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Abstract: The paper presents a tuning method for PID controllers with higher-order derivatives
and higher-order controller filters (HO-PID), where the controller and filter orders can be arbitrarily
chosen by the user. The controller and filter parameters are tuned according to the magnitude
optimum criteria and the specified noise gain of the controller. The advantages of the proposed
approach are twofold. First, all parameters can be obtained from the process transfer function or from
the measured input and output time responses of the process as the steady-state changes. Second,
the a priori defined controller noise gain limits the amount of HO-PID output noise. Therefore, the
method can be successfully applied in practice. The work shows that the HO-PID controllers can
significantly improve the control performance of various process models compared to the standard
PID controllers. Of course, the increased efficiency is limited by the selected noise gain. The proposed
tuning method is illustrated on several process models and compared with two other tuning methods
for higher-order controllers.

Keywords: higher-order controllers; PID controller; magnitude optimum; controller tuning; noise
attenuation

1. Introduction

The PID controllers are widespread in many industries and are frequently included in
embedded solutions [1–4]. This is not surprising, since the basic PID control algorithm is
very simple and the control performance, when the controller is tuned appropriately, is
usually very good. However, the control performance can be improved by increasing the
controller order. The improvement depends on the process order. While the first-order
process can be efficiently controlled by the PI controller and the second-order process by
the PID controller, the control efficiency for higher-order processes can be improved by
increasing the controller order beyond the PID control.

In practice the PI controllers are used more often than the PID controllers, since the
latter significantly increase the controller output noise. Naturally, with higher degrees
of controllers, the problem becomes aggravated. Therefore, the appropriate higher-order
controller filter is inevitable in practical applications.

For easier classification of the HO-PID controllers according to the controller (m) and
filter (n) order, let us denote them as PIDm

n . A general PIDm
n controller transfer function

GCF(s) can be defined as follows:

GCF(s) = GC(s)GF(s), where
GC(s) =

(
K−1s−1 + K0 + K1s + · · ·+ Kmsm)

GF(s) = 1
(1+TFs)n

(1)

where K−1, K0, K1, . . . Km are controller gains, and GF(s) is the binomial filter with filter
time constant TF. In practical applications, in order to limit the higher-frequency controller
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output noise, n ≥ m. Note that PID0
0 denotes the PI controller (KI = K−1, KP = K0) and PID1

1
denotes the PID controller (KI = K−1, KP = K0, KD = K1) with the first-order filter (n = 1).

Several tuning methods for HO-PID controllers have been proposed so far. The
majority of them are made for proportional-integrative-derivative-accelerative (PIDA)
controllers (PID2

n). The controller structure is either 1 degree of freedom (1-DOF) [5–20]
or 2 degrees of freedom (2-DOF) [21–23] which can optimise the tracking and control
performance.

The tuning methods for the mentioned PIDA controllers are derived either for the first-
order process with delay [20,22,23], third order process [5,11,13,14,21], first-order double
integrating process [5,11,16], second-order integrating process [8,9,11,16], double integrat-
ing process with time delay [10], fourth-order system [18], for different types of process
models [6,17,18] or for the automatic voltage regulator (AVR) in the generator excitation sys-
tem [7,15,19]. Unfortunately, only a few of the mentioned PIDA controller tuning methods
take into account the controller filter in the controller design stage [5–7,10,15,23]. Therefore,
the practical implementation of other PIDA tuning methods remains questionable.

Besides PIDA controllers, some higher-order controller tuning methods also exist [24–27].
The tuning method for the PID3

0 controller (the controller filter is not considered), where
the controlled process is a model of the ship power plant, including the heat exchanger, is
given in [24]. The method optimises the IAE for disturbance rejection while limiting the
peak of the closed-loop amplitude frequency response.

Tuning methods for even higher-order controllers (m > 3) were developed for the
integrating process model with a time delay (IPTD) [25–27]. Although the type of the
process model seems to be limited, we have to mention that many stable process models
can be modelled as IPTD processes [1]. For HO-PID control of stable time-delayed processes,
a new method was also proposed by generalizing Skogestad’s method SIMC [28]. The basic
version is based on the approximation of processes by transfer functions with multiple time
constants (obtained, for example, by an appropriate identification method); however, a
suitable model can also be obtained from a more general description of the process reduced
by the modified “half-rule” method [29]. Although not specifically designed for HO-PID
controllers, we should also mention that the tuning approach is based on the design of
multiple dominant closed-loop poles for delayed processes, applied to the PI and PID
controllers [30], which can be easily extended to HO-PID controllers.

The developed tuning methods for the PIDm
n controllers reveal that the HO-PID

controllers can be much more efficient than the ordinary PID controllers without significant
increase of the controller output noise.

This paper presents the PIDm
n controller and filter tuning method, which is based on

the parametric or the non-parametric process description. It means that the process can
be given by the general transfer function (of the arbitrary order and time delay) or by the
process input and output time-responses during the steady-state change of the process.
The only user-defined parameters will be the controller (m) and the filter (n) order and
the desired high-frequency gain of the controller. As will be shown later, the controller
parameters will be calculated analytically.

Therefore, the main advantages of the proposed method are the flexibility of the
process description (the process model is not required), simple specifications by the user
and simple calculation of the controller and filter parameters.

The content of the paper is as follows. The tuning method for the PIDm
n controllers is

covered in Section 2. The calculation of the controller and controller filter time constant,
according to the desired closed-loop high-frequency gain, is derived in Section 3. The com-
parison with some other tuning methods is carried out in Section 4. The paper concludes
with Section 5.

2. HO-PID Controller Tuning

The HO-PID controller parameters will be derived according to the magnitude op-
timum multiple integration (MOMI) tuning method, which is based on the magnitude
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optimum (MO) criteria [31–37]. The main advantages of the MOMI method are that it
combines frequency-domain MO tuning criterion (providing a fast and non-oscillatory
closed-loop process output response) with the time-domain method of moments (the
calculation of the process characteristic areas directly from the process time responses).

The process
The general order process transfer function with time delay is defined by the follow-

ing expression:

GP(s) =
KPR

(
1 + b1s + b2s2 + · · ·+ brsr)

1 + a1s + a2s2 + · · ·+ apsp e−sTdel (2)

where KPR is the process gain, Tdel is the process time delay and a1 to ap and b1 to br are
the process dynamic parameters. To simplify the derivation, let us assume that the process
transfer function is developed into an infinite Taylor series around s = 0:

GP(s) = GP0 + GP1s +
GP2

2!
s2 +

GP3

3!
s3 + · · · , (3)

where GPk are the k-th derivatives of the GP(s) over s around s = 0. The moments can be
calculated from the process impulse response h(t) in the following way [1,38]:

G(k)
P (0) = GPk = (−1)k

∫ ∞

0
tkh(t)dt (4)

Besides measuring the process impulse response, the moments can also be calculated
from the process steady-state change by measuring the process input and output time
responses [32,34]. By integrating the process input and output time responses, the so-called
characteristic areas Ak are obtained, which are related to the process moments as follows:

Ak =
(−1)k

k!
GPk (5)

The process transfer function, based on the characteristic areas, can be derived from
(3) and (5) as follows:

GP(s) = A0 − A1s + A2s2 − A3s3 + · · · . (6)

Since the calculation of the mentioned areas from the process input and output time
responses, during arbitrary steady-state change, are already covered in detail in [36], it will
not be repeated herein.

The process moments (4) and, therefore, the characteristic areas Ak (5), can also be
calculated from the process transfer function (2) by calculating the derivatives of GP(s) over
s around s = 0. The result is the following [32,34]:

A0 = KPR
A1 = KPR(a1 − b1 + Tdel)

A2 = A1a1 + KPR

(
b2 − a2 − Tdelb1 +

T2
del
2!

)
...

Ak =
k−1
∑

i=1
(−1)k+i−1 A1ak−i + (−1)k+1KPR(ak − bk) + KPR

k
∑

i=1

(−1)k+i

i! Ti
delbk−i

(7)

Therefore, the characteristic areas in expression (6) can be calculated either from the
process time response or from the process transfer function. This is a very important
advantage, since the actual process model can be used, but is not required.

In order to simplify the derivation of the controller parameters, the controller binomial
filter GF(s) (1) will be considered as a part of the process. Since the above areas are calculated
for the process without the filter, the areas Ai should be modified, accordingly. If the filter
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GF(s) (1) is added to the process (2) and developed into a Taylor series, it can be derived
that the new areas, denoted by AiF, can be simply calculated as:

AVF = Mn
F AV , where

MF =



1 0 0 0 0 0
TF 1 0 0 0 0
T2

F TF 1 0 0 0
T3

F T2
F TF 1 0 0

T4
F T3

F T2
F TF 1 0

...
...

...
... TF

. . .


, AV =



A0
A1
A2
A3
A4
...


, AVF =



A0F
A1F
A2F
A3F
A4F

...


(8)

Note that n is the binomial filter order (1). Naturally, the chosen size of the matrix and
the vectors depends on the number of the required areas.

Note that the characteristic areas with the included controller filter can be obtained
a-posteriori, when the process areas Ai are already measured either from the process time
response (5) or calculated from the process transfer function (7).

For further reference, please note that the process areas with the included controller
binomial filter are denoted with index F (AiF) and the process areas without the controller
filter are denoted without index F (Ai).

The closed-loop transfer function
In the paper, the process and the HO-PID controller (1) will be considered, as shown

in Figure 1. Signals r, rf, e, u, d, n and y stand for the reference, filtered reference, control
error, controller output, process input disturbance, process output noise and the process
output, respectively. Block GFR represents the second order filter for the reference signal in
order to reduce excessive controller output change on reference changes:

GFR(s) =
1

(1 + TFRs)2 , (9)

where TFR denotes the reference filter time constant. Due to simplicity, the filter order in (9)
is fixed. However, note that the filter order may be increased by increasing the controller
order so as to additionally attenuate the swings of the signal u for step-like changes of the
reference signal r.

Figure 1. The control loop with HO-PID controller and the process.

Let us now calculate the process closed-loop transfer function GCL(s) from the filtered
reference (rf) to the process output (y). The closed-loop transfer function is then defined as:

GCL(s) =
Y(s)
RF(s)

=
GCGP

1 + GCGP
, (10)

where Y(s) and R(s) are the Laplace transforms of the process output and the reference
signals, respectively.
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When applying the process (6) and the controller (1) transfer functions to (10), and
considering that the controller binomial filter is a part of the process (in the process transfer
function (6) the areas Ai are replaced by AiF), the closed-loop transfer function becomes:

GCL(s) =
GOL(s)

1+GOL(s)
,

GOL(s) = A0FK−1s−1 + (A0FK0 − A1FK−1) + s(A0FK1 − A1FK0 + A2FK−1)
+s2(A0FK2 − A1FK1 + A2FK0 − A3FK−1) + · · ·

+sk
k+1
∑

i=0
(−1)i AiFKk−i + · · ·

(11)

where GOL(s) denotes the open-loop transfer function GOL(s) = GC(s)GP(s).
The MO criteria
According to [35], the MO tuning criterion states that the closed-loop amplitude

(magnitude) should be 1 in as wide a frequency bandwidth as possible (starting from
frequency ω = 0). This can be achieved if the open-loop transfer function GOL(jω), in the
Nyquist diagram, follows the vertical line with the real value −0.5 (according to M and N
circles in control theory).

Replacing s with complex frequency jω in GOL(s) (11) yields:

GOL(s) = −jA0FK−1ω−1 + (A0FK0 − A1FK−1) + jω(A0FK1 − A1FK0 + A2FK−1)
−ω2(A0FK2 − A1FK1 + A2FK0 − A3FK−1) + · · ·

+(jω)k k+1
∑

i=0
(−1)i AiFKk−i + · · ·

(12)

where j denotes the imaginary component j =
√
−1.

Since merely the real part of the open-loop transfer function is required, only the even
powers over frequency in (12) are needed. Therefore:

Re{GOL(s)} = (A0FK0 − A1FK−1)−ω2(A0FK2 − A1FK1 + A2FK0 − A3FK−1) + · · ·

+(−1)qω2q
2q+1
∑

i=0
(−1)i AiFK2q−i + · · ·

(13)

In order to achieve that the Re{GOL(s)} = −0.5 for as high frequencies as possible, the
following conditions should be fulfilled:

−A1FK−1 + A0FK0 = −0.5
−A3FK−1 + A2FK0 − A1FK1 + A0FK2 = 0

−A5FK−1 + A4FK0 − A3FK1 + A2FK2 − A1FK3 + A0FK4 = 0
...

(14)

or in matrix form:

MKV = C, where

MF =



−A1F A0F 0 0 0 · · ·
−A3F A2F −A1F A0F 0 · · ·
−A5F A4F −A3F A2F −A1F · · ·
−A7F A6F −A5F A4F −A3F · · ·
−A9F A8F −A7F A6F −A5F · · ·

...
...

...
...

...
...


, KV =



A−1
K0
K1
K2
K3
...


, C =



−0.5
0
0
0
0
...


(15)

Note that the matrix and vector dimensions depend on the number of controller
parameters (m + 2):

M(m+2)×(m+2), KV(m+2)×1
, C(m+2)×1 (16)
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The controller parameters (gains) can then be simply calculated from (15):

KV = M−1C (17)

The calculation of the controller and filter parameters is straightforward. However, to
make it even simpler, we have provided online MATLAB/Octave scripts via the OctaveOn-
line Bucket website [39]. The provided scripts calculate all the controller parameters for the
given process transfer function and the filter time constant. The website layout is shown in
Figure 2. The calculation procedure proceeds as follows:

1. Select the appropriate Octave (MATLAB) script (test_HO_TF.m).
2. Provide the process parameters, the filter time constant, the controller order and filter

order,
3. press the “Save” button, and
4. press the “Run” button.

Figure 2. The layout of the OctaveOnline Bucket website (function test_HO_TF.m).

The script then calculates the characteristic areas, the controller and the filter parame-
ters. The results are then shown on the right panel of the website.

Illustrative example 1
The D1

1, PID2
2 and PID3

3 controller parameters will be calculated for the following
processes:

GP1(s) = 1
(1+s)4

GP2(s) = e−0.5s

(1+s)2

(18)

The chosen controller filter time constants is TF = 0.1. The characteristic areas, without
(7), and with controller filter (8) are given in Table 1.
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Table 1. The calculated areas for the processes (18) without and with the controller filter.

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9

Areas GP1 1 4 10 20 35 56 84 120 165 220

Areas GP1 with controller
PID1

1 filter 1 4.1 10.41 21.041 37.104 59.71

Areas GP1 with controller
PID2

2 filter 1 4.2 10.83 22.124 39.317 63.64 96.34 138.63

Areas GP1 with controller
PID3

3 filter 1 4.3 11.26 23.25 41.642 67.81 103.12 148.94 206.66 277.63

Areas GP2 1 2.5 4.125 5.771 7.419 9.068 10.717 12.365 14.014 15.663

Areas GP2 with controller
PID1

1 filter 1 2.6 4.385 6.209 8.040 9.872

Areas GP2 with controlle
PID2

2 filter 1 2.7 4.655 6.675 8.708 10.743 12.778 14.814

Areas GP2 with controller
PID3

3 filter 1 2.8 4.935 7.168 9.425 11.685 13.947 16.208 18.470 20.732

The calculated controller parameters (17) are given in Table 2.

Table 2. The calculated controller parameters.

K−1 K0 K1 K2 K3

GP1—controller PID1
1 0.438 1.295 1.041 - -

GP1—controller PID2
2 0.812 2.911 3.599 1.556 -

GP1—controller PID3
3 1.810 7.282 11.008 7.417 1.883

GP2—controller PID1
1 0.890 1.814 0.934 - -

GP2—controller PID2
2 1.140 2.578 1.738 0.300 -

GP2—controller PID3
3 1.304 3.152 2.459 0.678 0.0674

In order to reduce the excessive swing of the controller output when changing the
reference, the following reference filter time constant (9) is used for both processes:

TFR = 0.5 (19)

Note that the second order reference filter is used (9).
The closed-loop responses for the processes GP1(s) and GP2(s), for all three types of

controllers, are shown in Figures 3 and 4. It is clear that tracking and control performance
increase by the controller order. Note that the controller output response of PID3

3 con-
troller is not shown entirely in order to see the responses of PID1

1 and PID2
2 controllers

more clearly.
When comparing process output responses when using controllers PID1

1 and PID3
3

in Figures 3 and 4, it can be seen that the relative difference in performance is larger on
higher-order process GP1(s). This is expected, since lower-order processes can already be
optimally controlled by lower-order controllers (e.g., the first-order process with PID0

0 and
the second-order process with the PID1

1 controller). Since the second-order process GP2(s)
has an additional delay, the closed-loop performance can still be slightly increased with the
PID3

3 controller.
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Figure 3. The closed-loop responses for the process GP1(s) when using controllers PID1
1 , PID2

2
and PID3

3 .

Figure 4. The closed-loop responses for the process GP2(s) when using controllers PID1
1 , PID2

2
and PID3

3 .

According to the closed-loop responses, it can be concluded that HO-PID controllers
can significantly improve the closed-loop performance, especially for higher-order pro-
cesses. The only required parameter from the user is the controller filter time constant TF.
Namely, the amplification of the process output measurement noise depends on the chosen
TF. However, the relation between TF and the actual amplification of the high-frequency
(HF) noise depends on several other controller parameters and is a rather complex func-
tion. Therefore, in practice, it would be more appropriate to define the desired HF noise
amplification than the controller filter time constant.

3. HO-PID Controller with Specified HF Noise Amplification

As mentioned in the previous section, the n-th order controller filter GF(s) (1) is
primarily used to decrease the controller output noise due to the measurement noise (in
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addition to making the entire controller transfer function proper or strictly proper and,
therefore, realisable in practice). High controller amplification of the measurement noise is
never desired, since it may also cause large swings of the control output signals and thus
may decrease the actuator’s life span. In order to limit the amplification of the process
measurement noise, the user can try different values of TF until the desired amplification
(attenuation) of the noise is achieved. In practice, this may take too long, since the function
between TF and the noise amplification is complex and non-linear. Therefore, from the
user’s perspective, it is easier to define the desired noise amplification of the controller
than select filter time constant TF.

The process output noise (ny) is amplified by the controller (1) in the closed-loop
configuration as follows:

UN = GCN(s)Ny =
GCF(s)

1 + GCF(s)GP(s)
Ny =

(
GP(s) +

1
GCF(s)

)−1
Ny, (20)

where Ny and UN are Laplace transforms of the measurement noise and the controller
output noise, respectively. The negative sign is omitted to simplify the derivation. From (20)
it can be seen that at lower frequencies, the transfer function GCN(s) is mostly dominated
by the process transfer function GP(s), while at higher frequencies, it is mostly dominated
by the controller transfer function GCF(s). At lower frequencies, the process can be approxi-
mated by its gain KPR, while at higher frequencies the controller gains K−1 and K0 can be
neglected. Therefore, GCN(s) can be approximated by the following transfer function:

GCN(s) ≈
K−1

PR + K1s + K2s2 + · · ·+ Kmsm

(1 + TFs)n . (21)

On the other hand, the desired controller output noise (UND) should be similar to:

UND = KHF Ny, (22)

where KHF is a chosen noise amplification factor. Since amplitudes UN and UND cannot be
compared directly due to different frequency characteristics, it is easier to compare noise
powers of both signals in some chosen frequency bandwidth (from ω1 to ω2). Namely, due
to Parseval theorem, the power of the controller output signal (PUN) is proportional to:

PUN ∝
∫ ω2

ω1

∣∣GCN(ω)Ny(ω)
∣∣2dω . (23)

The desired noise power is, according to (22), proportional to:

PUND ∝
∫ ω2

ω1

∣∣KHF Ny(ω)
∣∣2dω . (24)

When considering the Ny as a white noise with amplitude over frequency as Ny(ω) = 1,
the powers PUN and PUND would become the same when:∫ ω2

ω1

F0+F1ω2+F2ω4+···+Fmω2m

(1+T2
Fω2)

n dω = K2
HF(ω2 −ω1), where K0 = K−1

PR and

F0 = K2
0

F1 = K2
1 − 2K0K2

...

Fk = K2
k + 2

k−1
∑

i=0
(−1)k+iKiK2k−i

...
Fm = K2

m

(25)
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However, the solution of the integral in (25), due to the denominator (controller filter),
becomes very complex and highly non-linear in respect to TF. Therefore, some search
algorithm (optimization) must be applied for each calculation of the TF.

This would seriously impact the simplicity of the proposed method. Therefore, it is
decided to simplify the function inside the above integral. Since at higher frequencies,
the most dominant controller term becomes the one with the highest derivative (Km), the
function can be simplified as follows:

F0 + F1ω2 + F2ω4 + · · ·+ Fmω2m(
1 + T2

Fω2
)n ≈

Fmω2m ; ω ≤ 1
TF

Fmω2(m−n)

T2n
F

; ω > 1
TF

. (26)

According to (26), the expression (25) simplifies into:∫ ωF
ω1

Fmω2mdω +
∫ ω2

ωF
Fmω2(m−n)ω2n

F dω ≈ K2
HF(ω2 −ω1)∫ ωF

ω1
Fmω2mdω =

Fm(ω2m+1
F −ω2m+1

1 )
(2m+1)∫ ω2

ωF
Fmω2(m−n)ω2n

F dω =


Fmω2n

F

(
ω

2(m−n)+1
2 −ω

2(m−n)+1
F

)
(2m−2n+1) n > m

Fmω2n
F (ω2 −ωF) n = m

ωF = 1
TF

(27)

The contribution of noise power in the frequency region below ωF is usually much
smaller than at higher frequencies. Therefore, in order to even further simplify the deriva-
tion, we can choose ω1 = 0 without making any significant error in the calculation. Selection
of the upper frequency (ω2) in the integral, due to the Shannon theorem, depends on the
controller sampling frequency. Without loss of generality, the upper frequency can be
selected as:

ω2 = ωS =
2π

TS
, (28)

where ωS is controller sampling frequency (in rad/s) and TS is controller sampling time.
By taking into account that:

ωS � ωF, (29)

and ω1 = 0, the expression (27) simplifies even further:∫ ωF
0 Fmω2mdω =

Fmω2m+1
F

2m+1∫ ωS
ωF

Fmω2(m−n)

T2n
F

dω ≈


Fmω2m+1

F
2(n−m)−1 n > m

Fmω2n
F ωS n = m

(30)

Therefore, the final expression, when taking into account that Fm = Km
2, reads as:

K2
mω2m+1

F

(
1

2m+1 + 1
2(n−m)−1

)
≈ K2

HFωS n > m
K2

mω2m
F ≈ K2

HF n = m
, (31)

Therefore, the filter time constant (TF =1/ωF) can be estimated as follows:

TF ≈
2m+1

√
K2

m

(
1

2m+1+
1

2(n−m)−1

)
K2

HFωS
; n > m

TF ≈ m
√
|Km |
KHF

; n = m

, (32)

Note that the above derivation of the filter time constant takes into account approxi-
mations (26) and (29). This means that the final output noise power of the controller may
differ from that defined by the selected high frequency gain KHF. However, if the above
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approximations are not taken into account, then the final expressions for the calculation of
ωF in (31) would become those of the higher order without analytic solution for TF. This
would significantly complicate the filter calculation.

The entire procedure for the calculation of the controller parameters for a given process
is given in Figure 5.

Figure 5. Calculation of the filter and controller parameters.

As shown in Figure 5, the calculation of the controller and filter parameters is straight-
forward. However, to make it even simpler, as mentioned before, we have provided online
MATLAB/Octave scripts via OctaveOnline Bucket website [39]. The website layout is
shown in Figure 6. The calculation procedure proceeds as follows:

1. Select the appropriate Octave (MATLAB) script (test_HO_filt.m).
2. Provide the process parameters, the desired noise gain, the controller sampling time,

the controller order and filter order,
3. press the “Save” button, and
4. press the “Run” button.

Figure 6. The layout of the OctaveOnline Bucket website (function test_HO_filt.m).

The script then calculates the filter time constant, the characteristic areas and the
controller parameters. The results are shown on the right panel of the website.

Illustrative example 2
Consider the following fourth-order process transfer function GP3(s) (18):

GP3(s) =
e−0.2s

(1 + s)4 (33)
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The initially chosen controller filter time constants is TF = 0.1. For all the experiments
in this section, the chosen sampling time is TS = 0.002 s. In order to retain clarity of the
derivations, the characteristic areas of the process are not mentioned herein; however, they
can be calculated (besides all the controller and the filter parameters) on the aforementioned
website [39].

a. Changing the parameter KHF
According to the procedure given in Figure 5, when choosing parameter KHF, con-

troller PID3
4 and repeating steps 3–5 a few times (in our case, 3 times), the calculated filter

time constants, and the calculated controller parameters (17) are given in Table 3.

Table 3. The calculated filter time constants TF and controller parameters at different noise gains KHF.

TF K−1 K0 K1 K2 K3 σrel

KHF = 2 0.209 0.679 2.445 3.282 1.954 0.440 1.85

KHF = 5 0.155 0.773 2.684 3.426 1.896 0.382 4.60

KHF = 10 0.124 0.844 2.873 3.562 1.885 0.352 9.2

KHF = 20 0.100 0.914 3.062 3.710 1.890 0.329 18.3

Again, in order to reduce the excessive swing of the controller output when changing
the reference, the following second-order reference filter time constant (9) is used:

TFR = 0.2 (34)

The closed-loop responses for different values of KHF are given in Figure 7.

Figure 7. The closed-loop responses for the process GP3(s) when using controllers PID3
4 , at differ-

ent KHF.

As expected, the speed of the closed-loop response and the controller output signal
noise increases by increasing the noise gain factor KHF. However, the improvement of the
closed-loop speed is not so significant at the highest factors KHF. On the other hand, the
controller output noise increases at higher factors KHF. As expected, there is a trade-off
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between the closed-loop speed and the amount of the controller output noise. Therefore, in
practice, the allowed noise gain should be chosen wisely according to the amount of noise
present in the system.

The actual “amplification” of the measurement noise (the actually achieved noise gain
KHF) is measured by dividing standard deviations of the controller output signal (u) and
the process output (n) when the process is in the steady-state:

σrel =
σu

σy
. (35)

The actual amplifications of the measurement noise signals are given in Table 3. It is
obvious that the actual gains of the noise (σrel) are very similar to the desired ones (KHF).

b. Changing the filter order (n)
On the other hand, the speed of the closed-loop response, for the same KHF and the

controller order (m), can also be altered by changing the filter order. In this regard, we
tested the performance of the controllers PID3

n, where n varies from 3 to 6.
According to the procedure given in Figure 5, when choosing KHF = 10 and repeating

steps 3–5 3 times, the calculated filter time constants and the controller parameters (17) are
given in Table 4.

Table 4. The calculated filter time constants TF and controller parameters at different n.

Controller Structure TF K−1 K0 K1 K2 K3 σrel

PID3
3 0.396 0.619 2.402 3.547 2.388 0.629 10.1

PID3
4 0.124 0.844 2.873 3.562 1.885 0.352 9.17

PID3
5 0.109 0.799 2.731 3.410 1.824 0.348 5.05

PID3
6 0.104 0.742 2.564 3.247 1.777 0.352 3.33

The closed-loop responses for different controller filter orders (n = 3 to 6) are given in
Figure 8.

Figure 8. The closed-loop responses for the process GP3(s) when using controllers with different filter
orders PID3

n, at KHF = 10.
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As can be seen, the speed of the closed-loop response is the highest for controller PID3
4 .

The speed of controllers with higher-order filters (n > 4) are slightly slower. The speed of
response for n > 4 is not improving since a higher-order filter also adds some complexity to
the closed-loop transfer function. This, in return, may result in lower closed-loop speeds.

The practical question is how to find the most optimal controller filter order in advance,
before making the closed-loop experiment on the process. This can be answered by
calculating the integral of control error (IE), which can be considered as a measure of the
closed-loop speed:

IE =

∞∫
t=0

(r− y)dt (36)

If the closed-loop responses have small overshoots, the higher values of IE indicate
slower closed-loop responses. For such responses, the IE can be a useful tool to measure
the closed-loop speed. The IE value can be relatively easily calculated by transforming the
Equation (36) into Laplace domain. It can be shown that:

IE =
1

KPRK−1
. (37)

Therefore, for the process with the same steady-state gain KPR (2), the closed-loop
speed is inversely proportional to the integrating gain (K−1) of the controller. Therefore,
the controller with the highest gain K−1 will produce the fastest closed-loop response
(providing that the closed-loop responses have small or negligible overshoots). Indeed,
from Table 4 it is evident that the highest gain K−1 is calculated for controller PID3

4. This
corresponds to our previous observations.

The actual amplifications of the measurement noise signals, according to (35), are
given in Table 4. The actual noise gains (σrel) are very similar to the desired ones (KHF) for
filter orders 3 and 4, while for higher-order filters the actual noise gain is lower. This is due
to various assumptions (simplifications) made when deriving the filter time constant (32).

c. Changing the controller order (m)
As is already known, the speed of the closed-loop response can also be altered by

changing the controller order. In this regard, we tested the performance of the controllers
PIDm

n , where m varies from 1 to 4. In all cases the controller filter is chosen to be 1 order
higher than the controller order (n = m + 1). The desired noise gain remains the same as in
the previous experiment (KHF = 10).

The calculated filter time constants and the controller parameters (17) are given in
Table 5.

Table 5. The calculated filter time constants TF and controller parameters at different controller order
m (n = m + 1).

Controller Structure TF K−1 K0 K1 K2 K3 K3 σrel

PID1
2 0.015 0.517 1.323 0.904 - - - 10.9

PID2
3 0.078 0.766 2.36 2.45 0.863 - - 9.7

PID3
4 0.124 0.844 2.873 3.562 1.885 0.352 - 9.2

PID4
5 0.161 0.876 3.270 4.694 3.225 1.068 0.143 8.9

The closed-loop responses for different controller orders (m = 1 to 4) are given in
Figure 9.
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Figure 9. The closed-loop responses for the process GP3(s) when using controllers with different
controller orders PIDm

n , at KHF = 10 and n = m + 1.

As can be seen, the closed-loop speed increases by increased controller order, similar
to the results in Figures 3 and 4. The difference is that now the controller output noise is
under control (KHF = 10), so the level of control noise is similar for all of the controllers. The
fastest responses are obtained with PID4

5. In a similar manner as in the previous case, the
speed of responses can be estimated by comparing the values of the calculated integrating
gains (K−1) in Table 5. Indeed, K−1 is the highest for PID4

5.
The actual amplifications of the measurement noise signals, according to (35), are

given in Table 5. The actual gains of the noise (σrel) are very similar to the desired ones
(KHF) for all controller orders.

4. Robustness

The proposed design of HO-PID controllers results in a relatively fast and non-
oscillatory response. In addition, the controller noise is under control by choosing pa-
rameter KHF. However, the designed closed-loop system can still be not robust enough
to process variations. Namely, due to nonlinearity or time-variations of the process, its
characteristics (gain, delay, time constants, etc.) can vary by working point or by time.

The robustness of a stable closed-loop system is usually measured by maximum
sensitivity (MS) [1,38]. Maximum sensitivity is related to the distance of the open-loop
transfer function GC(jω)GP(jω) from the critical point (−1+j0). Namely, MS is the inverse
of the minimum distance between the open-loop transfer function and the critical point.
Generally, a smaller value of MS denotes a more robust closed-loop system to process
variations. Usual values of MS for stable processes are between 1.4 and 2.0 [1,38].

The robustness of the closed-loop system for the proposed HO-PID controllers has
been tested on the following third-order process with delay:

GP4(s) =
KPRe−Tdel s

(1 + sT)3 , (38)

where the nominal values are KPR = 1, Tdel = 1 and T = 1. Three different HO-PID controllers
are selected: PID2

3 , PID3
4 , and PID4

5 . The calculated controller parameters, when choosing
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KHF = 10, TS = 0.002 s and according to the proposed tuning method, are shown in Table 6.
The calculated values of the maximum sensitivity MS, for all three controllers, are shown
in the same table. It can be seen that the MS values slightly increase with the increased
controller order. However, the differences are not large and all the values are below 2.0.

Table 6. The calculated filter time constants TF and controller parameters at different controller
orders m (n = m + 1) for GP4(s).

Controller Structure TF K−1 K0 K1 K2 K3 K3 MS

PID2
3 0.0702 0.498 1.597 1.752 0.668 - - 1.78

PID3
4 0.125 0.554 1.992 2.674 1.596 0.362 - 1.86

PID4
5 0.170 0.579 2.308 3.629 2.832 1.117 0.185 1.91

Besides calculating the MS values, we were also simulating the closed-loop responses
using all three controllers on the nominal process, and on the changed process (±10%
change of process gain KPR, time-delay Tdel and time constant T). The closed-loop re-
sponses are shown in Figures 10–12. It is evident that the closed-loop responses under
perturbed parameters are still stable without significant oscillations. When comparing
Figures 10 and 12 it can be noticed that the perturbed parameters with controller PID4

5
result in slightly more deviation from the nominal response than with controller PID2

3.
This is all in accordance with the calculated values of MS in Table 6.

Figure 10. The closed-loop responses for the process GP4(s), using controller PID2
3 at KHF = 10

for nominal (solid line), 10% increased (dashed line) and 10% decreased (dash-dotted line)
process parameters.
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Figure 11. The closed-loop responses for the process GP4(s), using controller PID3
4 at KHF = 10

for nominal (solid line), 10% increased (dashed line) and 10% decreased (dash-dotted line)
process parameters.

Figure 12. The closed-loop responses for the process GP4(s), using controller PID4
5 at KHF = 10

for nominal (solid line), 10% increased (dashed line) and 10% decreased (dash-dotted line)
process parameters.

5. Comparison with Other Tuning Methods

The proposed tuning method was compared with some other methods for PIDA
controllers. The chosen methods, which were tested on a particular process model, are from
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Lurang and Puangdownreong [21] (denoted as the Lurang method from here on) and Jung
and Dorf [11] (denoted as the Jung method from here on). The Lurang method involves
calculating the PIDA controller parameters by optimizing the tracking and disturbance
rejection response under several limitations given on rise time, overshoot, settling time,
steady-state error and similar. The optimization is carried out with a modified bat algorithm
proposed by the authors. The Jung method analytically calculates the PIDA controller
parameters for the third-order process according to provided desired overshoot and settling
time. Both methods do not take into account the controller’s filter. Therefore, the actual
implementation in practice could be questionable if the filter dynamics become slower.

Case 1
The following process model has been selected, according to [21]:

GP5(s) =
1

(1 + s)(1 + 0.5s)
(
1 + s

3
) (39)

The Lurang method suggests the following PIDA controller parameters:

K−1 = 2.20, K0 = 3.60, K1 = 1.60, K2 = 0.06 (40)

The chosen controller filter time constant was very low (TF = 0.01), since we did
not want to spoil the closed-loop response of the Lurang method. Namely, as already
mentioned, the Lurang method does not take into account the controller filter in the
design phase.

For comparison, we chose the controller structures with the lowest possible controller
filter order n: PID2

2. For illustrative purposes, the one-order higher controller structure
(PID3

3) was also tested. Note that the closed-loop results of our proposed method, for the
same level of controller noise, can be improved by using n > m.

The calculated controller parameters, for the given process and controller filter were
the following:

PID2
2 : K−1 = 25.06, K0 = 45.95, K1 = 25.07, K2 = 4.18

PID3
3 : K−1 = 37.53, K0 = 69.42, K1 = 38.88, K2 = 6.88, K3 = 0.104

(41)

We tested, separately, the tracking response and the disturbance rejection when using
all three controllers. For tracking response, the reference (r) changed from 0 to 1 at t = 1 s
and for disturbance response the process input disturbance (d) changed from 0 to 1 at
t = 1 s.

The closed-loop responses are shown in Figure 13.
As can be seen, the responses of the proposed method with PID2

2 controller are
superior to the Lurang method. Certainly, the one-order higher controller (PID3

3) has a
better result.

For a more objective comparison, the integral of squared error (ISE) signal has been
calculated for all three controllers. The results are shown in Table 7. It is obvious that the
ISE values for the PID2

2 controller are much lower than the ones for the Lurang controller.

Table 7. The ISE values for all three controllers in tracking and disturbance rejection.

ISE PID2
2 PID3

3 Lurang

Tracking 0.0228 0.0131 0.322

disturbance rejection 4.38 × 10−7 1.95 × 10−7 0.061
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Figure 13. The comparison of the closed-loop responses for the process GP5(s) when using PID2
2 ,

PID3
3 and the Lurang controller.

Case 2
The second process model has been selected according to [11]:

GP6(s) =
0.0556

(1 + s)
(
1 + s

3
)(

1 + s
6
) (42)

The Jung method suggests the following PIDA controller parameters:

K−1 = 529.8, K0 = 516.5, K1 = 179.2, K2 = 26.3 (43)

As before, the controller filter time constant was chosen very low (TF = 0.005), since
we wanted to preserve the closed-loop response of the Jung method, which was obtained
without the controller filter.

The calculated PID2
2 and PID3

3 controller parameters, for the given process and
controller filter were the following:

PID2
2 : K−1 = 902, K0 = 1353, K1 = 501, K2 = 50.1

PID3
3 : K−1 = 1351, K0 = 2037, K1 = 767, K2 = 81.3, K3 = 0.6

(44)

As in the previous case, the closed-loop responses were tested on the tracking response
and the disturbance rejection. The closed-loop responses are shown in Figure 14.
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Figure 14. The comparison of the closed-loop responses for the process GP6(s) when using PID2
2 ,

PID3
3 and the Jung controller.

Again, the responses of the proposed method with PID2
2 and PID3

3 controllers are
superior to the Jung method. The comparison of ISE values in Table 8 shows PID2

2 controller
has lower values than the Jung controller. However, note that the disturbance rejection
settling time is the best with the Jung method.

Table 8. The ISE values for all three controllers in tracking and disturbance rejection.

ISE PID2
2 PID3

3 Jung

Tracking 8.12 × 10−3 4.11 × 10−3 1.97 × 10−2

disturbance rejection 4.38 × 10−7 1.95 × 10−7 2.18 × 10−6

Case 3
The fourth-order process model has been selected according to [6]:

GP7(s) =
1

(1 + s)
(
1 + s

2
)(

1 + s
4
)(

1 + s
8
) (45)

The Puangdownreong method suggests the following PIDA controller parameters:

K−1 = 1.647, K0 = 2.684, K1 = 1.105, K2 = −2.65·10−3 (46)

The method calculated the following controller filter:

GF(s) =
1

1 + 0.0132s + 5.26·10−5s2 (47)

which was also used in design of the proposed PID2
2 controller parameters. For the

given process and controller filter transfer function, the following controller parameters
were calculated:

PID2
2 : K−1 = 4.36, K0 = 7.735, K1 = 3.97, K2 = 0.60 (48)
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As in the previous case, the closed-loop responses were tested on the tracking response
and the disturbance rejection. The closed-loop responses are shown in Figure 15.

Figure 15. The comparison of the closed-loop responses for the process GP6(s) when using PID2
2 and

the Puangdownreong controller.

Again, the responses of the proposed method with the PID2
2 controller are superior to

the Puangdownreong method. The comparison of ISE values in Table 9 shows the PID2
2

controller has lower values than the Puangdownreong controller.

Table 9. The ISE values for both controllers in tracking and disturbance rejection.

ISE PID2
2 Puangdownreong

Tracking 0.172 0.466

disturbance rejection 0.0162 0.107

6. Conclusions

In the paper, the method for tuning the parameters of the m-th order controller with
the n-th order binomial filter has been presented. The proposed tuning method is based on
the MO criteria which aims to produce non-oscillatory and fast closed-loop reference step
responses. The calculation of the controller parameters is analytical and does not require
any kind of optimization. An additional advantage of the proposed method is that the
process can be described either by the process model or by the process time responses
during the steady-state change.

To keep the noise gain of the controller under control, the filter time constant of the
controller can also be calculated according to the specified noise gain. The calculation
procedure is still analytical, and the results confirm that the level of controller noise is
consistent with the given noise gain. The only exception is the use of larger relative degrees
between the controller and the filter order, which is the consequence of some simplifications
in the calculation of the filter time constant.

The proposed method was tested on six different process models (from second to
fourth-order process models with or without time delay). The results confirmed that the
control performance can be improved by increasing the controller order or by selecting
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the filter order appropriately without increasing the controller output noise. The study
shows that increasing the filter order improves the performance only up to a certain level,
after which the performance starts to decrease. The optimum degree of controller and filter
order can be easily determined by the value of integral gain of the controller.

The tuning method was compared with three other tuning methods for PIDA con-
trollers (Lurang [21], Jung [11] and Puangdownreong [6] methods). Although the selected
process models were the same as in the aforementioned methods, the proposed method
resulted in a better control performance.

Therefore, the proposed higher-order controller design is efficient, and the controller
output noise gain is under control. However, it does not mean that the proposed method
cannot be improved. Indeed, the proposed method is based on optimizing the reference
tracking performance. In our further research, we plan to improve the disturbance rejection
performance as well. Namely, the article shows that the MO controller design leads to a
strong asymmetry in the dynamics of tracking and disturbance rejection behaviour. While
the HO-PID controller design leads to an increase in the number of pulses of the control
signal after reference step changes, the responses of the control signal after the change of
disturbance remain monotonic. This motivates us to deal with the modification of the MO
controller design with regard to a faster response to disturbances.

Moreover, we also plan to design a method that will find the most optimal controller
and filter order for the given process and noise amplification considering the complexity of
the controller and filter order. We plan to calculate the optimal parameters of the reference
filter to control the change of the controller output signal when the reference signal is
changed.

Another planned modification is adding a user-defined parameter for changing the
speed of the closed-loop control. Slowing down the control speed would further increase
the robustness of the system.
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