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Abstract: This paper analyzed the multi-machine repairable system with one unreliable server and
one repairman. The machines may break at any time. One server oversees servicing the machine
breakdown. The server may fail at any time with different failure rates in idle time and busy time.
One repairman is responsible for repairing the server failure; the repair rate is variable to adapt to
whether the machines are all functioning normally or not. All the time distributions are exponential.
Using the quasi-birth-death(QBD) process theory, the steady-state availability of the machines, the
steady-state availability of the server, and other steady-state indices of the system are given. The
transient-state indices of the system, including the reliability of the machines and the reliability
of the server, are obtained by solving the transient-state probabilistic differential equations. The
Laplace–Stieltjes transform method is used to ascertain the mean time to the first breakdown of the
system and the mean time to the first failure of the server. The case analysis and numerical illustration
are presented to visualize the effects of the system parameters on various performance indices.

Keywords: machine repairable system; availability; Markov process; reliability

1. Introduction

The machine repairing system can be applied to many real systems, such as com-
puter networks, telecommunications, manufacturing systems, aircraft maintenance, and
others [1]. Many researchers have studied the multi-server repairable systems [2–7].
Wu et al. [8] investigated a machine repair problem with homogeneous machines and
standbys available, in which multiple technicians were responsible for supervising these
machines and operated a (R, V, K) synchronous vacation policy, the matrix analytical
method was employed to obtain a steady-state probability and the closed-form expression
of the system performance measures. Chen et al. [9] analyzed the system reliability of
the retrial machine repair system with M operating units, S warm standby units, and
a single repair server with N-policy. Reliability function and MTTF were derived from
Laplace–Stieltjes transform equations. The other works of the single-server models can be
referred to [10–15]. For the research targets, most of the researchers deal with steady-state
characteristics, and some researchers studied transient-state indices [5,16]. Optimizations
as the applications of the study also have been done in some research [9,13,17].

It is a fact that a machine may break down in many real systems, and that a machine
breakdown can be serviced by a server and resume work again. Furthermore, a server may
also fail. When a server fails, a repairman will repair the server failure. Some researchers
have studied models in which the server is unreliable, and assumed that the failure rate
of the server was a constant value [2,4]. However, in many cases, the system parameters
are not fixed due to many working conditions being unstable [14]. It is more reasonable
to suppose that the server failure rate is changeable. Some researchers have studied the
systems with variable parameters. Yen et al. [18] studied reliability and sensitivity analysis
of a retrial machine repair problem with working breakdowns operating under the F-policy.
They assumed that the server was subject to working breakdowns only when there was at
least one failed machine in the system. When the server is busy, it works at a fast rate, but
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when it is subject to working breakdowns, it works at a slow rate. The Laplace–Stieltjes
transform technique was utilized to develop two system performance measures such as
system reliability and the mean time to system failure (MTTF). Meena et al. [19] studied
the model in which the repairman may go for a vacation of random length when there
are no failed machines queueing up for a repair job. By taking the remaining repair time
as a supplementary variable, the steady-state queue size distribution of the number of
failed machines in the system was established. Laplace–Stieltjes transform, recursive, and
supplementary variable approaches were used to derive various system indices such as
the mean queue length, machine availability, system availability, and operative utilization.

In this paper, we consider the repairable system which has multiple machines, one
server and one repairman. The machines may break at any time. When a machine is broken,
it will be serviced immediately if the server is available, and the machine will continue its
work after the service. Further, the server may fail at any time, and the server has different
failure rates in idle time and busy time. A repairman is responsible for repairing the server
failure, the repair rate is variable to adapt to whether the machines are all normal or not [15].
The distinctive value and novelty of the model is that it simultaneously has features such
as multi-machine and an unreliable server, and the breakdown rate and repair rates of the
server are variable, so it is a more general model. The previous works may have one or
two features similar to our model, but other conditions are significantly different [14,18].

The above system is common in the real world. As an example, multiple computers,
one printer (with copy function), and one repairman will constitute such a system. In
an office, file editing is the regular work of the computer, and the editing work may be
broken by a printing job. If the printing job is seen as a breakdown of the editing work, the
printer as a server will service for the breakdown. When the printer is idle, it may do some
copy job which can be seen as a failure state of the printer. Moreover, when the printer is
doing print work, it may run out of ink or a paper jam may occur, therefore the printer
has different failure rates in idle time and busy time. If the print job has non-preemptive
priority to the copy job, the printer will do the coming print work first when there is copy
job waiting. This means that the failed server has different repair rates which depend on
the states of the machines.

This paper achieves the following goals:

• The transition rate matrix and equilibrium equations are given in general forms.
• The steady-state indices and transient-state indices of the system are analyzed.
• Laplace–Stieltjes transform technique is used to derive the reliability indices of the

machines and the server in a case analysis; the numerical results are presented.

The rest of this paper is organized as follows: Section 2 describes the model of this
paper. Section 3 presents the steady-state performance indices of the system. Section 4
focuses on the transient-state performance indices of the system. Section 5 analyses the
reliability of the machine and the server. Section 6 is a case analysis of one machine
system. Section 7 gives numerical results for the case of one machine system to illustrate
the performance measures of the model and the effects of the parameters.

2. Model Description

The system is constituted by N machines, one server, and one repairman. The machines
are charged with the function of the system; every machine is subject to breakdowns
according to an independent Poisson process with a rate of λ. When a machine breaks
down, it is immediately serviced by the server if the server is available. Otherwise, the
breakdown machines must wait in a queue for the service of the server. The service time
for the breakdown machine is exponential distribution with the parameter µ. The server
may fail at any time, the time to failure is exponential distribution with different failures
rates which are ξ1 in idle time and ξ2 in busy time. When the server fails, the repairman
will repair it immediately; the repair time is exponential distribution which the repair rate
is η1 when the machines are all normal, and is η2 when at least one machine breaks down.
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The broken down machine and failure server will become as good as new after servicing
and repairing, respectively. All the time distributions are independent mutually.

The running process of the system is a stochastic process which is denoted by
{X(t), Y(t), t ≥ 0}, where X(t) is the number of available servers at time t, and Y(t) is the
number of breakdown machines at time t. This stochastic process is a Markov chain with
state space {(i, j) : i = 0, 1, j = 0, 1, · · · , N}. The system is said to be in the state (i, j) at
time t if X(t) = i and Y(t) = j.

The transient-state probability P{X(t) = i, Y(t) = j} denoted by Pi,j(t), as the state
space is finite and irreducible, the limit of lim

t→∞
Pi,j(t) exists [9], and the limit is denoted by

Pi,j which is the steady-state probability of the system in the state of (i, j).
Then we have

Pi,j =

{
lim
t→∞

Pi,j(t), i = 0, 1, j = 0, 1, · · · , N,

0, other.

As all the time distributions are exponential distributions and independent mutually,
the transitions of the system states form a Markov process which is called the quasi-birth-
death(QBD) process [20,21]. The state space of the two-dimensional Markov process, in
lexicographical order, is as follows:

{(0, 0), (1, 0), (0, 1), (1, 1), · · · , (0, N), (1, N)},

Using the analysis method of the QBD theory [16–18], we have

P0,0(t + ∆t) = P1,0(t)ξ1∆t + P0,0(t)[1− (η1 + Nλ)∆t] + (∆t),

P0,0(t + ∆t)− P0,0(t) = P1,0(t)ξ1∆t− P0,0(t)(η1 + Nλ)∆t + (∆t),

P0,0(t + ∆t)− P0,0(t)
∆t

= P1,0(t)ξ1 − P0,0(t)(η1 + Nλ) +
(∆t)
∆t

,

where (∆t) is the higher order infinitesimal of ∆t.
Let ∆t→ 0 , we have

P′0,0(t) = P1,0(t)ξ1 − P0,0(t)(η1 + Nλ),

where P′0,0(t) is the derivative of P0,0(t).
In the same way, we obtain:

P′1,0(t) = P0,0(t)η1 − P1,0(t)(ξ1 + Nλ) + P1,1(t)µ,

P′0,j(t) = P1,j(t)ξ2 − P0,j(t)[η2 + (N − j)λ] + P0,j−1(t)(N − j + 1)λ, 0 < j < N,

P′1,j(t) = P0,j(t)η2 − P0,j(t)[ξ2 + (N − j)λ]
+P1,j−1(t)(N − j + 1)λ + P1,j+1(t)µ, 0 < j < N,

P′0,N(t) = P1,N(t)ξ2 − P0,N(t)η2 + P0,N−1(t)λ,

P′1,N(t) = P0,N(t)η2 − P1,N(t)(ξ2 + µ) + P0,N−1(t)λ.

The above transient-state probabilistic differential equations can be written in a uni-
form matrix form. Letting

P(t) = [P0,0(t), P1,0(t), P0,1(t), P1,1(t), · · · , P0,N(t), P1,N(t)],

P′(t) = [P′0,0(t), P′1,0(t), P′0,1(t), P′1,1(t), · · · , P′0,N(t), P′1,N(t)],

then, we have
P′(t) = P(t)Q, (1)
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where

Q =



A0 C0
B1 A1 C1

. . . . . . . . .
. . . . . . . . .

BN−1 AN−1 CN−1
BN AN


,

B1 = · · · = BN =

[
0 0
0 µ

]
,Cj =

[
(N − i)λ 0

0 (N − i)λ

]
, (j = 0, 1, 2, · · · , N − 1),

A0 =

[
−η1 − Nλ η1

ξ1 −ξ1 − Nλ

]
,

Aj =

[
−η2 − (N − j)λ η2

ξ2 −ξ2 − µ− (N − i)λ

]
, (j = 0, 1, 2, · · · , N − 1),

AN =

[
−η2 η2
ξ2 −ξ2 − µ

]
.

In the QBD process theory, Q is called the transition rate matrix.

3. Steady-State Indices

We derive the steady-state probability of the model first in this section. According to
the QBD process theory [20,21], we have

lim
t→∞

P′i,j(t) = 0, i = 0, 1, j = 0, 1, · · · , N.

We give the notation of the steady-state probability vector as follows:

P = (P0,0, P1,0, P0,1, P1,1, · · · , P0,N , P1,N), 0 = (0, · · · , 0)1×2(N+1).

From the Equation (1), the steady-state equilibrium equations with the regularity
condition are as follows: 

PQ = 0,
N
∑

i=0
(P0,i + P1,i) = 1.

(2)

Solving Equation (2), we obtain the steady-state probabilities of the system. Then the
significant steady-state indices of the system are expressed as follows:

(1) The steady-state availability of the system is (The system is available if there is at least
one machine available):

AM = 1− P0,N − P1,N .

(2) The steady-state availability of the server is:

AS =
N

∑
i=0

P1,i.

(3) The steady-state probability of the repairman being busy is:

BR = 1− AS.

(4) The steady-state probability of the server being busy is:

BS =
N

∑
i=1

P1,i.
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(5) The steady-state malfunction rate of the machine is:

MM = λ(N − i)
N−1

∑
i=0

(P0,i + P1,i).

(6) The steady-state malfunction rate of the server is:

MS = ξ1P1,0 + ξ2

N

∑
i=1

P1,i = η1P0,0 + η2

N

∑
i=1

P0,i.

4. Transient-State Indices

This section gives transient-state indices of the system. We assume that the machines
and the server are all normal at the initial time. Then, the initial probability vector is
as follows:

P(0) = [P0,0(0), P1,0(0), P0,1(0), P1,1(0), · · · , P0,N(0), P1,N(0)]
= (0, 1, 0, 0, · · · , 0, 0)1×2(N+1),

adding Equation (1), we have:{
P′(t) = P(t)Q,
P(0) = (0, 1, 0, 0, · · · , 0, 0)1×2(N+1).

(3)

Using the solutions of Equation (3), corresponding to steady-state indices, the transient-
state indices of the system are as follows:

AM(t) = 1− P0,N(t) + P1,N(t),

AS(t) =
N

∑
i=0

P1,i(t),

BR(t) = P0,N(t) + P1,N(t) = 1− AS(t),

BS(t) =
N

∑
i=1

P1,i(t),

MM(t) = λ(N − i)
N−1

∑
i=0

(P0,i(t) + P1,i(t)),

MS(t) = ξ1P1,0(t) + ξ2

N

∑
i=1

P1,i(t) = η1P0,0(t) + η2

N

∑
i=1

P0,i(t).

5. Reliability Analysis
5.1. Machine Reliability

We derive transient-state reliability of the machines in this section. We say that the
system is available if at least one machine is normal. As the initial condition is that the
machines are all normal, the transient reliability of the system at time t denoted by RM(t)
is the probability of the system is available from the beginning time to time t. Letting the
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states of all the machines break down be the absorbing states, we obtain a new Markov
process in which the transition rate matrix is as follows:

Q̃ =



A0 C0
B1 A1 C1

. . . . . . . . .
. . . . . . . . .

BN−1 AN−1

.

Under the initial distribution:

P̃(0) = [P̃0,0(0), P̃1,0(0), P̃0,1(0), P̃1,1(0), · · · , P̃0,N−1(0), P̃1,N−1(0)] = (0, 1, 0, 0, · · · , 0, 0)1×2N ,

the machine transient-state reliability function RM(t) is as follows:

RM(t) =
N−1

∑
i=0

[P̃0,i(t) + P̃1,i(t)],

where P̃0,i(t)(i = 0, 1, 2, · · · , N − 1) are the solutions of the following equations:{
P̃′(t) = P̃(t)Q̃,

P̃(0) = (0, 1, 0, 0, · · · , 0, 0)1×2N ,
(4)

where
P̃′(t) = [P̃′0,0(t), P̃′1,0(t), P̃′0,1(t), P̃′1,1(t), · · · , P̃′0,N−1(t), P̃′1,N−1(t)].

The mean time to the first system breakdown (MTTFB) is as follows [16]:

MTTFB =
∫ ∞

0
RM(t)dt. (5)

5.2. Server Reliability

In this section, we derive the transient-state reliability of the server. The server is
normal at the beginning time; the transient reliability of the server at time t denoted by
RS(t) is the probability of the server being available from the beginning time to time t.
Letting the states of the server failure be absorbed states, we obtain a new Markov process
in which the transition rate matrix is as follows:

Q̂ =



A0(2,2) C0(2,2)
B1(2,2) A1(2,2) C1(2,2)

. . . . . . . . .
. . . . . . . . .

BN (2,2) AN (2,2)


,

where A0(2,2) is the element of row 2th and column 2th of matrix A0.
Under the initial distribution as follows:

P̂(0) = [P̂1,0(0), P̂1,1(0), · · · , P̃1,N−1(0), P̂1,N(0)] = (1, 0, · · · , 0, 0)1×(N+1),

the server transient-state reliability function RS(t) is as follows:

RS(t) =
N

∑
i=0

P̂1,i(t),
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where P̂1,i(t)(i = 0, 1, 2, · · · , N) are solutions of the equations as follows:{
P̂′(t) = P̂(t)Q̂,
P̂(0) = (1, 0, · · · , 0)1×(N+1),

(6)

where
P̂′(t) = [P̂′1,0(t), P̂′1,1(t), · · · , P̂′1,N(t), P̂′1,N(t)]1×(N+1).

The mean time to first failure (MTTFF) [16] of the server is as follows:

MTTFF =
∫ ∞

0
RS(t)dt.

6. Case Analysis

In this section, we analyze the basic case of N = 1 of the model, and give numer-
ical examples to illustrate the effects of the system parameters on the performance in-
dices of the system. For the case of N = 1, the state space, in lexicographical order, is
{(0, 0), (1, 0), (0, 1), (1, 1)}, and the transition rate matrix Q is as follows:

Q =


−η1 − λ η1 λ 0

ξ1 −ξ1 − λ 0 λ
0 0 −η2 η2
0 µ ξ2 −µ− ξ2

.

6.1. Steady-State Indices of the Case ({N} = 1)

For the case of N = 1, the steady-state equilibrium equations are as follows:
−(λ + η1)P0,0 + ξ1P1,0 = 0,
η1P0,0 − (λ + ξ1)P1,0 + µP1,1 = 0,
−η2P0,1 + ξ2P1,1 + λP0,0 = 0,
η2P0,1 + λP1,0 − (µ + ξ2)P1,1 = 0,
P0,0 + P1,0 + P0,1 + P1,1 = 1.

(7)

Letting
Φ = (η2λ + η2µ + λξ2)(η1 + λ + ξ1) + λµξ1,

the solutions of Equation (7) are as follows:

P0,0 =
η2µξ1

Φ
, P1,0 =

η2µ(η1 + λ)

Φ
,

P0,1 =
λξ2(η1 + λ + ξ1) + λµξ1

Φ
,

P1,1 =
η2λ(η1 + λ + ξ1)

Φ
.

Letting η1 → ∞ and η2 → ∞ , or letting ξ1 = ξ2 = 0, we have the results as follows:

P0,0 = 0, P1,0 =
µ

λ + µ
, P0,1 = 0, P1,1 =

λ

λ + µ
.

The above results are consistent with the case that the server is reliable.
Using steady-state probabilities, we can obtain significant indices of the case (N = 1)

as follows:

AM = P0,0 + P1,0 =
η2µ(ξ1 + η1 + λ)

Φ
,

AS = P1,0 + P1,1

= η2[µ(η1+λ)+λ(η1+λ+ξ1))]
Φ ,
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BR = P0,0 + P0,1

= η2µξ1+λξ2(η1+λ+ξ1)+λµξ1
Φ = 1− AS,

BS = P1,1 =
η2λ(η1 + λ + ξ1)

Φ
,

MM = λAM =
λη2µ(ξ1 + η1 + λ)

Φ
,

MS = ξ1P1,0 + ξ2P1,1=
ξ1η2µ(η1+λ)+ξ2η2λ(η1+λ+ξ1)

Φ
= η1ξ1η2µ+η2[ξ2λ(η1+λ+ξ1)+ξ1µλ]

Φ = η1P0,0 + η2P0,1.
(8)

The Equation (8) shows that the steady-state malfunction rate of the server is equal to
the steady-state repair rate of the server. Further, letting η1 → ∞ and η2 → ∞ , or letting
ξ1 = ξ2 = 0, we have [22]:

AM = P1,0 =
µ

λ + µ
.

This result is consistent with the result of the classical machine repairable model in
which the server is reliable. We know that η1 → ∞ and η2 → ∞ or ξ1 = ξ2 = 0 means
that the server is reliable, so the availability of the machine only relates to the machine
breakdown rate and service rate under those conditions.

6.2. Transient-State Indices of the Case (N = 1)

We assume that the machine and server are normal at the beginning time, so the initial
probability vector is as follows:

P(0) = (P0,0(0), P1,0(0), P0,1(0), P1,1(0)) = (0, 1, 0, 0).

Under the initial conditions, the transient-state probability equations of the case
(N = 1) are as follows:

P′0,0(t) = −(λ + η1)P0,0(t) + ξ1P1,0(t),
P′1,0(t) = η1P0,0(t)− (λ + ξ1)P1,0(t) + µP1,1(t),
P′0,1(t) = λP0,0(t)− η2P0,1(t) + ξ2P1,1(t),
P′1,1(t) = η2P0,1(t) + λP1,0(t)− (µ + ξ2)P1,1(t),
P(0) = (0, 1, 0, 0).

(9)

The symbol express form of the solutions of Equation (9) are very complex; the
numerical form solutions can be obtained by mathematical calculation software.

Although the symbol express form of the solutions of Equation (9) are very complex,
we can calculate the Laplace–Stieltjes transform of Equation (9). Letting P∗i,j(s) denote
the Laplace–Stieltjes transform of Pi,j(t), the Laplace–Stieltjes transform of Equation (9) is
as follows: 

−(λ + η1)P∗0,0(s) + ξ1P∗1,0(s) = sP∗0,0(s),
η1P∗0,0(s)− (λ + ξ1)P∗1,0(s) + µP∗1,1(s) = sP∗1,0(s)− 1,
λP∗0,0(s)− η2P∗0,1(s) + ξ2P∗1,1(s) = sP∗0,1(s),
η2P∗0,1(s) + λP∗1,0(s)− (µ + ξ2)P∗1,1(s) = sP∗1,1(s).

(10)

The solutions of Equation (10) are as follows:

P∗0,0(s) =
ξ1[(s + η2)(s + µ) + sξ2]

Ψ(s)
,

P∗1,0(s) =
(s + η1 + λ)[(s + η2)(s + µ) + sξ2]

Ψ(s)
,

P∗0,1(s) =
λ[ξ2(s + η1 + λ) + ξ1(s + µ + ξ2)]

Ψ(s)
,
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P∗1,1(s) =
λ[(s + η2)(s + η1 + λ) + η2ξ1]

Ψ(s)
,

where
Ψ(s) = s{η2(s + λ + µ)(s + λ + ξ1)

+η1[(s + η2)(s + λ + µ) + ξ2(s + λ)]
+(s + λ)[s(s + λ + µ)
+ξ2(s + λ + ξ1) + ξ1(s + µ)]}.

6.3. Machine Reliability of the Case (N = 1)

For derive transient-state reliability of the machine, we have

Q̃ =


−η1 − λ η1 λ 0

ξ1 −ξ1 − λ 0 λ
0 0 0 0
0 0 0 0

.

Under the initial distribution of P̃0,0(0) = 0, P̃1,0(0) = 1, P̃0,1(0) = 0 and P̃1,1(0) = 0,
the machine transient-state reliability denoted by RM(t) is as follows:

RM(t) = P̃0,0(t) + P̃1,0(t),

where P̃0,0(t) and P̃1,0(t) are the solutions of the following equations:
P̃′0,0(t) = −(η1 + λ)P̃0,0(t) + ξ1P̃1,0(t),
P̃′1,0(t) = η1P̃0,0(t)− (ξ1 + λ)P̃1,0(t),
P̃0,0(0) = 0, P̃1,0(0) = 1.

(11)

The solutions of Equation (11) are as follows:

P̃0,0(t) =
e−λt[1− e−(η1+ξ1)t]ξ1

η1 + ξ1
,P̃1,0(t) =

e−λt[η1 + e−(η1+ξ1)tξ1]

η1 + ξ1
.

Then
RM(t) = P̃0,0(t) + P̃1,0(t) = e−λt. (12)

It is consistent with the assumption that the time of the machine to be broken down is
exponential distribution with parameter λ.

The Laplace–Stieltjes transform of RM(t) is as follows:

R∗M(s) =
∫ ∞

0
RM(t)e−stdt =

1
λ + s

.

The mean time to first system breakdown (MTTFB) is as follows [16]:

MTTFB =
∫ ∞

0
RM(t)dt =

1
λ
= lim

s→0
R∗M(s), (13)

Equation (13) is consistent with Equation (12).

6.4. Server Reliability of the Case (N = 1)

For derive transient-state reliability of the server, we have

Q̂ =


0 0 0 0
ξ1 −ξ1 − λ 0 λ
0 0 0 0
0 µ ξ2 −µ− ξ2

.
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Under the initial distribution of P̂0,0(0) = 0, P1,0(0) = 1, P̂0,1(0) = 0 and P̂1,1(0) = 0,
the server transient-state reliability function denoted by RS(t) is as follows:

RS(t) = P̂1,0(t) + P̂1,1(t),

where P̂1,0(t) and P̂1,1(t) are solutions of the equations as follows:
P̂′1,0(t) = −(ξ1 + λ)P̂1,0(t) + µP̂1,1(t),
P̂′1,1(t) = λP̂1,0(t)− (µ + ξ2)P̂1,1(t),
P̂1,0(0) = 1, P̂1,1(0) = 0.

(14)

Letting

G =

√
(λ + µ + ξ1 + ξ2)

2 − 4(λξ2 + ξ1(µ + ξ2)),

the solutions of Equation (14) are as follows:

P̂0,0(t) =
{

e−
1
2 t(G+λ+µ+ξ1+ξ2)[eGt(−λ + µ− ξ1 + ξ2)

+G
(
eGt + 1

)
+ λ− µ + ξ1 − ξ2]

} 1
2G ,

P̂1,0(t) =
λ
(
eGt − 1

)
e−

1
2 t(G+λ+µ+ξ1+ξ2)

G
.

The transient-state reliability function of the server is as follows:

RS(t) = P̂1,0(t) + P̂1,1(t)

= e−
1
2 t(λ+µ+ξ1+ξ2+G) × [ (e

tG−1)(λ+µ−ξ1+ξ2)
2G + 1

2 (1 + etG)].
(15)

If ξ1 = ξ2 = ξ, Equation (15) will become as follows:

RS(t) = e−ξt, (16)

with the assumption of ξ1 = ξ2 = ξ, the reliability of the server has no relation with the
parameters λ and µ.

The Laplace–Stieltjes transform of Equation (14) is as follows:{
−(λ + ξ1)P̂∗1,0(s) + µP̂∗1,1(s) = sP̂∗1,0(s)− 1,
λP̂∗1,0(s)− (µ + ξ2)P̂∗1,1(s) = sP̂∗1,1(s),

(17)

the solutions of Equation (17) are as follows:

P̂∗1,0(s) =
(s + µ + ξ2)

s(s + λ + µ) + ξ2(s + λ) + ξ1(s + µ + ξ2)
,

P̂∗1,1(s) =
λ

s(s + λ + µ) + ξ2(s + λ) + ξ1(s + µ + ξ2)
.

Then
R∗S(s) = P̂∗1,0(s) + P̂∗1,1(s)

= s+λ+µ+ξ2
s(s+λ+µ)+ξ2(s+λ)+ξ1(s+µ+ξ2)

.
(18)

The mean time to first failure (MTTFF) [16] of the server is as follows:

MTTFF =
∫ ∞

0
RM(t)dt = lim

s→0
R∗S(s)=

λ + µ + ξ2

λξ2 + ξ1(µ + ξ2)
. (19)

If ξ1 = ξ2 = ξ, we have

MTTFF =
1
ξ

,



Mathematics 2021, 9, 1299 11 of 16

this result is consistent with Equation (16).

6.5. Numerical Example of the Case (N = 1)

For the case of N = 1, letting λ = 1, µ = 2, ξ1 = 1, ξ2 = 1.5, 1 ≤ η1 ≤ 2, and
2 ≤ η2 ≤ 3, Figure 1 shows the numerical results of the steady-state availability of the
machine (AM) versus η1 and η2. It is shown that the steady-state availability of the machine
increases with the increase of η1 and η2. Figure 2 shows the numerical results of the steady-
state availability of the server (AS) versus η1 and η2. It is shown that the availability of the
server increases with the increase in η1 and η2.
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Letting η1 = 2, η2 = 3, the initial distribution be P0,0(0) = 0, P1,0(0) = 1, P0,1(0) = 0,
and P1,1(0) = 0, solving Equation (9), we obtain the transient-state probabilities of the
system are as follows:

P0,0(t) = 0.136364− 0.0451291e−5.89848t−0.431175e−3.42101t + 0.33994e−2.18051t,

P0,1(t) = 0.181818 + 0.124166e−5.89848t − 0.0525515e−3.42101t − 0.253433e−2.18051t,

P1,0(t) = 0.409091 + 0.130806e−5.89848t + 0.181527e−3.42101t + 0.278576e−2.18051t,

P1,1(t) = 0.272727− 0.209843e−5.89848t + 0.302199e−3.42101t − 0.365083e−2.18051t.

Using these transient-state probabilities, the transient-state indices of the system are
as follows:

AM(t) = 0.545455 + 0.0856768e−5.89848t − 0.249648e−3.42101t + 0.618516e−2.18051t,

AS(t) = 0.681818− 0.0790372e−5.89848t + 0.483726e−3.42101t − 0.086507e−2.18051t,

BR(t) = 0.318182 + 0.0790372e−5.89848t − 0.483726e−3.42101t + 0.086507e−2.18051t,

BS(t) = P1,1(t),MM(t) = λAM(t) = AM(t),

MS(t) == 0.818182− 0.183959e−5.89848t0.634826e−3.42101t − 0.269049e−2.18051t .

As lim
t→∞

pi,j(t) = pi,j, the steady-state probabilities are as follows:

P0,0 = 0.136364, P0,1 = 0.181818, P1,0 = 0.409091, P1,1 = 0.272727.

Letting t→ ∞ , the steady-state indices of the system are as follows:

AM = 0.545455 = MM, AS = 0.681818,

BR = 0.318182, BS = 0.272727, MS = 0.818182.

In Figure 3, AM(0) = AS(0) = 1 means that the machine and the server are normal at
the beginning time, and BR(0) = 0 means that the repairman is idle at the beginning time.
These characters are in accord with the assumption of the initial probabilities. As time
goes on, AM(t), AS(t) and BR(t) tend to steady-state values from the initial values. The
relation of the repairman being busy is opposite to that of the server being normal due to
BR(t) = 1− AS(t) as shown in Figure 3. Figure 4 shows the reliability of the machine and
the reliability of the server versus time t; the reliability of the machine and the reliability of
the server all decrease with time t increase. In Figure 5, MS(0) = 1 means that the failure
rate of the server is equal to 1 at the beginning time; it is consistent with the assumption of
ξ1 = 1, as the machine is normal and the server is idle at the beginning time; the server
malfunction rate of initial time is equal to its idle failure rate ξ1 = 1. MM(0) = 1 means
that the breakdown rate of the machine is equal to 1 at the beginning time; it is consistent
with the assumptions of λ = 1 and the machine is normal at the beginning time. MM(t)
and MS(t) all decrease with time t increase and tend to be steady.
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For other numerical results, from Equation (12) we have

RM(t) = e−t,

this result is consistent with the assumptions of λ = 1 and the machine is normal at the
beginning time.

From Equation (15) we have

RS(t) = 1.04661e−1.14922t − 0.0466082e−4.35078t.

From Equations (13) and (19) we have

MTTFB = 1, MTTFF = 0.9.

It is shown that the mean time to the first breakdown of the system is equal to 1, and
the mean time to first failure of the server is equal to 0.9.

7. Conclusions

The multi-machine repairable system is very common in real practice. The model of
this paper with the assumptions that the server is unreliable, and its failure rate and repair
rate are variable. These assumptions make the model more general and more suitable for
many practical systems. In the case analysis, the explicit expressions of the steady-state
and transient-state indices are obtained. Making the different failure rates equal, the results
of this model will be reduced to be the results of the model with constant server failure
rate. Furthermore, if the repair rates tend to infinity, or the failure rates equate to zero, the
results of this model will become the results of a machine repairable model with a reliable
server. The numerical examples show that the machine steady-state availability and server
steady-state availability all increase with the increases in the two kinds of repair rates. The
other steady-state and transient-state indices are also sensitive to the system parameters.
These numerical results are instructive to actual production planning and design.



Mathematics 2021, 9, 1299 15 of 16

As the server is unreliable, it stands to reason that there are more servers in the system,
as well as repairmen. For the future work of this study, one can analyze the model which
has many servers and many repairmen. Further, optimization design is an important issue
of the model of this paper. The optimal analysis can be a significant direction of the next
work of this model.
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