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Abstract: We introduce a new methodology for anomaly detection (AD) in multichannel fast oscillat-
ing signals based on nonparametric penalized regression. Assuming the signals share similar shapes
and characteristics, the estimation procedures are based on the use of the Rational-Dilation Wavelet
Transform (RADWT), equipped with a tunable Q-factor able to provide sparse representations of
functions with different oscillations persistence. Under the standard hypothesis of Gaussian additive
noise, we model the signals by the RADWT and the anomalies as additive in each signal. Then we
perform AD imposing a double penalty on the multiple regression model we obtained, promoting
group sparsity both on the regression coefficients and on the anomalies. The first constraint preserves
a common structure on the underlying signal components; the second one aims to identify the
presence/absence of anomalies. Numerical experiments show the performance of the proposed
method in different synthetic scenarios as well as in a real case.

Keywords: anomaly detection; RADWT; variable selection; multichannel; thresholding

1. Introduction

Anomaly detection (AD) is an important problem that has received much attention
in recent years. It consists of establishing whether a given data deviates from nominal
shape or form. It is not possible to establish a single mathematical framework to deal
with AD because it depends on the type of application. There are a lot of surveys in the
literature, some of them specific to certain applications and some others are broader and
application-free. See, for example, the review by [1] regarding the Intrusion Detection
Systems, or the paper by [2] providing an overview on AD, analysis, and prediction in
Internet of Things (IoT) systems or the paper by [3] considering the application of AD
techniques to aviation and how they improve the safety and service of flight operations,
just to cite some. However, a milestone of the literature is the paper by Chandola et al. [4],
where the authors offer a very good understanding of the subject, defining anomalies,
describing its challenges, depicting a relevant taxonomy of the different techniques, and il-
lustrating the various domains of applications. As well explained by the authors, the AD
problem depends on the nature of input data (points, sequence, functions, graphs, objects
of different nature), on the type of anomaly (point anomalies, contextual or behavioral
anomalies, or their combination), on the availability of labeled data for training/validation
of the AD techniques (leading to unsupervised AD and supervised AD), and on the type of
output of AD (scores or label). Two more recent reviews are the ones by Pimentel et al. [5]
and by Ahmed et al. [6], where the authors display a huge and comprehensive number of
references on the topic. In particular, reference [5] is devoted to novelty detection, where
the distinction with the word anomaly is that the former considers, as normal, the data after
their detection. Another important and very recent paper is the one by Thudumu et al. [7],
which reviews AD in the context of big data where a curse of dimensionality occurs,
bringing the failure of different methodologies.
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We can broadly divide the AD techniques into four categories as very well repre-
sented by the taxonomy of Figure 3 in [6]: classification techniques, statistical techniques,
clustering techniques, and information theory techniques.

In this paper, we focus on statistical techniques, whose recipe is to fit a statistical
model to the given data and then check if some of them do not fit this model. We think that
a good survey on statistical methods is given by Rousseeuw and Hubert in [8], where they
consider robust regression techniques, signal processing techniques, and robust principal
component analysis (PCA) techniques.

Our paper is placed in the context of statistical signal processing techniques, where the
data are indeed time series, signals, or functions. It is worth observing that signal processing
is synonymous with functional data analysis in more classical statistics nomenclature,
as well as outliers and anomalies. In particular, we can distinguish between isolated and
persistent outliers, see [9]. The isolated outliers insist on a small part of the signal, while the
persistent outliers insist on most of their domain. It is important to stress that the literature
on AD in functional data is quite recent and is mainly devoted to univariate functions.

In this paper, we deal with the AD problem for multichannel (i.e., multivariate) data
affected by persistent outliers and approach it from the perspective of penalized multiple
regression framework. We model the nominal shape as K multiple signals from K channels
sharing a joint sparse representation into a special dictionary, and then we add a possible
anomaly term of any form and shape to each signal component. This framework represents
situations where we expect similar shapes for the components of the signal, but some com-
ponents can undergo anomaly behavior for some unpredictable reason. In particular, we
consider nominal signals with a fast oscillating characteristic that can be well represented
only by using an appropriate dictionary, namely a RADWT, as done in the context of multi-
ple regression in [10]. A RADWT is a modern and fast computational tool for analyzing
signals which are a mixture of oscillatory and nonoscillatory transient behaviors. Such
kinds of signals are not periodic and may describe many physiological and physical signals
(for example, speech, stock-market, biomedical EEG, etc.) which could not be represented
sparsely in the classic orthogonal bases such as Fourier, wavelet, etc. The request of joint
sparse representation formalizes the hypothesis that the signal components are expected to
have the same spectral characteristics while preserving numerical differences. The idea we
develop in our work is the following: a linear model is applied to simultaneously estimate
the signal by using its sparse representation in this special dictionary and detect potential
anomalies modeled as residuals in this sparse representation.

A similar idea has been already applied in the literature under different model as-
sumptions, for example in [11–13]. Specifically, in [11] the authors propose to learn the
dictionary by using a set of nominal signals through PCA, as well as in [12] the authors
learn the dictionary by using a training set of “normal” nominal signals, i.e., not affected by
anomalies, under the specific hypothesis that they are multivariate mixtures of discrete and
continuous signals and applying their sparse coding algorithm to select the training signals
having the highest residuals. Subsequently, in both papers, the authors detect anomalies for
a new signal occurrence by evaluating the residual of its sparse representation in this dictio-
nary. On the other hand, in [13], the authors face the univariate AD problem considering a
linear regression model where the univariate signal is expressed as a linear combination of
columns of a given design matrix without the sparseness hypothesis. The authors propose
detecting anomalies by simultaneously estimating both the nominal signal and its residual
using nonconvex penalized regression with the constraint on the outliers vector.

Our paper stands in between these recent proposals [11–13] for two reasons. First, we
use a dictionary for sparsely representing functions (as in [11,12]) but without requiring
a training set of “normal” nominal signals for dictionary learning because we rely on an
innovative instrument such as the RADWT transform to deal with fast oscillating signals.
Second, we look for anomalies by simultaneously estimating both the nominal signal and
its residual (as in [13]) but imposing a double constraint on the regression coefficients
and the anomalies, taking into account that few RADWT coefficients are necessary to
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represent the signals. To ensure that the residuals can preserve information about the
outliers/anomalies, we must use robust regression techniques. As we will clarify later
on, a good AD undergoes a good robust regression analysis, because the procedure aims
simultaneously to detect the anomalies and to estimate the signal’s components, the success
of the first goal ensuring the success of the second and vice versa. Hence, our paper can
be also considered as part of the literature on robust regression in the high-dimensional
setting, see [14,15]. In this perspective, we also refer to [16], from which we were inspired
to use robust losses, such as the Huber loss and the skipped mean loss.

The remainder of the paper is organized as follows. Section 2 describes the data
model with the working hypothesis. Section 3 presents and discusses the proposed AD
procedure within the paradigm of group-lasso regression, enlightening the connections
with other existing procedures. Section 4 describes some important implementation issues.
Section 5 shows numerical experiments on synthetic and real data and finally, the last
section discusses conclusions.

2. The Data Model and Problem Setting

We will consider hereafter a functional dataset consisting of K curves f (k)(t), k = 1,
. . . , K observed on a set of equispaced grid points t1, . . . , tn and resulting in observed K
dimensional response vectors y(1), y(2), . . .,y(K). The observed curves are composed by
nominal signals f(1), f(2),... f(K) which may have some functional properties to which are
eventually added anomaly signals a(1), a(2),..., a(K) which may appear as functional outliers
ak(t), k = 1, . . . , K. Once the data is discretized our data model becomes

y(1) = f(1) + a(1) + ε(1)

y(2) = f(2) + a(2) + ε(2)

...
y(K) = f(K) + a(K) + ε(K)

(1)

where, for each k = 1, · · · , K, f(k) ∈ Rn×1 is the underlying unknown nominal signal,
a(k) ∈ Rn×1 is the potential anomaly, and ε(k) ∼ N(0, σ2 In) is the additive white noise.
Note that if the Gaussian noise in some channel is correlated with known covariance
structure, we can easily manage this situation reparametrizing the data.

The mathematical hypothesis is that, while the K components have a nominal behavior
which results in a joint sparse representation into a RADWT dictionary, the anomalies can
be of any shape, so they have no sparse representation in the same dictionary, and they are
independent of each other, so an anomaly can be detected in any, some, or all components.

We do not hypothesize functions f (k)(t) belong to some functional Sobolev space
Hs

p,q[a, b] as it is usually done in functional nonparametric regression setting, instead we
let these functions be much more general and we restrict our attention to their finite-
dimensional representation. Since many physiological and physical signals exhibit a
mixture of oscillatory and nonoscillatory behaviors (for example, speech, stock-market,
biomedical, EEG, etc.), we suppose that each component is a “high resonance” signal or a
“low resonance” signal or a sum of both types of signal. By a high-resonance component,
we mean a signal consisting of multiple simultaneous sustained oscillations; in contrast,
by a low-resonance component, we mean a signal consisting of nonoscillatory transients of
unspecified shape and duration. We stress that the high and low resonance components of
a signal can not be extracted from its high and low frequencies components in a time-scale
decomposition, but they can be well represented by a high-Q factor RADWT and a low-Q
factor RADWT respectively, see [17]. The RADWT is a normalized tight dictionary of L2(R)
defined as

{
( q

p )
k/2ψ

(
( q

p )
kt + sp

q l
)}

k,l∈Z
where ψ is a wavelet function and (p, q, s) is a

triplet of parameters that gives the time-scale characteristic of the dictionary. In particular,
the ratio q/p > 1 is closely related to the scale (or frequency) dilatation factor, the parameter
s is closely related to the time dilatation factor, and p

s(q−p) is the redundant factor. The Q-
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factor depends on these parameters although there is not an explicit formula, in particular
setting the dilatation factor q/p between 1 and 2 and s > 1 gives a RADWT with high Q-
factor, while setting s = 1 we obtain a low Q-factor RADWT with time-scale characteristic
similar to the dyadic wavelet transform. In particular, when q = 2, p = 1 and s = 1, the
dictionary reduces to the classical wavelet basis. Given a finite energy signal x of length
n and J ∈ N levels of decomposition, the RADWT transform is obtained by a sequence

of proper downsampling operations and fast Fourier transforms; it ends up with d npJ

qJ e

scaling coefficients (low-pass filtering) and d npj

qjs
e wavelet coefficients (high-pass filtering)

at each level j = 1, ..J. See [18] for details on fast analysis and synthesis schemes.
In the following, we will use these signal processing results in order to formulate

our working setup. Let Ψ ∈ Rn×d1 be the finite matrix representation of the low Q-factor
analysis filter, where d1 indicates the cardinality of the low Q-factor RADWT, and let Φ ∈
Rn×d2 be the finite matrix representation of the high Q-factor analysis filter (the synthesis
operators being just the transpose matrices), where d2 indicates the cardinality of the high
Q-factor RADWT. Let us define the dictionary W = [Ψ Φ] ∈ Rn×d, with d = d1 + d2, then
our working hypothesis is the following:

(H1) signals f(k) have a jointly sparse representation in W , i.e., setting f(k) = W β(k),
β(k) ∈ Rd×1, the coefficients matrix

B =
[

β(1), β(2), · · · , β(K)
]
∈ Rd×K

has a minimal number of rows different from zero. This means considering the
following constraint

‖B‖0,2 =
d

∑
i=1
I
(
‖bi,.‖2

)
=

d

∑
i=1
I


√√√√ K

∑
k=1

(
β
(k)
i

)2
 ≤ T (2)

where ‖B‖2,0 counts the number of non zero rows, T is the a priori parameter indicat-
ing the expected degree of sparsity level, and I(a) is the indicator function:

I(a) =

{
1 if x 6= 0
0 otherwise

(3)

It is worth observing that the role of dictionary matrix W could be played by any other
dictionary in which the nominal signals have a sparse joint representation. What we will
expose in the following is not related to the nature of the dictionary W and can therefore
be considered a valid method for other types of signals as long as there is a dictionary
that sparsely represents them. For example, W could be made up of only Φ if it is known
that the f signals have only a high resonance component, or it could be made up of the
union of other types of basis, frames, or dictionaries. However, when Ψ and Φ are the finite
representation of RADWT, they constitute thigh frames, i.e., Ψ Ψ′ = In and Φ Φ′ = In, so
W W ′ = 2In and then, once we obtain the estimate of the coefficients it is straightforward
to obtain the estimate of the signal. When the choice of the dictionary change, Ψ Ψ′ = In
and Φ Φ′ = In is not necessarily satisfied, and hence signal reconstruction is not obvious.
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3. Proposed Procedures

The linear model in (1) can be rewritten in terms of dictionary coefficients as follows
y(1) = W β(1) + a(1) + ε(1)

y(2) = W β(2) + a(2) + ε(2)

...
y(K) = W β(K) + a(K) + ε(K)

(4)

which turns out to be a linear multiple regression model with a special common design
matrix. A first and somewhat naive approach, but sub-optimal, would consist of treating
each channel separately, ignoring the underlying common structure. This is the reason
why such kind of problem is reformulated in terms of a unique regression problem in the
following form:

y(1)

y(2)

...
y(K)

 =


W 0 · · · 0
0 W · · · 0
· · · · · ·
0 0 · · · W




β(1)

β(2)

...
β(K)

+


a(1)

a(2)
...

a(K)

+


ε(1)

ε(2)

...
ε(K)


y = X β + a + ε

(5)

with obvious correspondence between elements of the two expressions. So, y is a column
vector of n · K response variables, X a design matrix of dimension n · K × K · d, β an
unknown regression coefficients column vector of length K · d, a is an unknown anomalies
column vector of length n · K, and, finally without loss of generality, we let ε be a n · K-
variate Gaussian random column vector with zero mean and covariance matrix σ2 In·K.
Our regression problem (5) has d · K + n · K regression parameters and only n · K data
point, so it clearly falls into the class of high-dimensional regression problems. Under the
working hypothesis (H1), we expect β to be group sparse, i.e., for many j = 1, ..., d we
expect that β

(k)
j = 0, for all k = 1, .., K. This provides the following nonoverlapping group

structure for the whole vector

{1, 2..., K · d} = G1 ∪ · · · ∪ Gd, (6)

with
Gj = {j, j + d, j + 2d . . . , j + (K− 1)d}, j = 1, . . . , d

group of size K. Let us define the following l2,1 norm

‖β‖2,1 =
d

∑
j=1

∥∥∥βGj

∥∥∥
2

and ‖a‖2,1 =
K

∑
j=1

∥∥∥a(k)
∥∥∥

2

with βGj
denoting the reduction of vector β to the subset of index Gj. The problem we are

dealing with is not a classic regression problem, because our interest is to simultaneously
estimate the vector a, more specifically the a(1), .., a(K) anomalies that compose it, and the
β vector. For example, if an anomaly is present in the first channel, the vector a(1), repre-
senting the residual of the linear regression of y(1) on W will have a l2-norm much higher
than the residual in another channel with no anomaly. While the anomalies vectors are not
connected, because the anomalies can appear in any, some, or all channels, the underlying
signals are not independent since by hypothesis they share the same spectral characteristic.
For these reasons, we propose solving the following convex minimization problem
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(β̂, â) = argmin
β∈RK·d×1, a∈RK·n×1

1
2
‖y− Xβ− a‖2

2 + λ1‖β‖2,1 + λ2‖a‖2,1︸ ︷︷ ︸
F(β,a)

(7)

where λ1 > 0 is a regularization parameter that controls the group sparsity of vector β,
while λ2 > 0 is a regularization parameter that controls the number of expected anomalies.
Both the regularization parameters represent a trade-off between the fit and the complexity
of the model. Being λ2 fixed, λ1 → 0 implies a non sparse β, generalizing the model
proposed in [13] to the multichannel setting, on the contrary λ1 → ∞ implies a sparser
β vector, increasing the energy of the anomalies. On the other hand, being λ1 fixed,
λ2 → 0 detects anomalies in each channel, while λ2 → ∞ brings to a model without
anomalies. Their choice is a delicate point and we will discuss it in the Implementation,
Section 4. Finally, for each k ∈ {1, 2, ..., K} we detect an anomaly if the obtained estimate∥∥∥â(k)

∥∥∥
2
6= 0, where â =

(
â(1), ..., â(K)

)
is the solution of the optimization problem (7).

Moreover, the intensity of the detected anomaly, measured as ‖â(k)‖2, can be considered as
a score for the anomaly and treated as an incipient level of fault according to the specific
application which defines an alarm threshold.

From a statistical perspective, the problem given in Equation (7) falls into the class of
group lasso regression problem applied to the augmented parameter vector β̃ = (βt; at)t

and augmented design matrix X̃ = [X In·K]. Indeed, the problem in Equation (7) can be
rewritten as

ˆ̃β = argmin
β̃∈RK·d+K·n×1

1
2
‖y− X̃ β̃‖2

2 + λ1P(β̃).

with group Lasso penalty P(β̃) = ∑d
j=1

∥∥∥βGj

∥∥∥
2
+ λ2

λ1
∑K

j=1

∥∥∥a(k)
∥∥∥

2
. If the unknown vector

β̃ is sparse, under appropriate hypothesis on the design matrix X̃, consistency of the
proposed estimator is guaranteed, see [19–21].

From a numerical perspective, problem (7) is jointly convex in β and a, and its simple
form suggests that we can apply an alternating optimization given initial estimates for β
and a. Of course, we need an estimate for β that takes into account the potential presence
of the anomaly, i.e., robust.

Given an initial robust estimate for β, i.e., β̂
0
, we define â0 = y− X β̂

0
, then at each

iteration the procedure solves the following two sub-problems,

given a, estimate β

β̂ = argmin
β∈RKd

{
1
2
||y− Xβ− a||22 + λ1||β||2,1 + λ2‖a‖2,1

}
︸ ︷︷ ︸

F2(β)

(8)

given β, estimate a

â = argmin
a∈RKn

{
1
2
||y− Xβ− a||22 + λ1||β||2,1 + λ2‖a‖2,1

}
︸ ︷︷ ︸

F1(a)

. (9)

Iteration stops when a given number of maximum iteration is reached or when the
relative error on the anomaly vector a is below a fixed threshold. Let us give a closer look at
the two sub-problems. Function F1(a) = F1

(
a(1), ..., a(K)

)
is separable in each channel, i.e.,
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F1(a) =
K

∑
k=1

1
2

∥∥∥r(k) − a(k)
∥∥∥2

2
+ λ2

∥∥∥a(k)
∥∥∥

2
+ const,

where r(k) = y(k) −W β(k) is the current residual of the regression of y(k) on W ; so the
solution of sub-problem (9) is obtained by the multivariate-Soft thresholding rule

â(k) =
r(k)∥∥r(k)
∥∥

2

(∥∥∥r(k)
∥∥∥

2
− λ2

)
+

, (10)

where the directional vector v/||v|| plays the rule of sign() function in classical one di-
mensional setting, see [22]. In Equation (10), the Soft thresholding operator (.)+ acts on
the vector r(k) by shortening it towards 0 by an amount λ2 if its norm is greater than λ2,
by setting it to zero if its norm is less than λ2. For the seek of completeness, we sketch
below how to derive the above statement. Vector in Equation (10) is the solution of the
following convex problem

â(k) = argmin
a∈Rn×1

{
k

∑
k=1

1
2

∥∥∥r(k) − a(k)
∥∥∥2

2
+ λ2

∥∥∥a(k)
∥∥∥

2

}
.

Considering the case a(k) 6= 0 and setting the derivative with respect to a(k) to zero,
we obtain

−
(

r(k) − a(k)
)
+ λ2

a(k)∥∥a(k)
∥∥

2

= 0,

from which the following two equations derive:

a(k) =

(
1 +

λ2∥∥a(k)
∥∥

2

)−1

r(k) and
∥∥∥a(k)

∥∥∥
2
=

(
1 +

λ2∥∥a(k)
∥∥

2

)−1∥∥∥r(k)
∥∥∥

2
,

by solving the second equation in
∥∥∥a(k)

∥∥∥ and substituting into the first we get,

â(k) =
r(k)∥∥r(k)
∥∥

2

(∥∥∥r(k)
∥∥∥

2
− λ2

)
. (11)

Now, consider the case a(k) = 0. We need to impose that the 0 vector belongs to the
pseudogradient evaluated at a(k), i.e., there exists a vector v ∈ Rn×1, v 6= 0 and ‖v‖2 ≤ 1
such that −r(k) + λ2v = 0. This is possible only if

∥∥∥r(k)
∥∥∥

2
≤ λ2. Finally, combining both

cases into a single equation, we get exactly the expression in Equation (10).
Let us now consider sub-problem (8). It is possible to prove that minimization

of F2(β) = F(β, â), where â is the solution of Equation (9), i.e., vectors â(k) given by
Equation (10), is equivalent to solve the following Huber’s cost functional with parameter
λ2 plus a group lasso penalty. i.e.,

β̂ = argmin
β∈RK·d×1

{
K

∑
k=1

ρH
λ2

(
y(k) −W β(k)

)
+ λ1||β||2,1

}
.

Here the mutivariate Huber cost function is given by the following rule:
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ρH
λ2
(v) =

{
‖v‖2

2/2 if ‖v‖2 ≤ λ2
λ2‖v‖2 − λ2

2/2 if ‖v‖2 > λ2,
(12)

for any v ∈ Rn×1.
For the sake of completeness, we sketch below how to derive the above statement. Let

I =
{

k : â(k) = 0
}
=
{

k :
∥∥∥r(k)

∥∥∥
2
< λ2

}
and Ic be its complement.

F1(β) = F(β, â)

=
1
2

K

∑
k=1

∥∥∥y(k) −W β(k) − â(k)
∥∥∥2

2
+ λ1‖β‖2,1 + λ2

K

∑
k=1

∥∥∥â(k)
∥∥∥

2

=
1
2 ∑

k∈I

∥∥∥y(k) −W β(k)
∥∥∥2

2
+

1
2 ∑

k∈Ic
λ2

2 + λ2 ∑
k∈Ic

(∥∥∥r(k)
∥∥∥

2
− λ2

)
+ λ1‖β‖2,1

=
1
2 ∑

k∈I

∥∥∥y(k) −W β(k)
∥∥∥2

2
+ λ2 ∑

k∈Ic

∥∥∥r(k)
∥∥∥

2
− 1

2 ∑
k∈Ic

λ2
2 + λ1‖β‖2,1.

In robust regression, i.e., regression in presence of outliers, it is well known that Huber
loss is less sensitive to outliers than quadratic loss because it combines the squared loss
and the absolute loss in an adaptive way. Intuitively, when the data points are not too
big, Huber’s loss function penalizes like the squared loss; otherwise, it penalizes like
the absolute loss. However, it is not resistant to high leverage outliers (outliers in the
predictors) because it never rejects gross outliers that have moderate or high leverage.
Its breakdown point is 1/n. Indeed, according to [23], a convex criterion is inherently
incompatible with robustness.

The proposed procedure is summarized in Algorithm 1.

Algorithm 1 Calculate
(

β̂, â
)

with the Soft Thresholding operator

Input data:

• K curves y(1), . . . , y(K);
• parameters for the calculation of the low Q-factor and high Q-factor analysis filters

p, q, s, J;
• maximum number of iterations max_iter;
• ε > 0

(1) Build matrices Φ and Ψ→ X, see Equation (5)
(2) Set initial estimate for j = 0, β̂

0
and â0 = y− X β̂

0

while no convergence do
j = j + 1

i. solve β̂
j
= argmin

β∈RKd

{
1
2 ||y− Xβ− âj−1||22 + λ1||β||2,1 + λ2‖âj−1‖2,1

}

ii. evaluate residuals r̂j = y− X β̂
j
=


r̂(1),j

r̂(2),j
...

r̂(K),j


iii. Soft threshold the residuals â(k),j = r̂(k),j

‖r̂(k),j‖2

(∥∥∥r̂(k),j
∥∥∥

2
− λ2

)
+

iv. check convergence ‖âj−âj−1‖2
‖âj−1‖2

< ε or j =max_iter

end while
Output:

(
β̂, â
)
=
(

β̂
j
, âj
)
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Possible Improvements

In this section we explore the possibility to improve our estimator, adopting a dif-
ferent type of threshold operator. We are inspired by [13], where the authors deal with
the outliers detection problem in the case of one channel. In the paper they propose a
two step procedure: after a proper initialization for β, in the first step, they apply a Soft
thresholding operator to the residual, in the second step they use Ordinary Least Squares
(OLS) to update vector β. The main difference with our procedure is in the second step,
where we perform a group lasso regression instead of an OLS to face the multitask regres-
sion. Although in [13] the authors deal with the outliers detection, looking for pointwise
anomalies, the philosophy of their estimator is comparable to ours. Moreover, they note
that in the presence of multiple outliers, the Soft threshold is not able to deal with masking
and swamping effects, and propose to replace Soft-thresholding with Hard-thresholding
obtaining a great improvement. Then they generalize the idea and introduce an entire
class of methods, namely Θ− IPOD which uses a general Θ thresholding operator instead
of the Soft thresholding operator, discovering important results and outstanding perfor-
mance. In this direction of research, we explore the possibility to improve our estimator,
substituting the first step of our procedure, i.e., the multivariate Soft thresholding operator
expressed in Equation (10), by an appropriate Θ operator as done by the authors of [13].
Specifically, we substitute Equation (10), by the following Hard-thresholding operator

â(k) = r(k)I
(∥∥∥r(k)

∥∥∥
2
< λ2

)
, (13)

where I(·) is the indicator function defined in Equation (3). We stress that substituting
Equation (13) into the first step of our procedure, the second step becomes equivalent to a
skipped-mean loss penalized with a group lasso penalty. We sketch below how to derive it.

F2(β) = F(β, â)

=
1
2

K

∑
k=1

∥∥∥y(k) −W β(k) − â(k)
∥∥∥2

2
+ λ1‖β‖2,1 +

λ2
2

2

K

∑
k=1

I
(

â(k) 6= 0
)

=
1
2 ∑

k∈I

∥∥∥y(k) −W β(k)
∥∥∥2

2
+

λ2
2

2
card(Ic) + λ1‖β‖2,1

(14)

where I =
{

k : â(k) = 0
}
=
{

k :
∥∥∥r(k)

∥∥∥
2
≤ λ2

}
and Ic its complement.

Hence, substituting Soft threshold with Hard threshold automatically makes the
second step equivalent to the following penalized skipped-mean loss

β̂ = argmin
β∈RK·d×1

{
K

∑
k=1

ρSM
λ2

(
y(k) −W β(k)

)
+ λ1||β||2,1

}
.

with loss defined as:

ρSM
λ2

(v) =
{
‖v‖2

2/2 if ‖v‖2 ≤ λ2
λ2

2/2 if ‖v‖2 > λ2,
(15)

for any v ∈ Rn×1. Note that skipped-mean loss is not-convex and is a special case of
Hampel loss, that belongs to the family of redescending M-estimators, see [24], with high
breakdown point, close to 0.5. This means that is robust to outliers. For a summary, see
Appendix 1 in [16].
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Figure 1 shows a comparison between quadratic loss, Huber loss ρH
λ2
(v), and skipped-

mean loss ρSM
λ2

(v).
We can conclude that, when using Hard threshold instead of Soft threshold, we solve

the following problem instead of the problem in Equation (7)

(β̂, â) ∈ argmin
β∈RKd , a∈RKn

{
1
2
‖y− Xβ− a‖2

2 + λ1‖β‖2,1 +
λ2

2
2
‖a‖2,0

}
, (16)

with ‖a‖2,0 = ∑K
k=1 I

(
a(k) 6= 0

)
, the l0 grouped norm.

Of course, the problem in Equation (16) is not convex, because the complexity penalty
is not convex; therefore, we can only aspire to find one of the possible local minima
of the objective function. Nonconvex functions may possess local optima that are not
global optima, and our iterative method may terminate undesirably in one of these local
optima. From a statistical perspective, although theoretical results for nonconvex penalties
have been studied in [14,15] proving that all local optima are essentially as good as a
global optimum, we cannot apply those results because our penalty does not satisfy their
hypothesis. Therefore, our finding for this second procedure is purely empirical and we
include the side condition ‖β̂‖1 + ‖a‖1 < R to guarantee the existence of at least one
local/global optima. In addition, we will require R ≥ ‖β0‖1 + ‖a0‖1 so that the true
regression vector β0 and the true anomaly vector a0, that satisfy Equation (4), are feasible.

The proposed procedure is summarized in Algorithm 2.

Algorithm 2 Calculate
(

β̂, â
)

with the Hard Thresholding operator

Input data:

• K curves y(1), . . . , y(K);
• parameters for the calculation of the low Q-factor and high Q-factor analysis filters

p, q, s, J;
• maximum number of iterations max_iter;
• ε > 0

(1) Build matrices Φ and Ψ→ X, see Equation (5)
(2) Set initial estimate for j = 0, β̂

0
and â0 = y− X β̂

0

while no convergence do
j = j + 1

i. solve β̂
j
= argmin

β∈RKd

{
1
2 ||y− Xβ− âj−1||22 + λ1||β||2,1 + λ2‖âj−1‖2,0

}

ii. evaluate residuals r̂j = y− X β̂
j
=


r̂(1),j

r̂(2),j
...

r̂(K),j


iii. Hard threshold the residuals â(k),j = r(k),jI

(∥∥∥r(k),j
∥∥∥

2
< λ2

)
,

iv. check convergence ‖âj−âj−1‖2
‖âj−1‖2

< ε or j =max_iter

end while
Output:

(
β̂, â
)
=
(

β̂
j
, âj
)
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Figure 1. Loss functions: L2, Huber and skipped - mean.

4. Implementation

In this section, we describe all the issues that make the proposed procedure effective:
namely the initialization step, the numerical algorithm, and the choice of the regularization
parameters λ1 and λ2.

As described in Section 3, we need to initialize the two step procedure by a robust
estimator of parameters β which gives a robust estimator of Xβ to plug into expression

of Equation (9). First, we note that vector (Xβ)t =

((
W β(1)

)t
, ...,

(
W β(K)

)t
)

, hence to

initialize our procedure is enough to establish a robust estimator for each of the signal
component f (k) = W β(k). In our procedure, under the prior knowledge that the number of
channels with anomaly are less then the half number of channels, we initialize f (k) by the
median of the data channels, namely median

(
y(1), ..., y(K)

)
As regards the numerical algorithm we note that the first step described in Equation (9)

has a closed-form solution given in Equation (10) and Equation (13) in the case of Soft
and Hard threshold respectively; the second step in Equation (8) requires the solution
of a linear regression problem with a group Lasso penalty. Hence for the solution of
the second step we employed the grpreg R package that implements the efficient Group
Descendent Algorithm presented in [25,26]. This algorithm works groupwise by using the
separability of the model (5) in terms of a group of variables, i.e., it updates each group of
variables freezing the other groups to their current value until convergence. The updating
of each group of variables is performed through a multivariate soft-thresholding operator,
under the assumption of “orthonormal groups”. We stress that the “orthonormal group”
property refers to the condition X t

Gj
XGj = I, with XGj denoting the reduction of design

matrix X to columns of the subset of index Gj. When this condition is not satisfied
the grpreg automatically orthonormalizes the design matrix, but this practice leads to a
slight modification of the l1/l2-norm contained in the penalty, as pointed out in [27,28].
However, this is not our case, because the design matrix defined in Equation (5) satisfies
the “orthonormal groups” property by construction, and hence, we can take complete
advantage of the Group Descendent Algorithm implemented in the grpreg package.

As in any penalized regression approach, the choice of the regularization parameter
is really strategic. In particular, in the proposed procedure the regularization parameter
has two components, namely λ1 and λ2. The latter controlling the degree of regularization
in the regression model on parameter β, the last controlling the threshold over which the
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residual of the previous regression is considered not acceptable. Under the data model
described in Equation (1), the expected size of the residual r(k), in absence of anomaly in
channel k, is given by σ

√
n, hence it is natural to fix λ2 = σ̂

√
n where σ̂ is an estimator of the

noise variance. In particular, we adopt σ̂ = median
(∥∥∥r(1))‖2, ..., ‖r(K)

∥∥∥
2

)
/
√

n where r(k) is

the residual after having initialized f (k) as described above. The choice of the regularization
λ1 is more demanding; we avoided CV criterion since it is quite computationally heavy
and in principle when applied on the (y, X) data, a large prediction error can be due to
both a suboptimal β as well as to the presence of an anomaly. Hence we suggest tuning
parameter λ1 by the BIC criterion, which is much less computationally demanding and
easily modifiable to our setting. In particular, we adopted the following formula

BIC(λ1) = nR log(RSS(λ1)/nR) + d f (λ1) log(nR)

where d f (λ1) is evaluated according to formula (22) in [26] and RSS(λ1) = ‖y− X β̂− â‖2
2,

with β̂ and â estimates obtained for λ1. The grid of λ1 values has been obtained as in
Section 3.5 of [26].

5. Simulations and Real Examples

To show the performance of the proposed methodology, we performed numerical
experiments both in a simulation setting and in a real dataset case.

5.1. Synthetic Data

We generated data according to the model in Equation (1) with some known func-
tions f k(t) and some known anomalies and evaluated the performance of the proposed
techniques in terms of signals reconstruction and anomalies detection.

Since the proposed method deals with nominal signals with fast oscillating charac-
teristics, we choose the HiSine and the TwoChirp signals (represented in Figures 2 and 3)
among the classical signals employed in the literature. Both can be well represented by
using an appropriate RADWT. In particular, a RADWT with Q-factor almost 5 (p = 8,
q = 9, s = 3 and j = 10) is appropriate for their sparse representation.

As regards the anomalies, there are no assumptions on their shape, i.e., they can be
of any duration and shape and they can appear in any of the signal components, so we
decided to model them by the following formula

a(t) = M · I(t1 ≤ t ≤ t2) (17)

to represent situations where the mean of the signal undergoes to a shift during a specific
interval of time (t1, t2); where the shift M = h ·max1≤i≤n,k

(
y(k)(ti)

)
with h = 0.5 or 2,

to mimic situation where the anomaly is weak or strong with respect to the underlying
signals. We generated data according to model (1), building K signals, f(1), . . . , f(K) of
length n = 256 and for such a choice the W matrix has dimension n× d = 256× 695. Each
signal has been generated randomizing the original signal f (HiSine or Twochirp) by the
formula f(k) = f · u, where u is a vector of i.i.d. variables with distribution Unif(0, 1). These
generations guarantee that the true underlying signals f(1), . . . , f(K) have similar shape and
the same sparsity patterns. According to the model in Equation (1), we added noise to each
channel as ε(k) ∼ N(0, σ2 I) with σ2 related to the variance of the true underlying signal
realizing three different type of SNR = (0.5, 1, 6) to mimic situations of different severity
of noise. For completeness, here is the SNR expression

SNR =

1
K ∑K

i=1 Var
(

f(k)
)

σ2 .

Finally, we added anomalies a(k) to some channels as in Formula (17).
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To sketch, we have considered two settings:

• f = HiSine, K = 3, a(1) as in Formula (17) with (t1, t2) = (78, 177);
• f = TwoChirp, K = 5, a(1) as in Formula (17) with (t1, t2) = (78, 177) and a(4) as in

Formula (17) with (t1, t2) = (157, 256).
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Figure 2. HiSine signal.
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Figure 3. TwoChirp signal.

To summarize, for each of these two settings (f = HiSine and f = TwoChirp), we
analyzed two different levels of anomalies (h = 0.5 and h = 2 in Formula (17)) and three
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different levels of SNR (SNR = 0.5, 1 and 6). These choices are arbitrary but they were
dictated by the idea of understanding a sort of breakdown point of our procedure. Naturally,
we expect that the weaker the anomalies and the stronger the noise, the worse the problem.
Finally, we evaluated performance by computing the MSE for each signal’s component as

MSEk =
1
n

n

∑
i=1

(
f̂ (k)(ti)− f(k)(ti)

)2
, k = 1, . . . , K;

with f̂(k) estimate of f(k), and by computing the relative number of (falsely) detected
anomalies (FPR) as well as the relative number of not detected anomalies (FNR), namely

FPR =
1

K− A

K

∑
i=1

I
(∥∥∥â(k)

∥∥∥
2
6= 0∧

∥∥∥a(k)
∥∥∥

2
= 0

)
FNR =

1
A

K

∑
i=1

I
(∥∥∥â(k)

∥∥∥
2
= 0∧

∥∥∥a(k)
∥∥∥

2
6= 0

)
,

A being the true number of channel with anomalies. In addition, we evaluated the intensity
of the estimated anomalies to compare with the intensity of the simulated ones and to
analyze the detection capabilities of both our proposals as∥∥∥â(k)

∥∥∥2

2
n

, k = 1, . . . , K.

To be robust to the particular realization in generating synthetic data (and correspond-
ing noise), each experiment was run several times. In particular, we ran 10 instances
for each of the 12 considered cases (2 (function settings) × 2 (levels of anomaly) × 3
(SNRs)). For the sake of exposition, in the following we show separately results obtained
for each function’s settings. Specifically, Figures 4–9 and Tables 1 and 2 show results of
the 6 different combinations of levels of anomaly and SNRs obtained when the function is
f = HiSine and Figures 10–15 and Tables 3 and 4 show analogous results when the function
is f = TwoChirp. Moreover, we show in Figures 5 and 6 the plots of the shape of the un-
known signals and the goodness of reconstructions by the Hard thresholding procedure in
the two extreme cases, weak anomaly (h = 0.5) with highest noise (SNR = 0.5) and strong
anomaly (h = 2) with lowest noise level (SNR = 6) for the first setting f = HiSine; while
in Figures 7 and 8 we show the same results obtained by the Soft thresholding procedure.
For the second setting f = TwoChirp, four analogous plots are given in Figures 11 and 12
and Figures 13 and 14 for the Hard and Soft thresholding procedures respectively.

Comment on the results. Concerning anomaly detection performance, we observe that
for both procedures, Hard and Soft, and both settings, f = HiSine and f = TwoChirp, it is
worst in the case of weak anomaly (h = 0.5, Tables 1 and 3) with respect to the case of strong
anomaly (h = 2, Tables 2 and 4). This is a consequence of the masking effect: the weaker the
anomaly the easier the noise, and the anomalies can mask each other. However, there is an
interesting difference between the two procedures. In particular, for the Hard thresholding,
we observe that FNR is always zero, while there can be some FPR > 0 in the more difficult
setting, i.e., when the anomalies are weaker and the level of noise is higher. This means
that the Hard thresholding procedure always detects the true anomalies, being prone to
some false positives detection when stressing the problem setting. This observation is
relevant from the practical point of view because in such extreme cases one can always
adopt a post-processing rule to classify the detected anomalies, being confident enough
not to miss any anomaly. On the contrary, the Soft thresholding is much more conservative,
hence when stressing the setting, i.e., when the anomalies are weaker (h = 0.5) and the
level of noise higher, the Soft thresholding procedure is more prone to false negatives
detection. Indeed, for the Soft we always get FPR = 0, while stressing the setting we
get some FNR > 0 (the opposite of Hard). This is not a drawback, rather a different
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way of reacting to the difficulty of the problem. However, from a practical point of view,
when using Soft instead of Hard it can be a disadvantage to have false-negative detection
because when the result undergoes post-processing the anomalies not detected are not
further analyzed. However, although our two procedures are not the definitive answer to
the AD problem, it is important from a practical point of view to be aware that the Hard
thresholding tends to select more anomalies (and therefore to have some false positives)
while the Soft threshold tends to select fewer anomalies (and therefore to have some false
negatives). In addition, Figures 9 and 15 show the boxplots of the intensity of the simulated
anomalies and of the estimated anomalies by both Hard and Soft thresholding. We can
note the good performance of the Hard thresholding procedure with respect to the Soft
thresholding one, both in the case of weak anomalies and strong anomalies, with a better
intensities estimate in the last case.

As regards the estimation performance, we observe that for both procedures, Hard
and Soft, and both settings, f = HiSine, and f = TwoChirp, it decreases when increasing
the level of noise (i.e., decreasing the SNR). In fact, the MSE significantly decreases when
moving from the left to the right in all box-plot shown in Figure 4 for the first setting
f = HiSine and in Figure 10 for the second setting f = TwoChirp; panels (a)–(c) refer to
Hard thresholding for h = 0.5 and h = 2, respectively, and panels (b) and (d) refer to
Soft thresholding for h = 0.5 and h = 2, respectively. Interestingly, in line with what we
observed on the detection performance results, we have significant differences in terms of
MSE performance on the anomalous channels between the Hard and the Soft. See box-plots
in positions 1, 4, 7, corresponding to the first channel for the HiSine signal and box-plots
in positions 1, 4, 6, 9, 11, 14, corresponding to the first and the fourth channels for the
TwoChirp signal. The anomalous channels always have a better MSE for the Hard than for
the Soft. This is a direct consequence of our double-step procedure: when we correctly
detect the anomaly (in the first step), we correctly adjust the residual (in the second step)
and hence we obtain a better estimation. On the channels without anomaly, detection
performance is comparable.

Finally, we stress that what we have observed on average (looking at box-plots)
about estimation performance, can be inspected visually for a randomly chosen realization
looking at the first channel in Figure 5 (Hard thresholding, h = 0.5, SNR = 0.5), Figure 6
(Hard thresholding, h = 2, SNR = 6), Figure 7 (Soft thresholding, h = 0.5, SNR = 0.5) and
Figure 8 (Soft thresholding, h = 2, SNR = 6), which refer to f = HiSine and looking at the
first and fourth channels in Figure 11 (Hard thresholding, h = 0.5, SNR = 0.5), Figure 12,
(Hard thresholding, h = 2, SNR = 6), Figure 13 (Soft thresholding, h = 0.5, SNR = 0.5)
and Figure 14 (Soft thresholding, h = 2, SNR = 6), which refer to f = TwoChirp.

Table 1. False positives rates FPR (%) and false negatives rates FNR (%) for the simulations carried
out on HiSine signals, h = 0.5. We report average values of the indicators over 10 simulations.

HiSine SNR = 0.5 SNR = 1 SNR = 6

FPRhard 0.05 0.05 0
FNRhard 0 0 0
FPRsoft 0 0 0
FNRsoft 1 1 1

Table 2. False positives rates FPR (%) and false negatives rates FNR (%) for the simulations carried
out on HiSine signals, h = 2. We report average values of the indicators over 10 simulations.

HiSine SNR = 0.5 SNR = 1 SNR = 6

FPRhard 0 0 0
FNRhard 0 0 0
FPRsoft 0 0 0
FNRsoft 0.1 0 0
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Table 3. False positives rates FPR (%) and false negatives rates FNR (%) for the simulations carried
out on TwoChirp signals, h = 0.5. We report average values of the indicators over 10 simulations.

TwoChirp SNR = 0.5 SNR = 1 SNR = 6

FPRhard 0 0 0
FNRhard 0 0 0
FPRsoft 0 0 0
FNRsoft 1 1 0.8

Table 4. False positives rates FPR (%) and false negatives rates FNR (%) for the simulations carried
out on TwoChirp signals, h = 2. We report average values of the indicators over 10 simulations.

TwoChirp SNR = 0.5 SNR = 1 SNR = 6

FPRhard 0 0 0
FNRhard 0 0 0
FPRsoft 0 0 0
FNRsoft 0 0 0

Figure 4. Mean Square Error for the estimated signals f̂(1), f̂(2), f̂(3) for the HiSine. First row: (a) Hard and (b) Soft estimators
for h = 0.5. Second Row: (c) Hard and (d) Soft estimators for h = 2. Blue colors refer to SNR = 0.5 (first 3 boxes), violet
colors refer to SNR = 1 (second 3 boxes), green colors refer to SNR = 6 (last 3 boxes).
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Figure 5. First setting: HiSine signals, weak anomaly (h = 0.5), highest noise level (SNR = 0.5).
Result for Hard thresholding procedure: (a) true signals (black) and noised signals (green); (b) true
signals (black) and retrieved signals (cyan).
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Figure 6. First setting: HiSine signals, strong anomaly (h = 2), lowest noise level (SNR = 6). Result
for Hard thresholding procedure: (a) true signals (black) and noised signals (green); (b) true signals
(black) and retrieved signals (cyan).
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Figure 7. First setting: HiSine signals, weak anomaly (h = 0.5), highest noise level (SNR = 0.5).
Result for Soft thresholding procedure: (a) true signals (black) and noised signals (green); (b) true
signals (black) and retrieved signals (cyan).
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Figure 8. First setting: HiSine signals, strong anomaly (h = 2), lowest noise level (SNR = 6). Result
for Soft thresholding procedure:(a) true signals (black) and noised signals (green); (b) true signals
(black) and retrieved signals (cyan).
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Figure 9. Intensity of the simulated anomaly a(1), of the estimated anomaly by Hard thresholding â(1),hard and, of the
estimated anomaly by Soft thresholding â(1),soft for the HiSine. Panel (a) refers to h = 0.5 and anomaly in channel 1, panel
(b) refers to h = 2 and anomaly in channel 1. Blue colors refer to SNR = 0.5 (first 3 boxes), violet colors refer to SNR = 1
(second 3 boxes), green colors refer to SNR = 6 (last 3 boxes).

Figure 10. Mean Square Error for the estimated signals f̂(1), f̂(2), f̂(3), f̂(4), f̂(5) for the TwoChirp. First row: (a) Hard and
(b) Soft estimators for h = 0.5. Second Row: (c) Hard and (d) Soft estimators for h = 2. Blue colors refer to SNR = 0.5 (first
5 boxes), violet colors refer to SNR = 1 (second 5 boxes), green colors refer to SNR = 6 (last 5 boxes).
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Figure 11. Second setting: TwoChirp signals, weak anomaly (h = 0.5), highest noise level
(SNR = 0.5). Result for Hard thresholding procedure: (a) true signals (black) and noised signals
(green); (b) true signals (black) and retrieved signals (cyan).
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Figure 12. Second setting: TwoChirp signals, strong anomaly (h = 2), lowest noise level (SNR = 6).
Result for Hard thresholding procedure: (a) true signals (black) and noised signals (green); (b) true
signals (black) and retrieved signals (cyan).
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Figure 13. Second setting: TwoChirp signals, weak anomaly (h = 0.5), highest noise level
(SNR = 0.5). Result for Soft thresholding procedure: (a) true signals (black) and noised signals
(green); (b) true signals (black) and retrieved signals (cyan).
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Figure 14. Second setting: TwoChirp signals, strong anomaly (h = 2), lowest noise level (SNR = 6).
Result for Soft thresholding procedure: (a) true signals (black) and noised signals (green); (b) true
signals (black) and retrieved signals (cyan).
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Figure 15. Intensity of the simulated anomaly a(1), of the estimated anomaly by Hard thresholding â(1),hard and, of the
estimated anomaly by Soft thresholding â(1),soft for the TwoChirp. Panel (a) refers to h = 0.5 and anomaly in channel 1,
panel (b) refers to h = 0.5 and anomaly in channel 4, panel (c) refers to h = 2 and anomaly in channel 1, panel (d) refers
to h = 2 and anomaly in channel 4. Blue colors refer to SNR = 0.5 (first 3 boxes), violet colors refer to SNR = 1 (second
3 boxes), green colors refer to SNR = 6 (last 3 boxes).

5.2. Real Data

To illustrate the performance of our procedures on a real example, we considered
the problem of detecting anomalies for signals recording measurements on a water pump.
The signals represent the behavior of the pump in both normal and abnormal conditions
and a complete description of it is given in [29]. The dataset is part of a repository managed
by the Delft University of Technology and is freely available at http://homepage.tudelft.
nl/n9d04/occ/index.html (accessed on the 18 February 2021) (dataset 541: Delft pump
AR app). Each signal has a length n = 160 and has been obtained by first fitting an
AutoRegressive model of order 32 (AR(32)) to each of 5 vibration measurements and then
by combining the coefficients in a single vector.

http://homepage.tudelft.nl/n9d04/occ/index.html
http://homepage.tudelft.nl/n9d04/occ/index.html
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This dataset has been previously analyzed in [30]. In that paper, the authors proposed
a data domain description, named the Support Vector Data Description (SVDD) to find
the finest representation of the data such that the normal target signals are optimally
clusterized and can be distinguished as best as possible from the abnormal ones. Their
approach has a good performance and in some sense, it is another perspective for looking at
the detection of anomalies. However, the data representation proposed in [30] does not take
into account the longitudinal shape of the data, which are ordered coefficients; hence the
method proposed in [30] is expected to be invariant under permutation of the data. On the
other hand, our analysis is truly functional, since we treat the data as functions/signals;
moreover, the dataset satisfies the hypothesis of our model. Since the underlying signals
have a fast oscillating characteristic, they share a similar shape which presupposes the same
sparsity pattern into the RADWT dictionary and the signals measured under abnormal
conditions can be modeled as the signals measured under normal conditions plus some
shift in the first part of the interval.

We considered 20 signals, 12 nominal and 8 with the anomaly, randomly chosen from
the whole dataset, see Figure 16. We applied both procedures, Hard and Soft thresholding,
obtaining reconstruction shown in Figure 17, panels (a) and (b). In the same figure, panels
(c) and (d), we also display the retrieved residuals which represent anomalies. While the
Soft thresholding has no false positives neither false negatives, the Hard thresholding
has 2 false positives (channel 10 and 11), with the norm of the order of the estimated
variance 0.0035, see Table 5. However, the Hard thresholding estimates better the intensity
of the anomalies (which represent residuals for the regression on β), permitting a better
signals reconstruction. This does not happen for the Soft thresholding, which results in
over-smoothed signal reconstruction. Finally, we can conclude that the Hard thresholding
procedure has a better performance although it has two false positives, which could be
easily detected by standard post-processing.
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Figure 16. Pump data: red color indicates anomaly signals, black color indicates normal signals.
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Figure 17. First row: (a) Pump data estimated by the Hard thresholding procedure (b) Pump data
estimated by the Soft thresholding procedure. Second Row: (c) Anomalies estimated by the Hard
thresholding procedure (d) Anomalies estimated by the Soft thresholding procedure.

Table 5. ‖â‖2/n for the Hard estimator.

Pump Data∥∥∥â(1)
∥∥∥2

2
/n, . . . ,

∥∥∥â(9)
∥∥∥2

2
/n 0∥∥∥â(10)

∥∥∥2

2
/n 0.0037∥∥∥â(11)

∥∥∥2

2
/n 0.0036∥∥∥â(12)

∥∥∥2

2
/n 0∥∥∥â(13)

∥∥∥2

2
/n 0.0205∥∥∥â(14)

∥∥∥2

2
/n 0.0225∥∥∥â(15)

∥∥∥2

2
/n 0.0207∥∥∥â(16)

∥∥∥2

2
/n 0.0202∥∥∥â(17)

∥∥∥2

2
/n 0.0192∥∥∥â(18)

∥∥∥2

2
/n 0.0190∥∥∥â(19)

∥∥∥2

2
/n 0.0203∥∥∥â(20)

∥∥∥2

2
/n 0.0201
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6. Conclusions

In this paper, we presented two procedures for anomaly detection in multichannel
signals under a structural hypothesis on the underlying signals covering some specific
real-life situations. In particular, we dealt with fast oscillating signals under the assumption
that they share a common specific sparsity pattern in a given dictionary. The construction
of the dictionary leverages on a complete filter bank (RADWT) of L2(R) which guarantees
a perfect reconstruction property and a tunable Q-factor. We based the two procedures on
group penalized regression methods and we implemented them by a two-step iterative
algorithm. The two methods differ in the second step iteration, the first applying Soft
thresholding to the residual vectors, the second one applying Hard thresholding. Moreover,
we made connections between them and the robust regression literature in a high dimen-
sional setting obtaining interesting interpretations. From the computational point of view,
we observed that the Hard thresholding procedure reveals some advantages to the Soft
thresholding procedure, confirming some previous results on nonconvex robust regression.
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