 100% 107.6 63.48 100%
FI5 2 472.8 190.06 100% 1188.8 522.33 100% 425.2 174.11 100%
FI6 2 157.2 64.37 100% 147.6 70.64 100% 144.0 68.35 100%
FI7 2 224.8 192.56 100% 190.8 53.99 100% 185.2 123.21 100%

Table 9. Comparison results of the SB-ABC1, SB-ABC2 and SB-ABC for the FM1–FM10 minimax problems.

SB-ABC1 SB-ABC2 SB-ABC

Prob Mean SD SR Mean SD SR Mean SD SR

FM1 1150.8 381.05 100% 996.8 322.20 100% 986.4 470.92 100%
FM2 896.8 217.01 100% 770.8 169.52 100% 599.6 124.55 100%
FM3 446.4 193.76 100% 365.6 162.83 100% 329.6 119.01 100%
FM4 1098.8 217.16 100% 706.8 129.77 100% 743.6 125.77 100%
FM5 2515.6 429.91 100% 20,000.0 0.0 0% 1722.0 332.82 100%
FM6 674.8 1027.67 100% 4123.6 6755.41 88% 392.4 359.93 100%
FM7 595.2 233.15 100% 2196.0 3016.41 100% 476.0 113.91 100%
FM8 10,949.2 4522.99 94% 9770.4 6020.82 86% 8736.0 5178.29 98%
FM9 956.8 689.11 100% 3199.6 4290.61 98% 934.8 765.36 100%
FM10 13,504.8 6895.94 54% 6451.2 6825.51 86% 6730.4 5065.53 94%

Compared with the SB-ABC1, it can be seen from Table 9 that the proposed algorithm
reached better mean results and the same or better SR results for all FM1–FM10 minimax
problems. When comparing the SB-ABC with respect to the SB-ABC2, it can be noticed
from Table 9 that the SB-ABC obtained better mean values for eight minimax problems and
slightly worse mean results for the remaining two benchmarks (FM4 and FM10). From the
standard deviation values presented in Table 9, it can be noticed that the SB-ABC has lower
standard deviation values for most of the cases in comparison with the SB-ABC1 and SB-
ABC2 variants. According to the SR results presented in Table 9, the SB-ABC outperformed
the SB-ABC2 in five test problems (FM5, FM6, FM8, FM9 and FM10), while the SB-ABC
and SB-ABC2 achieved the same results in the remaining benchmarks. As shown in
Figures 1 and 2, SB-ABC converges faster to the optimum on the selected problems in
comparison with its two variants.

These observations indicate that each introduced modification contributes to the
satisfactory performance of the SB-ABC. Use of the shuffle mutation operator provides
useful diversity and consequently helps the SB-ABC to locate the favorable areas within the
search space. Adding the modified ABC operator enables an enhanced exploitation ability
of the algorithm. Combining these modifications significantly improves the convergence
speed and robustness of the SB-ABC algorithm.

7. Conclusions

In this paper, a novel shuffle-based artificial bee colony algorithm (SB-ABC) is pro-
posed with the intention to solve integer programming and minimax problems. The
proposed algorithm employs the shuffle mutation operator and modified ABC search

Mathematics 2021, 9, 1211 18 of 20

strategy with an aim to improve the exploitation tendency of the algorithm to provide a
valuable convergence speed. The proposed approach was applied to solve seven integer
programming and ten minimax problems taken from the literature. The SB-ABC algorithm
obtained highly competitive results in comparison with the standard ABC, BB method and
12 other metaheuristic algorithms in solving integer programming problems. Compared
with the standard ABC, SQP method and 10 other state-of-the-art algorithms, the SB-ABC
showed better performance for the majority of the minimax test problems.

The effects of introduced modifications related to the shuffle mutation operator and
modified ABC search operator have been investigated. It is experimentally validated that
the use of each introduced modification is of great importance in achieving a satisfactory
performance of the SB-ABC with respect to the convergence speed and robustness. In
the proposed SB-ABC method, the balance between the global exploration and local
exploitation abilities is addressed by suitable configuration of control parameters. As
in many other swarm intelligence techniques, the problem of discovering appropriate
values for the control parameters also exists in the SB-ABC algorithm. Extending the
SB-ABC method with a self-adaptive control mechanism to reach better exploration and
exploitation balance during distinct search phases is a promising direction for future
study. Developing a hybrid algorithm that would incorporate different operators of some
other well-established metaheuristic methods in the SB-ABC algorithm for solving large
scale integer programming and minimax problems will also be examined in future work.
Another possible way for creating a hybrid approach is to employ certain metaheuristic
methods to assume a role of a local optimizer, while the SB-ABC algorithm would perform
a global search. In addition, the application of the proposed SB-ABC approach for solving
some combinatorial optimization problems will be investigated.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Coit, D.W.; Zio, E. The evolution of system reliability optimization. Reliab. Eng. Syst. Saf. 2019, 192, 106259. [CrossRef]
2. Laskari, E.C.; Parsopoulos, K.E.; Vrahatis, M.N. Particle swarm optimization for integer programming. In Proceedings of the 2002

Congress on Evolutionary Computation, CEC’02 (Cat. No.02TH8600), Honolulu, HI, USA, 12–17 May 2002; pp. 1582–1587.
3. Kim, T.-H.; Cho, M.; Shin, S. Constrained Mixed-Variable Design Optimization Based on Particle Swarm Optimizer with a

Diversity Classifier for Cyclically Neighboring Subpopulations. Mathematics 2020, 8, 2016. [CrossRef]
4. Agarana, M.C.; Ajayi, O.O.; Akinwumi, I.I. Integer programming algorithm for public transport system in sub-saharan african

cities. Wit. Trans. Built. Environ. 2019, 182, 339–350.
5. Haunert, J.-H.; Wolff, A. Beyond Maximum Independent Set: An Extended Integer Programming Formulation for Point Labeling.

ISPRS Int. J. Geo-Inf. 2017, 6, 342. [CrossRef]
6. Laskari, E.C.; Parsopoulos, K.E.; Vrahatis, M.N. Particle swarm optimization for minimax problems. In Proceedings of the 2002

Congress on Evolutionary Computation, CEC’02 (Cat. No.02TH8600), Honolulu, HI, USA, 12–17 May 2002; pp. 1576–1581.
7. Khakifirooz, M.; Chien, C.; Fathi, M.; Pardalos, P.M. Minimax Optimization for Recipe Management in High-Mixed Semiconductor

Lithography Process. IEEE Trans. Industr. Inform. 2020, 16, 4975–4985. [CrossRef]
8. Razaviyayn, M.; Huang, T.; Lu, S.; Nouiehed, M.; Sanjabi, M.; Hong, M. Nonconvex Min-Max Optimization: Applications,

Challenges, and Recent Theoretical Advances. IEEE Signal Process. Mag. 2020, 37, 55–66. [CrossRef]
9. Zhou, Z.; Yang, Q. An Active Set Smoothing Method for Solving Unconstrained Minimax Problems. Math. Probl. Eng. 2020, 2020,

1–25. [CrossRef]
10. Ma, G.; Zhang, Y.; Liu, M. A generalized gradient projection method based on a new working set for minimax optimization

problems with inequality constraints. J. Inequal Appl. 2017, 51, 1–14. [CrossRef] [PubMed]
11. Akay, B.; Karaboga, D. Solving Integer Programming Problems by Using Artificial Bee Colony Algorithm. In AI*IA 2009: Emergent

Perspectives in Artificial Intelligence; Serra, R., Cucchiara, R., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2009; Volume 5883, pp. 355–364.

12. Tarray, T.A.; Bhat, M. A nonlinear programming problem using branch and bound method. Investig. Oper. 2017, 38, 291–298.

http://doi.org/10.1016/j.ress.2018.09.008
http://dx.doi.org/10.3390/math8112016
http://dx.doi.org/10.3390/ijgi6110342
http://dx.doi.org/10.1109/TII.2019.2957145
http://dx.doi.org/10.1109/MSP.2020.3003851
http://dx.doi.org/10.1155/2020/9108150
http://dx.doi.org/10.1186/s13660-017-1321-3
http://www.ncbi.nlm.nih.gov/pubmed/28298875

Mathematics 2021, 9, 1211 19 of 20

13. Brajević, I.; Ignjatović, J. An upgraded firefly algorithm with feasibility-based rules for constrained engineering optimization
problems. J. Intell. Manuf. 2019, 30, 2545–2574. [CrossRef]

14. Stojanović, I.; Brajević, I.; Stanimirović, P.S.; Kazakovtsev, L.A.; Zdravev, Z. Application of Heuristic and Metaheuristic Algorithms
in Solving Constrained Weber Problem with Feasible Region Bounded by Arcs. Math. Probl. Eng. 2017, 2017, 1–13. [CrossRef]

15. Liu, Q.; Li, X.; Liu, H.; Guo, Z. Multi-objective metaheuristics for discrete optimization problems: A review of the state-of-the-art.
Appl. Soft Comput. 2020, 93, 106382. [CrossRef]

16. Ng, K.K.H.; Lee, C.K.M.; Chan, F.T.S.; Lv, Y. Review on meta-heuristics approaches for airside operation research. Appl. Soft
Comput. 2018, 66, 104–133. [CrossRef]

17. Iliopoulou, C.; Kepaptsoglou, K.; Vlahogianni, E. Metaheuristics for the transit route network design problem: A review and
comparative analysis. Public Transp. 2019, 11, 487–521. [CrossRef]

18. Bala, A; Ismail, I.; Ibrahim, R.; Sait, S.M. Applications of Metaheuristics in Reservoir Computing Techniques: A Review. IEEE
Access 2018, 6, 58012–58029. [CrossRef]

19. Kennedy, J.; Eberhart, R.C. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948.

20. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC)
algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]

21. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68.
[CrossRef]

22. Yang, X.S. Firefly algorithms for multimodal optimization. In Stochastic Algorithms: Foundations and Applications, SAGA 2009;
Watanabe, O., Zeugmann, T., Eds.; Lecture Notes in Computer Science; Springer: Berlin, Germany, 2009; Volume 5792, pp. 169–178.

23. Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [CrossRef]
24. Yang, X.S.; Deb, S. Cuckoo Search via Lévy flights. In Proceedings of the World Congress on Nature & Biologically Inspired

Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214.
25. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
26. Yang, X.S. A New Metaheuristic Bat-Inspired Algorithm. In Nature Inspired Cooperative Strategies for Optimization (NICSO

2010); González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N., Eds.; Studies in Computational Intelligence; Springer:
Berlin/Heidelberg, Germany, 2010; Volume 284, pp. 65–74.

27. Brajević, I.; Stanimirović, P. An improved chaotic firefly algorithm for global numerical optimization. Int. J. Comput. Intell. Syst.
2018, 12, 131–148. [CrossRef]

28. Petalas, Y.G.; Parsopoulos, K.E.; Vrahatis, M.N. Memetic particle swarm optimization. Ann. Oper. Res. 2007, 156, 99–127.
[CrossRef]

29. Ali, A.F.; Tawhid, M.A. A hybrid cuckoo search algorithm with Nelder Mead method for solving global optimization problems.
Springerplus 2016, 5, 1–22. [CrossRef]

30. Ali, A.F.; Tawhid, M.A. Solving Integer Programming Problems by Hybrid Bat Algorithm and Direct Search Method. Trends Artif.
Intell. 2018, 2, 46–59.

31. Tawhid, M.A.; Ali, A.F.; Tawhid, M.A. Multidirectional harmony search algorithm for solving integer programming and minimax
problems. Int. J. Bio-Inspir. Com. 2019, 13, 141–158. [CrossRef]

32. Xiang, W.; Meng, X.; Li, Y.; He, R.; An, M. An improved artificial bee colony algorithm based on the gravity model. Inf. Sci. 2018,
429, 49–71. [CrossRef]

33. Xiao, S.; Wang, W.; Wang, H.; Tan, D.; Wang, Y.; Yu, X.; Wu, R. An Improved Artificial Bee Colony Algorithm Based on Elite
Strategy and Dimension Learning. Mathematics 2019, 7, 289. [CrossRef]

34. Lin, Q.; Zhu, M.; Li, G.; Wang, W.; Cui, L.; Chen, J.; Lu, J. A novel artificial bee colony algorithm with local and global information
interaction. Appl. Soft Comput. 2018, 62, 702–735. [CrossRef]

35. Brajević, I.; Stanimirović, P. S.; Li, S.; Cao, X. A Hybrid Firefly and Multi-Strategy Artificial Bee Colony Algorithm. Int. J. Comput.
Intell. Syst. 2020, 13, 810–821. [CrossRef]

36. Karaboga, D.; Akay, B.; Karaboga, N. A survey on the studies employing machine learning (ML) for enhancing artificial bee
colony (ABC) optimization algorithm. Cogent Eng. 2020, 7, 1855741. [CrossRef]

37. Hussain, K.; Salleh, M.N.M.; Cheng, S.; Shi, Y.; Naseem, R. Artificial bee colony algorithm: A component-wise analysis using
diversity measurement. J. King Saud Univ. Comp. Inf. Sci. 2020, 32, 794–808. [CrossRef]

38. Gorkemli, B.; Karaboga, D. A quick semantic artificial bee colony programming (qsABCP) for symbolic regression. Inf. Sci. 2019,
502, 346–362. [CrossRef]

39. Aslan, S.; Karaboga, D.; Badem, H. A new artificial bee colony algorithm employing intelligent forager forwarding strategies.
Appl. Soft Comput. 2020, 96, 106656. [CrossRef]

40. Song, X.; Zhao, M.; Xing, S. A multi-strategy fusion artificial bee colony algorithm with small population. Expert Syst. Appl. 2020,
142, 112921. [CrossRef]

41. Choong, S.S.; Wong, L.-P.; Lim, C.P. An artificial bee colony algorithm with a Modified Choice Function for the traveling salesman
problem. Swarm Evol. Comput. 2019, 44, 622–635. [CrossRef]

42. Karaboga, D.; Gorkemli, B. Solving Traveling Salesman Problem by Using Combinatorial Artificial Bee Colony Algorithms. Int. J.
Artif. Intell. Tools 2019, 28, 1950004. [CrossRef]

http://dx.doi.org/10.1007/s10845-018-1419-6
http://dx.doi.org/10.1155/2017/8306732
http://dx.doi.org/10.1016/j.asoc.2020.106382
http://dx.doi.org/10.1016/j.asoc.2018.02.013
http://dx.doi.org/10.1007/s12469-019-00211-2
http://dx.doi.org/10.1109/ACCESS.2018.2873770
http://dx.doi.org/10.1007/s10898-007-9149-x
http://dx.doi.org/10.1177/003754970107600201
http://dx.doi.org/10.1016/j.ins.2009.03.004
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.2991/ijcis.2018.25905187
http://dx.doi.org/10.1007/s10479-007-0224-y
http://dx.doi.org/10.1186/s40064-016-2064-1
http://dx.doi.org/10.1504/IJBIC.2019.099179
http://dx.doi.org/10.1016/j.ins.2017.11.007
http://dx.doi.org/10.3390/math7030289
http://dx.doi.org/10.1016/j.asoc.2017.11.012
http://dx.doi.org/10.2991/ijcis.d.200612.001
http://dx.doi.org/10.1080/23311916.2020.1855741
http://dx.doi.org/10.1016/j.jksuci.2018.09.017
http://dx.doi.org/10.1016/j.ins.2019.06.052
http://dx.doi.org/10.1016/j.asoc.2020.106656
http://dx.doi.org/10.1016/j.eswa.2019.112921
http://dx.doi.org/10.1016/j.swevo.2018.08.004
http://dx.doi.org/10.1142/S0218213019500040

Mathematics 2021, 9, 1211 20 of 20

43. Ng, K.K.H.; Lee, K.M.; Zhang, S.Z.; Wu, K.; Ho, W. A multiple colonies artificial bee colony algorithm for a capacitated vehicle
routing problem and re-routing strategies under time-dependent traffic congestion. Comput. Ind. Eng. 2017, 109, 151–168.
[CrossRef]

44. Sedighizadeh, D.; Mazaheripour, H. Optimization of multi objective vehicle routing problem using a new hybrid algorithm
based on particle swarm optimization and artificial bee colony algorithm considering Precedence constraints. Alex. Eng. J. 2018,
57, 2225–2239. [CrossRef]

45. Lin, Y.-K.; Li, M.-Y. Solving Operating Room Scheduling Problem Using Artificial Bee Colony Algorithm. Healthcare 2021, 9, 152.
[CrossRef]

46. Zhang, J.; Li, L.; Chen, Z. Strength–redundancy allocation problem using artificial bee colony algorithm for multi-state systems.
Reliab. Eng. Syst. Saf. 2021, 209, 107494. [CrossRef]

47. Hancer, E.; Karaboga, D. A comprehensive survey of traditional, merge-split and evolutionary approaches proposed for
determination of cluster number. Swarm Evol. Comput. 2017, 32, 49–67. [CrossRef]

48. Caliskan, A.; Çil, Z.A.; Badem, H.; Karaboga, D. Regression-Based Neuro-Fuzzy Network Trained by ABC Algorithm for
High-Density Impulse Noise Elimination. IEEE Trans. Fuzzy Syst. 2020, 28, 1084–1095. [CrossRef]

49. Akay, B. A Binomial Crossover Based Artificial Bee Colony Algorithm for Cryptanalysis of Polyalphabetic Cipher. Teh. Vjesn.
2020, 27, 1825–1835.

50. Kumar, A.; Kumar, D.; Jarial, S.K. A Review on Artificial Bee Colony Algorithms and Their Applications to Data Clustering.
Cybern. Inf. Technol. 2017, 17, 3–28. [CrossRef]

51. Brajevic, I. Crossover-based artificial bee colony algorithm for constrained optimization problems. Neural. Comput. Appl. 2015,
26, 1587–1601. [CrossRef]

52. Aslan S.; Karaboga, D. A genetic Artificial Bee Colony algorithm for signal reconstruction based big data optimization. Appl. Soft
Comput. 2020, 88, 106053. [CrossRef]

53. Pooja, S.G. Innovative Review on Artificial Bee Colony Algorithm and Its Variants. In Advances in Computing and Intelligent
Systems; Sharma, H., Govindan, K., Poonia, R., Kumar, S., El-Medany, W., Eds.; Algorithms for Intelligent Systems; Springer:
Singapore, 2020; pp. 165–176.

54. Črepinšek, M.; Liu, S.-H.; Mernik, M. Exploration and exploitation in evolutionary algorithms: A survey. ACM Comput. Surv.
2013, 45, 1–33. [CrossRef]

55. Zhu, G.; Kwong, S. Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl. Math. Comput. 2010,
217, 3166–3173. [CrossRef]

56. Canali, C.; Lancellotti, R. GASP: Genetic Algorithms for Service Placement in Fog Computing Systems. Algorithms 2019, 12, 201.
[CrossRef]

57. Lukšan, L.; Vlček, J. Test Problems for Non-Smooth Unconstrained and Linearly Constrained Optimization; Technical Report 798;
Institute of Computer Science, Academy of Sciences of the Czech Republic: Prague, Czech Republic, 2000.

58. Parsopoulos, K.E.; Vrahatis, M.N. Unified particle swarm optimization for tackling operations research problems. In Proceedings
of the 2005 IEEE Swarm Intelligence Symposium, SIS 2005, Pasadena, CA, USA, 8–10 June 2005; pp. 53–59.

59. Santo, I.A.C.P.E.; Fernandes, E.M.G.P. Heuristics pattern search for bound constrained minimax problems. In Computational
Science and Its Applications—ICCSA 2011; Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O., Eds.; Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6784, pp. 174–184.

http://dx.doi.org/10.1016/j.cie.2017.05.004
http://dx.doi.org/10.1016/j.aej.2017.09.006
http://dx.doi.org/10.3390/healthcare9020152
http://dx.doi.org/10.1016/j.ress.2021.107494
http://dx.doi.org/10.1016/j.swevo.2016.06.004
http://dx.doi.org/10.1109/TFUZZ.2020.2973123
http://dx.doi.org/10.1515/cait-2017-0027
http://dx.doi.org/10.1007/s00521-015-1826-y
http://dx.doi.org/10.1016/j.asoc.2019.106053
http://dx.doi.org/10.1145/2480741.2480752
http://dx.doi.org/10.1016/j.amc.2010.08.049
http://dx.doi.org/10.3390/a12100201

	Introduction
	Problem Statements
	Artificial Bee Colony Algorithm
	The Proposed Approach: SB-ABC
	Experimental Study
	Benchmark Problems
	The General Performance of the SB-ABC for Integer Programming Problems
	 Comparison against Other State-of-the-Art Algorithms for Integer Programming Problems
	The General Performance of the SB-ABC for Minimax Problems
	 Comparison against Other State-of-the-Art Algorithms for Minimax Problems

	Discussion
	Conclusions
	References

