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Abstract: Models implemented in statistical software for the precision analysis of diagnostic tests
include random-effects modeling (bivariate model) and hierarchical regression (hierarchical sum-
mary receiver operating characteristic). However, these models do not provide an overall mean,
but calculate the mean of a central study when the random effect is equal to zero; hence, it is difficult
to calculate the covariance between sensitivity and specificity when the number of studies in the

meta-analysis is small. Furthermore, the estimation of the correlation between specificity and sensi-
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updates tivity is affected by the number of studies included in the meta-analysis, or the variability among

the analyzed studies. To model the relationship of diagnostic test results, a binary covariance matrix
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is assumed. Here we used copulas as an alternative to capture the dependence between sensitivity
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and specificity. The posterior values were estimated using methods that consider sampling algo-
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rithms from a probability distribution (Markov chain Monte Carlo), and estimates were compared
with the results of the bivariate model, which assumes statistical independence in the test results.

Accuracy Using Multivariate To illustrate the applicability of the models and their respective comparisons, data from 14 published

Probability Distribution Functions. studies reporting estimates of the accuracy of the Alcohol Use Disorder Identification Test were
Mathematics 2021, 9, 1310. https:// used. Using simulations, we investigated the performance of four copula models that incorporate
doi.org/10.3390/math9111310 scenarios designed to replicate realistic situations for meta-analyses of diagnostic accuracy of the

tests. The models” performances were evaluated based on p-values using the Cramér—von Mises
Academic Editor: José A. Tenreiro goodness-of-fit test. Our results indicated that copula models are valid when the assumptions of the
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bivariate model are not fulfilled.
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published maps and institutional affil- The exponential growth of the medical literature and the increasingly widespread use

{ations. of information and communication technologies, together with the dispersion of scientific
literature, make it difficult for researchers and health professionals to access relevant
information. Meta-analysis is a quantitative statistical analysis of several separate but

similar experiments or studies, to test the pooled data for statistical significance that uses

statistical models to estimate the results of several studies in a single measure [1].

The correct diagnosis of disease is of primary interest in psychology and medicine.
Diagnostic tests are medical tests that detect the condition of a patient who is at risk of devel-
oping a disease [2]. As many of the results of diagnostic tests are based on a single biomarker,
conditions of the Creative Commons  SUch results will not always lead to a correct diagnosis [3]. Consequently, meta-analysis is
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transformed into an odds ratio. These calculations are simplified using nomograms [4,5].
Sensitivity and specificity vary according to the cutoff used to classify the absence or
presence of the disease. The results can be represented graphically as a receiver operating
characteristic (ROC) curve, which allows the characteristics of the test to be determined
according to the different cutoffs, and which can be used to select the most appropriate
value. The area under the curve is an estimator of the overall relevance of a test. It is notable
that the information available regarding the validity of diagnostic tests is generated in dif-
ferent populations. Therefore, the estimates obtained in these studies are subject to random
variability and biases if the studies were not correctly designed. The variability of the mea-
surements will be influenced by multiple factors that are of interest to know and control.
Among them, it is especially important to distinguish intra- and inter-study variations.

Due to this particularity, the bivariate nature of the data must be preserved by mod-
eling sensitivity and specificity together. Two models have been established in recent
years: a hierarchical model [6] and a bivariate model [7]. These models, which capture the
inverse relationship between sensitivity and meta-analytic specificity, have the advantage
of modeling the heterogeneity between the studies included in the analysis and the cor-
relation between both measures. Moreover, covariates can be included, allowing better
management of extreme values of sensitivity and specificity, and standard software (e.g., R)
can be used for analysis. However, these models have certain weaknesses, they work
on a logit scale and assume that the random effects are distributed as a bivariate normal,
thus allowing for a single dependence or correlation structure. In other words, sensitivity
and specificity values are modeled through monotonic transformations, resulting in sym-
metric distributions, which is not the case for meta-analyses of diagnostic tests, where the
aforementioned measures present great variability.

Recently, a mixed model of copulas was proposed as an extension of the generalized
linear mixed model [8], which uses the functional dependence of a copula for random
effects using marginal distributions (normal and/or beta).

Academic illustrations of hierarchical and bivariate models have involved large num-
bers of studies in the meta-analysis, but this is not always the case, as meta-analyses of
diagnostic test accuracy may include small numbers of studies [9]. Other problems are
related to the convergence of hierarchical models and the lack of clarity when choosing the
statistical model for meta-analysis of diagnostic tests [9].

In the present study, we used copulas to analyze diagnostic accuracy, avoiding the
aforementioned disadvantages, but with the strengths of the models, hierarchical summary
ROC (HSROC), and bivariate random-effects meta-analysis (BRMA) [10]. The copula
approach employs beta distributions for sensitivity and specificity, which allows modeling
of true positives (TPs) and true negatives (TNs) using marginal beta-binomial distribu-
tions [11]. Copulas permit the representation of the structure of functional dependence
between sensitivity and specificity in a natural manner through multivariate distribu-
tions. In this study, using simulation and the re-analysis of a previously published dataset,
we evaluated the sensitivity and specificity performance measures with the classical bivari-
ate model using copulas. As the most important summary measures in diagnostic tests are
sensitivity and specificity, we considered statistical models that summarize these measures.
In addition, other measures, such as likelihood ratios, can be derived from the parameters
of the aforementioned models.

We introduce the concept of the theory and selection of the BRMA, HSROC, and copula
models with their different bivariate distributions for sensitivity and specificity in Section 2.
After giving an overview of the approaches mentioned above, we describe the simulation
study in Section 3, followed by the results of the hierarchical models, copulas, and the
simulation study in Section 4. Finally, results analysis and recommendations for selecting
an appropriate meta-analytic approach in practice are discussed in Section 5.
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2. Materials and Methods
2.1. Statistical Methods

Performing a meta-analysis is a two-stage process. In the first step, the results of
each study are estimated, although in the case of the evaluation of diagnostic tests, each
study is summarized using a pair of indices that describe the validity of the test [12].
Typically, these two indices are either sensitivity and specificity, or the positive and negative
likelihood ratios. In the second step, global validity indices must be calculated using various
methods. In the study and analysis of diagnostic precision, methodological homogeneity
is not always achieved. Therefore, it is of vital importance to quantify the heterogeneity
among the studies.

2.2. Evaluation of Heterogeneity

The statistical heterogeneity of the results of the different studies included in the
meta-analysis can be visualized using a forest plot. In these graphs, the estimators of
the indices are represented together with their confidence intervals, and they are usually
presented in a paired and ordered manner according to one of the indices. A possible cause
of heterogeneity is the different thresholds to detect a positive result, which is termed the
characteristic threshold effect.

2.3. Threshold Effect

To explore this source of variation, it is useful to graphically represent the pairs of
sensitivity and specificity of each study in a ROC plane. In this plane, the zone closest
to the upper left corner assumes good diagnostic performance, whereas the central zone,
the diagonal in which sensitivity and specificity are equal, represents a null diagnostic
capability. If there were a threshold effect, the points in the ROC space would reflect a
concave curve. Changing the positivity threshold of a test would result in higher (or lower)
sensitivity with the consequent opposite effect on specificity.

The statistical models for meta-analysis represent the inverse relationship between
sensitivity and specificity using a summary ROC (SROC) curve. However, on several
occasions, the included studies are homogeneous, i.e., all studies are used the same thresh-
old. Thus, the threshold effect must be ruled out as a source of heterogeneity. In this
situation, the overall result of the review could be obtained from the weighted combination
of the indices of the individual studies. Generally, this modeling can be performed using
a fixed- or random-effects model, considering the statistical significance of heterogeneity.
Several statistical models have been proposed to construct SROC curves. The former model
(Moses model) [13] builds a linear regression between a pair of variables created from the
validity indices of each study, thereby characterizing the DOR. The objective of the method
is to obtain a combined estimate of the instrument’s precision, knowing its variation among
the different studies and that the threshold effect may be present.

2.4. Bivariate and Hierarchical Approach

The Moses model has several disadvantages. In one aspect, it does not consider the
precision with which sensitivity and specificity were estimated in each study, nor does it
model the heterogeneity among studies. To overcome these problems, regression mod-
els featuring a hierarchical approach have been proposed. The first model is called the
bivariate random-effects model [7]. It assumes a bivariate normal distribution for the
logit transformations of sensitivity and specificity. In other words, it models the inverse
relationship of these measures by using a regression model.

The model captures the correlation and precision between both indices, as well as the
heterogeneity attributable to the studies included in the meta-analysis. At the study level,
the model assumes that the TPs and false positives (FPs) for each study i, (i = 1,---,1)
behave as a binomial distribution. At the between-studies level, a bivariate random-effects
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model is assumed for logit(Se;) and logit(Sp;), where normal priors are assumed for the
study-specific parameters as presented in Equations (1) and (2) [14].

(egiomy ) ~meormai( (13 )- =) 0

z = ( e ) @)
012 0'2

The second model is the HSROC model [6]. In this model, the functional relation-
ship of sensitivity and specificity is modeled by the threshold [15]. This is a multilevel
model, i.e., it fits the classification data of the studies through random-effects logistic re-
gression. It includes two levels corresponding to the intra-study and inter-study variation,
respectively.

The model represents the cutoff and precision points of the test as random effects.
Foreachstudyi, i = 1,---,I, TPs, and FPs follow binomial distributions as presented in
Equation (3) [16].

TP; ~ Binomial(n;; Se;)

FP; ~ Binomial(n;; Sp;) ¥

In the equation, index 1 denotes sick individuals, and index 2 represents non-sick
individuals. Then, the parameterization of sensitivity and specificity is expressed as
presented in Equation (4) [16].

logit(Se;) = (6; + %)exp%ﬂ

. N 8 4)
logit(l1 — Sp;) = (6; — 3 )exp2

In the equation, 6; and «; represent the threshold and test accuracy for study i, re-
spectively, and p is a parameter that characterizes the symmetry of the SROC curve.
These parameters are modeled using normal distributions as indicated in Equation (5) [16].

0; ~ Normal (6; 792) 5)
a; ~ Normal (A; T3)

The BRMA and HSROC models are adjusted using the likelihood method, assuming that
the logit transformations of the data are distributed according to a normal distribution with a
homogeneous variance. However, the mean and variance of sensitivity and specificity are
affected by the underlying prevalence.

Both models propose stochastic distributions on two levels. At the lower level, TPs and
FPs are represented as binomial distributions and prevalence (proportions) using logit
transformations. At the upper level, the random effects of the studies, which model
heterogeneity in the precision of the test, are represented [17].

When covariates are not included, the bivariate and HSROC models are identical,
although they differ in their parameterizations [17-19]. The parameters of the bivariate
model directly characterize sensitivity, specificity, and correlation, whereas the HSROC
model describes the precision, threshold, and shape of the curve to build an SROC
curve [20]. Therefore, sensitivity and specificity of a diagnostic test may vary with dis-
ease prevalence.

A third model is a mixed copula model, which is an extension of the general linear
mixed model [8] that uses a copula representation of the distribution of random effects
with normal and beta marginal distributions [21]. A previous analysis [22] demonstrated
that the use of copulas is feasible for studying diagnostic test accuracy as the assumption
of multivariate normality is not fulfilled in this context. The joint modeling of sensitivity
and specificity in the studies using bivariate beta distributions exceeds the aforementioned
requirement [16]. As sensitivity and specificity take values between 0 and 1, the use of a
beta distribution to describe the inverse relationship between the two values appears more



Mathematics 2021, 9, 1310

50f 20

natural. The beta distribution when combined with the binomial distribution gives rise to
beta-binomial distributions, which model the random effects.

The methods discussed in the previous section were applied using a previously
published dataset [23], which analyzed alcohol misuse in certain individuals considering
both the 10-item Alcohol Use Disorder Identification Test (AUDIT) (gold standard) and its
three-item abbreviated version (AUDIT-C) to accurately detect unhealthy drinking habits.
The study examined whether AUDIT-C has similar accuracy as AUDIT in detecting alcohol
consumption in unhealthy adults. A score of 8 points is considered positive. It would be a
perfect instrument if it provided a positive classification when the result was greater than
or equal to 8 points for all individuals with abuse problems, and negative otherwise [24].
The meta-analysis included 14 studies with sensitivity and specificity of approximately 0.86
and 0.78, respectively, and prevalence rates of 5-37% [9]; the abovementioned measures
can be estimated from Table 1.

Table 1. Alcohol Use Disorder Identification Test abbreviated version data.

ID TP FP TN FN
1 47 101 738 9
2 126 272 1543 51
3 19 12 192 10
4 36 78 276 3
5 130 211 959 19
6 84 68 89 2
7 68 112 423 0
8 752 3226 2977 0
9 59 55 136 5

10 142 571 2788 50

11 137 107 358 24

12 57 103 437 3

13 34 21 56 1

14 152 88 264 51

Abbreviations: TP, true positive; FP, false positive, TN, true negative; FN, false negative.

2.5. A Statistical Method for Meta-Analysis of Diagnostic Tests Using a Copula Approach

Copulas represent a useful stochastic concept for modeling dependence on random
variables. A copula is a joint distribution function with uniformly distributed marginal
functions. It can be used to model the separate dependence of marginal distributions [25];
i.e, it is a function that approximates the set behavior of random variables from their
individual behaviors [26]. Assuming two random variables x; and x, with distribution
function f(x7) and f(x2), a prior study [27] demonstrated that there is a C function that
allows the joint distribution to be written as Equation (6).

H(x, x2) = C(f(x1), f(x2)) = C(ur, u2) (6)

In the equation, C(uy, up) is a distribution function for a bivariate pair of uniform
random variables, and H(xj, xp) is a distribution function for the original variables
x1 and xp [11]. Therefore, a bivariate copula is a function that fulfills the following proper-
ties [28]: C(u,0) = 0, C(0,v) = 0, C(u,1) = u, and C(1,v) = v.

The concept of the copula allows modeling of the dependence between marginal
distributions through the copula parameters. In the present paper, we used only a para-
metric model, even though there are non-parametric copulas that can be used to model the
dependence between random variables.

These association parameters can be transformed in correlation measurements, such as
the Spearman or Kendall correlation coefficients. Prior research illustrated that both mea-
surements can be used to describe dependence [29]. In the next section, a brief description
of the copulas used in this work is given. Here, we consider four copula functions that can
be introduced into Equation (3) to model negative correlation.
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2.6. The Hierarchical Copula Model

It is assumed that each individual study (i = 1,---,I) in the meta-analysis reports a
2 x 2 table with values of TP;, TN;, FP;, and false negatives (FN) FNj, as well as summary
measures established by sensitivity Se; and specificity Sp; [11]. It is further assumed that
TP; and TN; are distributed according to a binomial distribution [11], as presented in
Equation (7). The focus is on modeling the inverse relationship of sensitivity and specificity
using bivariate copulas, which allows for marginal and study-specific estimates.

TP; ~ Binomial(TP; + FN;; Se;) @)
TN; ~ Binomial(TN; 4+ FP; Sp;)

The prior marginal distributions for sensitivity and specificity are assumed as beta
distributions with parameters « and § [30], i.e., making an assumption about Se and Sp in
their original scale (0 and 1), respectively [11], as noted in Equation (8).

Se; ~ Beta(as,, Pse)

8
Spi ~ Beta(asy, Bsp) ®)

The corresponding density function for the sensitivity is defined by Equation (9).
T(as, + ‘Bse)uasrl(l _ u)ﬁse—l

f(p ase, Bse) = T (as,)T(Bs.) 0 < <1 )
0 otherwise

Specificity is defined analogously, in which I'(a) is the function gamma with
I'(n+1) = n!forn € Z*. The expected E(u) for each beta distribution is defined
as M’iﬁ, and it describes the meta-analytical parameters of interest (sensitivity and speci-

. . ey . . 0 B . . 1 s7e
ficity) [30]. In addition, the variance estimate TR D T B explains the variability

attributable to the heterogeneity of the studies [31]. The beta distribution is used due to
its flexibility, and it is conjugated to the binomial distribution [30,31] (for further details,
see Appendix A). To model the potential dependence between TP and TN, we applied the
concept of copulas [11]. In our case, a two-dimensional cumulative distribution function
was constructed [31]. Therefore, using Sklar’s Theorem,

F(xl,xz) = C(Fse(xl), FSp(x2)>- (10)

Note that in the case of a copula, the likelihood is determined analytically, and it has
a closed form [31]. Therefore, the standard methods of maximum likelihood are used for
parameter estimation. One advantage is that there is a diversity of copulas that capture
the inverse relationship between sensitivity and specificity. This fact contrasts with the
standard model, in which a bivariate normal is used to represent the correlation between
sensitivity and specificity. There are several copulas that can be used, each resulting in a
new model for the meta-analysis of precision diagnostic studies [32]. Specifically, we used
the bivariate copulas Gaussian, Clayton, Farlie-Gumbel-Morgenstern (FGM), and Frank,
which can be adjusted according to Equation (10) [22]. Such copulas are often used in
meta-analyses for diagnostic accuracy studies [30,31].

2.7. Selection of a Model Copula

The aim was to identify the family or families that best fit the joint distribution of
Se; and Sp; among the aforementioned copulas. This is performed using the Cramér—von
Mises goodness-of-fit test; herein, the fit of a dataset to different copulas is compared using
a goodness-of-fit test (for details of this test [33]. This is equivalent to testing the hypothesis.

Hy: C € ¢
vs (11)
H1 : C % CQ
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where Cj represents a family of copulas.
We have employed the simulation approach used in a previous study [17] to define
the simulation scenarios and generate the simulated datasets as described below.

3. Simulation Study and Goodness-of-Fit of Copula Models

A simulation study was conducted to select the best setting among the copulas.
Different simulation scenarios were designed to reproduce the real conditions found in
studies of the accuracy of diagnostic tests in a meta-analysis [17].

3.1. Generation of Simulated Data

The number of studies (between 5 and 35) in each meta-analysis was randomly
generated. The total number of persons included in each study was randomly sam-
pled using a uniform distribution U (30; 1 255). The status of individuals in each study
was classified as sick or healthy using the result of a continuous test x with random
sampling [9,17,34,35]. The measures of the tetrachoric tables were generated using the
CopulaRemada package of the statistical program R through the function rCopulaRE-
MADA beta [17,22].

The TP, FN, FP, and TN values were based on the test result and condition of the
individual. In addition, the values of sensitivity and specificity were modeled using a
uniform distribution with parameters between 0.8 and 1 [17,35]. We generated 21,011
studies in 1058 independent meta-analysis datasets to allow a reliable analysis of the
goodness-of-fit of previously analyzed models [17]; values close to those proposed by the
goodness-of-fit of copula models were assessed by examining the test statistic estimates
and p-value, as proposed previously [33].

3.2. Adjusting the Hierarchical HSROC and Copula Models

We used the CopulaDTA package to adjust the copulas analyzed in the previous
section. The package provides statistical models within the Bayesian framework and
bivariate (beta-binomial) functions constructed as the product of marginal (beta) and
copulas densities [36] (see Appendix D).

The HSROC package was used to estimate the parameter values of the HSROC
model. The package allows the standard reference to be imperfect, and also assumes
that it is independent of the test under evaluation. Calculations were performed using
Gibbs samplers [37]. The package has four functions, of which HSROC and HSROC-
Summary are the main functions. The HSROC function must be run first to estimate the
model parameter values, and then the HSROCSummary function must be run to obtain
a summary of the estimates made by the Gibbs sampler [37]. The remaining functions,
simdata and beta.parameter, are secondary. The former generates a meta-analysis of diag-
nostic tests based on the HSROC model, whereas the latter returns the shape parameter of
the SROC curve [37].

4. Results of the Adjustment to AUDIT-C Data and Simulated Data

A goodness-of-fit test, with a certain confidence level, is key to inferring the statistical
population of the data before fitting any model. For our analysis, we used statistical tests
based on measures such as the chi-square, Cook distance, and Mahalanobis distance [38,39].
In that sense, Figure 1 reveals the presence of influential studies in the BRMA modeling and
that the goodness of the adjustment and bivariate normality is not adequate, particularly
due to studies 3 and 8 (Table 1).

Conversely, Figure 2 reveals how the different values of sensitivity and specificity
are located below or above the dotted line (the average), indicating the presence of strong
heterogeneity in both measures. That is, the graph demonstrates different values of the
test performance means toward higher sensitivity and lower specificity, providing indirect
evidence of certain heterogeneity threshold variability.
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Figure 1. Graphical depiction of residual-based (a) goodness-of-fit, (b) bivariate normality, (c) influence and (d) outlier

detection analyses.
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Figure 2. Plot of the study-specific sensitivity and specificity (red points) and their corresponding 95% exact confidence
intervals (thick blue lines), for the AUDIT-C data.
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As mentioned previously, the HSROC and BRMA models are equivalent when there is
no inclusion of covariates, thus, we analyzed the outputs produced by the HSROC package
of R. The HSROCSummary function generates graphs of the convergence of the Gibbs sam-
pler. Each graph presents the dispersion of the posterior sample versus the iteration number
of the Gibbs sampler. The trace plots for the sensitivity and specificity are illustrated in
Appendix B. In our case, convergence was satisfactorily achieved. Another type of output
generated by the HSROCSummary function is the density plot. Appendix C presents
density plots for some of the between-study parameters. The function also generates an
SROC curve.

The SROC curve characterizes the correlation between sensitivity and (1 — specificity) of
the studies considering their heterogeneity. The adjustment of the SROC curve for the AUDIT-
C data is presented in Figure 3, revealing that the values for sensitivity and specificity were
0.430 (95% confidence interval (CI) = 0 — 0.913) and 0.982 (95% CI = 0.734 — 1), respectively.

Summary ROC curve

e
.f'" St ecean...,
m .
C)‘ ] .
: .
2 3
=
=
(2]
@
n 3
N
o
o
S -
T T T T T I
1.0 0.8 0.6 0.4 0.2 0.0
Specificity

Figure 3. Summary receiver operating characteristic (SROC) for AuditC data. The dots represent the
sensitivities and specificities found in the included studies. The line green represents the estimated
SROC curve. The dashed line around it represents the 95% confidence interval of the estimated SROC
curve. The red circle represents the estimated pooled sensitivity and specificity, and the blue ellipse
represents its 95% confidence interval.

The clear circle denotes the individual studies, and its diameter is proportional to the
sample size of the study. The sensitivity and specificity of the 14 studies are summarized
by a black circle. The 95% prediction region for future studies is defined by the black dot
curve. The 95% credible region that characterizes the summary values of sensitivity and
specificity is denoted by a black dot curve with lines [40]. Finally, the correlation between
sensitivity and (1 — specificity) was 0.854.

Table 2 shows the posteriori mean the 95% confidence interval of the marginal
means and estimated correlation parameters for the different copulas. Thus, the table
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reveals that Frank’s copula was the most extreme, with a correlation coefficient of —0.600.
However, the Gauss and Clayton 90 (C90) models also had large correlation coefficients of
—0.570 and —0.466, respectively.

Table 2. Posteriori means, 95% confidence intervals, and estimated sensitivity, specificity, and corre-
lation parameters for different copulas for AuditC data.

Copulas Parameter Mean Lower Upper

Se 0.862 0.766 0.920

Gauss Sp 0.755 0.6898 0.811
Correlation —0.570 —0.799 —0.289

Se 0.865 0.777 0.922

C90 Sp 0.760 0.695 0.813
Correlation —0.466 —0.801 —0.0005

Se 0.854 0.743 0.920

C270 Sp 0.752 0.680 0.810

Correlation —0.324 —0.758 —2219 x 107V

Se 0.871 0.780 0.932

FGM Sp 0.756 0.692 0.812
Correlation —0.214 —0.222 —0.121

Se 0.858 0.754 0.929

Frank Sp 0.751 0.773 0.808

Correlation —0.600 —0.767 1.000

Abbreviations: C90, Clayton 90; C270, Clayton 270; FGM, Farlie-Gumbel-Morgenstern; Se, sensitivity; Sp, specificity.

Importantly, the sensitivity and specificity results for the AUDIT-C data in the copula
models were extremely similar to previously reported values [23]. That is, the estimates
made by the copulas are more reliable than the estimates made by the HSROC model.

As the data were not distributed as a bivariate normal, and the correlation between
performance measures was positive, modeling of dependency through copulas should be
used. The algorithms used are presented in Appendix D.

For each aforementioned copula, the respective goodness-of-fit tests were performed.
The results are presented in Table 3. To link marginal beta distributions with a bivariate
dependent distribution, the best fit was observed using the FGM copula. This is revealed
by the value of the statistic and p-value, which leads to the acceptance of the hypothesis of
equality of empirical and parametric distributions. For the FGM copula, the value of the
statistic and p-value were 0.022 and 0.903, respectively. Note that the p-value for the FGM
copula was highest among the copulas.

Table 3. Results of goodness-of-fit tests for the copula model based on p-value and statistic on the
(0,1) scale.

Copula Model Statistic p-Value
Gauss 0.06547 0.301
Clayton 0.05539 0.659
FGM 0.02287 0.903
Frank 0.06647 0.296

Abbreviation: FGM, Farlie-Gumbel-Morgenstern.

The simulated studies were generated from scenarios designed to reproduce realis-
tic situations encountered in diagnostic test accuracy studies. These scenarios included
factors such as: number of studies, number of persons, inter-study variability in accuracy
and threshold, sensitivity, and specificity, [17]. The results of the simulation process are
shown below.

Simulation Results

Table 4 shows the mean estimates of the statistic, p-value of the hypothesis test,
and standard error (SE) for each copula model according to the number of simulated studies
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for each meta-analysis. The FGM copula best fit the simulated data when the number of
studies ranged from 5 to 22, as the average value of the statistic was lowest among the
copula models. When the number of studies was between 23 and 28, the Gaussian copula
had the best fit, whereas the best fit was achieved using the Clayton copula when the
number of studies was between 29 and 35.

Table 4. Results of goodness-of-fit tests for the copula model based on statistic, SE and p-value on
the (0,1) scale. The results presented here come from the situation in which the number of studies
(between 5 and 35 studies) in each meta-analysis was randomly generated. The total number of
persons included in each study was randomly sampled using a uniform distribution U (30; 1 255).

Number of Studies in the Meta-Analysis

Copula Parameter 5-10 11-16 17-22 23-38 29-35
Statistic 0.11823 0.06988 0.050 97 0.04320 0.03739

Gauss SE 0.00252 0.00113 0.00064 0.00069 0.00061
p-value 0.50309 0.49000 0.47070 0.44991 0.49072

Statistic 0.16819 0.16851 0.13742 0.11023 0.03460

Clayton SE 0.03237 0.05993 0.06356 0.07039 0.00061
p-value 0.52656 0.52146 0.52786 0.48326 0.49891

Statistic 0.06490 0.050 25 0.04871 0.06154 0.06717

FGM SE 0.00293 0.00159 0.00152 0.00032 0.00416

p-value 0.71763 0.62812 0.48737 0.34574 0.30307

Statistic 0.11127 0.06867 0.05102 0.04355 0.03735

Frank SE 0.00361 0.00123 0.00075 0.00078 0.00067

p-value 0.43157 0.48938 0.46523 0.43418 0.46655

Abbreviations: FGM, Farlie-Gumbel-Morgenstern.

5. Conclusions and Remarks

In this paper, definitions, implications, and methodologies were presented for the
development of models for meta-analyses of diagnostic tests associated with copulas
applied to a particular data set, although previous studies [41,42] noted that it might be
difficult to estimate copulas from a dataset, especially for count data. In general terms,
copulas are functions that approximate the set behavior of random variables based on their
individual (marginal) behaviors [26].

Sensitivity and specificity measurement models make more realistic assumptions
about marginal distribution functions (e.g., those that deviate from the assumption of
normality). Although they may be more expensive in computational terms, they are best
measured via summaries of a meta-analysis of diagnostic tests. In this sense, models de-
rived from copulas offer a flexible analytical structure that is appropriate for measuring
sensitivity and specificity.

In the meta-analysis of diagnostic tests, large heterogeneity can be found [43,44] due
to variation in prevalence, the number of studies, the analyzed population, the laboratory
procedures, and other factors. For this reason, bivariate copulas can be expanded and
modeled in conjunction with sensitivity and specificity using multivariate copulas.

The HSROC model does not operate on the original scale of sensitivity and specificity,
but instead, it functions on the corresponding logit scale. By generally relying on the
bivariate normal distribution for the random effects, it only allows one single correlation
structure [12,45]. For that reason, we proposed the use of copulas to study the accuracy of
diagnostic tests, as such functions avoid the limitations of bivariate and HSROC models.

The use of copulas allows the study of dependencies with structures that are not nec-
essarily linear, which is possible in diagnostic situations in which the results are obtained
after dichotomization. Copula models that use beta-binomial distributions to characterize
the marginal of TPs and TNs are linked to bivariate or multivariate copulas, i.e., it is a
bivariate logistic regression model with random effects, presenting greater flexibility in
capturing the functional dependence between sensitivity and specificity [32]. In other
words, hierarchical models assume a normal bivariate behavior between the logit trans-
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formations of sensitivity and specificity. When the bivariate normality assumption is not
met, copula modeling is used. This modeling employs beta-binomial distributions to
characterize the marginal distributions of TPs and TN, i.e., it displays greater flexibility in
capturing the functional dependence between sensitivity and specificity [32,46].

We illustrated the procedure using a dataset published in the literature. The data were
adjusted by assuming binary-associated tests and taking covariance as a parameter. It is
important to note that the four copulas naturally and correctly capture the dependence
structure between sensitivity and specificity (inverse relationship). The FGM copula
displayed better fit than the Gauss, C90, Clayton 270, and Frank copulas, as it obtained the
highest sensitivity. Conversely, Frank’s copula estimated the highest correlation between
sensitivity and specificity, and the estimated values for the pair of summary measures
(sensitivity and specificity) were extremely similar to the reported values [23]. This was
not the case with the HSROC method, reflecting the effect that hierarchical modeling has
in capturing the relationship between sensitivity and specificity [9].

Likewise, from the results of the 2 x 2 table, the best modeling for the study data
corresponded with the FGM copula according to the Cramér—von Mises goodness-of-fit test.
In the same sense, copula modeling estimated higher sensitivity values than the HSROC
model; that is, for the present context, parameter estimates by couples were better than the
hierarchical model.

An beneficial feature of copulas is that through beta-binomial distributions, the mea-
surements of TPs and TNs are models, which is attributable to the fact that the beta distri-
bution is conjugated with the binomial distribution (Hoyer and Kuss 2018). An explicit
advantage of the beta-binomial distribution is that the size of the studies is automatically
accounted for and the relationship between sensitivity and specificity is captured in a
natural manner. These characteristics are not found in the BRMA model. In other words,
modeling by copulas is a true random-effects model, which means that all tests within
studies have a single specific parameter (sensitivity or specificity) [31].

A meta-analysis is a two-stage process, but this is not true for the copula model or
Chu and Cole approach as they model the numbers of TPs and TNs directly by binomial
distributions, which is an advantage of these models.

The use of hypothesis testing through the p-value helps in the selection of a dependent
bivariate copula model. This allows analysts to quickly identify a copula model for
constructing a bivariate dependent distribution that fits a data set well.

We simulated meta-analysis under several scenarios (e.g., different numbers of studies)
and evaluated the hierarchical model of copulas. The presented methodology allows us to
identify the best fit among the copulas analyzed in this work. The findings suggested that
when the number of studies ranges from 5 to 22, the FGM copula has the best fit.

The modeling proposed using bivariate copulas with beta-binomial margins is a
valid alternative for studying the accuracy of diagnostic tests. It is important to note
that tools must be proposed to facilitate the selection and evaluation of the best model
among the hierarchical and copulas approaches. In the meantime, it is a good alternative
to conduct estimations of the parameters of the copula and hierarchical models to validate
their reliability [11].

We have demonstrated that hierarchical copulas offer a straightforward method in
the study of meta-analysis of diagnostic tests, where the accuracy of the tests depends
on thresholds, while also taking into account the stochastic relationship of sensitivity
and specificity [47,48].

Our simulations and application to motivating examples support and extend the
empirical evidence suggesting that copula methods generate reliable results in the study
of diagnostic test meta-analyses [11]. Simulation results show that the choice of analysis
method strongly affects the accuracy of the diagnostic test. Estimates of sensitivity and
specificity using the copula models outperform the estimates made by the BRMA and
HSROC models. Two aspects appear to contribute most to improving the accuracy of
the diagnostic test: the ability to capture the inverse relationship between sensitivity and



Mathematics 2021, 9, 1310

13 of 20

specificity without transformations; and the ability to provide marginal estimates of the
parameters from bivariate distributions [49].

Our study has some limitations. First, we were unable to explore the effect of SROC
curve asymmetry in depth. We addressed the factors we considered vital, and varied the
number of studies and individuals in a meta-analysis to reproduce reality. Second, the anal-
yses of the simulated data sets were conducted only in R statistical software, and the
parameter estimates of the HSROC and copulas models may differ between software
packages due to model fitting options.

Finally, we suggest that further research should address copula independence tests
over nonparametric models, e.g., Bernstein or spline-based copulas.
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Appendix A
Beta Distribution Combined with a Binomial Distribution

Theorem 1. The beta distribution is conjugated to the binomial distribution.

Bayes’ Theorem leads to:

P(Tp = d|Se = u)f(u)
fl P(TP = d|Se = u)f(u)du

where f is the density of the beta distribution and D = TP + FN. Then:

d

_ D d+age—1 _ D—d+Bse—1T(xse + Bse)
- (d " (1 - T(ose )T (Bsc)

P(TP = dise = witw) = (5 Jul(1 — w4l fhots i !

fol P(TP = d|Se = u)f(u)du

_ [ D \T(age + Bse)u®se (1 —u)Pse™ 01 g o0 1 D—d+Bge—1
- < ) A Jo w1 = u) T du

_ D T(otse + Bse) I(d + ase)I'(D — d + Bse)
o d T'(ose)T(Bse) I'(D + ase + Bse)

D\ r(age + Bse)  diage-1 D—d+Bge—1
D et - o

( D > M(ase + Bse) I(d + age)T(D — d + Bse)

d F(D‘Se)F(BSe) F(D + xge + ﬁSe)
B {ud-i-()(se—l(l _ u)D_d"‘BSe_l Iﬂ(D‘Fo‘Se#'BSe) ’0 <u< 1

f(Se = u|TP = d) = (

I'(d + age)l'(D — d + Bse)
0, otherwise

Finally, we obtain a post-beta distribution for (Se = u|TP = d) with (Se = u|TP = d)

~ Beta(age + W;Bge + D — u).
Therefore, posteriori distribution belongs to the same family as priori distributions.
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Figure 1. Convergence of Priori Distributions.
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Appendix D
Example R Code

# *****HSROC Model****

> library(HSROC)

> AuditC <- data.frame("++ = ¢(47,126,19,36,
130,84,68,752,59,142,137,57,34,152),
~+'=¢(9,51,10,3,

19,2,0,0,5,50,24,3,1,51),
‘+-=¢(101,272,12,78,
211,68,112,3226,55,571,107,103,21,88),
‘~'=¢(738,1543,192,276,
959,89,423,2977,136,2788,358,437,56,264))

> names(AuditC)<-c(“++,””-+,""+-,""=")

> alpha = c(2.51,2.54, 3.81, 2.41,
2.64,2.70,3.31, 3.39, 3.11, 2.99, 3.31,3.33,3,3)
> theta = ¢(—0.51, —0.39, 0.33, —2.06,
—0.14, —0.08, 1.11, 0.38, —0.86, —0.38,0.33,—2.06,1.11,1.11)
> sl =rep(0.9,14)

>cl =rep(0.9,14)

> pi=c(0.38,0.17, 0.78, 0.07,

0.74,0.84, 0.52, 0.95, 0.07, 0.56,0.55,0.80,0.90,0.88)
> within = cbind(alpha, theta, s1, c1, pi)

> within = cbind(theta, alpha, s1, c1, pi)

> THETA = —-0.16

> sig.theta = 0.75

> LAMBDA = 2.58

> sig.alpha = 0.5

> beta = 0.25

> between = ¢(THETA, sig.theta, LAMBDA,
sig.alpha, beta)

> init = list(within, between)

> HSROC(data=AuditC, iter.num=50000, init=init)
# ***Copula Model***

> library(CopulaDTA)

auditec] <- data.frame(TP = ¢(47,126,19,36,
130,84,68,752,59,142,137,57,34,152),

FN =¢(9,51,10,3,

19,2,0,0,5,50,24,3,1,51),

FP = ¢(101,272,12,78,
211,68,112,3226,55,571,107,103,21,88),

TN = c(738,1543,192,276,
959,89,423,2977,136,2788,358,437,56,264))
#Fit Gauss Copula

> co.gauss <- cdtamodel(“gauss”)

> gauss.fit <- fit(

+ co.gauss,

+ data = auditec],

+SID = “ID,”

+ iter = 10000,

+ warmup = 1000,

+ thin = 30,

+ seed = 3)

#Fit 90° Copula

> ¢0.c90 <- cdtamodel(copula = “c90”)
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> ¢90.fit <- fit(co.c90,

+ data=auditecl,

+ SID="1D,”

+ iter=10000,

+ warmup=1000,

+ thin=30,

+ seed=718117096)

#Fit 270° Copula

> c0.c270 <- cdtamodel(copula = “c270”)
> ¢270.fit <- fit(co.c270,
+ data=auditecl,

+ SID="1D,”

+ iter=10000,

+ warmup=1000,

+ thin=20,

+ seed=3)

#Fit FGM Copula

> co.fgm <- cdtamodel(copula = “fgm”)
> fgm fit <- fit(fgm.1,

+ data=auditecl,

+ SID="1D,”

+ iter=10000,

+ warmup=1000,

+ thin=20,

+ seed=3)

#Fit Frank Copula

> co.frank <- cdtamodel(copula = “frank”)
> frank.fit <- fit(co.frank,
+ data=auditecl,

+ SID="1D,”

+ iter=10000,

+ warmup=1000,

+ thin=20,

+ seed=1959300748)
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