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Abstract: Modeling environmental data plays a crucial role in explaining environmental phenomena.
In some cases, well-known distributions, e.g., Weibull, inverse Weibull, and Gumbel distributions,
cannot model environmental events adequately. Therefore, many authors tried to find new statistical
distributions to represent environmental phenomena more accurately. In this paper, an α-monotone
generalized log-Moyal (α-GlogM) distribution is introduced and some statistical properties such
as cumulative distribution function, hazard rate function (hrf), scale-mixture representation, and
moments are derived. The hrf of the α-GlogM distribution can form a variety of shapes including the
bathtub shape. The α-GlogM distribution converges to generalized half-normal (GHN) and inverse
GHN distributions. It reduces to slash GHN and α-monotone inverse GHN distributions for certain
parameter settings. Environmental data sets are used to show implementations of the α-GlogM dis-
tribution and also to compare its modeling performance with its rivals. The comparisons are carried
out using well-known information criteria and goodness-of-fit statistics. The comparison results
show that the α-GlogM distribution is preferable over its rivals in terms of the modeling capability.

Keywords: α-monotone distribution; environmental data modeling; scale-mixture extension; slash
distribution

1. Introduction

Modeling environmental data plays a crucial role in explaining environmental phe-
nomena. In this context, there exists a much different statistical distribution, e.g., Weibull,
inverse Weibull, and Gumbel distributions, to model the environmental data. However, in
some cases, these distributions cannot model environmental events adequately. Therefore,
many authors tried to find new statistical distributions to analyze them more accurately.
For example, Gómez et al. [1] obtained a general family of skew-symmetric distribu-
tions generated by the cumulative distribution function of the normal distribution. They
used skew Student-t-normal distribution to analyze nickel concentration in soil samples.
Leiva et el. [2], Nadarajah [3], and Martinez et al. [4] proposed generalized Birnbaum-
Saunders, truncated inverted beta, and log-power-normal distributions, respectively, to
model the air pollution data. Bakouch et al. [5] used a binomial-exponential 2 (BE2)
distribution to analyze rainfall data. Asgharzadeh et al. [6] introduced the generalized
BE2 distribution for the characterization of hydrological events. Gómez et al. [7] de-
rived the slash Gumbel (SG) distribution and used it in modeling wind speed and snow
accumulation data.

In recent years, many different statistical distributions have been introduced for
modeling purposes. As stated in Bahti and Ravi’s work [8], these distributions are usually
obtained via well-known and widely used generalization or extension methods based on a
transformation of the random variables, composition, compounding, and finite mixture
of the distributions—see also Lee et al.’s work [9] for an overview on this context. Note
that the most of distribution extension/generalization methods are based on the idea of
adding a new parameter to the existing/baseline distribution; therefore, the procedure
results in a much more flexible distribution than the existing one. In determining a baseline
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distribution, the attention is given to the distributions having a lower number of parameters
while providing flexibility for modeling purposes. In this context, the Moyal distribution,
introduced by Moyal in 1955, has drawn the attention of statisticians in recent years, and it
has been widely used in physics for many years. It was derived as an explicit expression of
Laondau’s distribution—see Equation 4.6 in Moyal [10]. As stated in the work of Walck [11],
a Moyal distribution can be defined as a universal form of energy loss by ionization for a
fast charged particle and the number of ion pairs produced in this process.

In the literature, there are papers that include extensions/generalizations of the
Moyal distribution. For example, Cordeiro [12] proposed a beta Moyal distribution and
Genc et al. [13] achieved the beta Moyal slash distribution. Lastly, Bahti and Ravi [8] in-
troduced a generalized form of the log-Moyal (GlogM) distribution. However, the Moyal
distribution and its extensions/generalizations have been studied by the limited number of
studies in the context of statistics. Therefore, in this study, an α-monotone extension of the
GlogM (α-GlogM) distribution is introduced to fill this gap in the corresponding literature.
The α-GlogM distribution is obtained as a product of independent GlogM(β, σ) and (1/α)-
power of a Uniform on (0, 1), i.e., U(0, 1), random variates. Hence, the resulting distribution
has a wider range for the skewness and kurtosis values than the GlogM distribution.

This study has the following significant contributions. The α-GlogM distribution is
introduced. The α-GlogM distribution reduces to α-monotone inverse generalized half-
normal (α-invGHN) and α-monotone inverse half-normal (α-invHN) distributions for
the specific parameter settings. To the best of the author’s knowledge, the α-invGHN
and α-invHN distributions have not been introduced yet. The α-GlogM distribution also
converges to inverse generalized half-normal (invGHN) and inverse half-normal (invHN)
distributions as limiting distributions. The α-GlogM distribution becomes the slash half-
normal (SHN) distribution proposed by Olmos et al. [14] and slash generalized half-normal
(SGHN) distribution introduced by Olmos et al. [15] under the particular transformation
of a random variable and parameters settings.

The rest of the paper is organized as follows. Section 2 presents the background infor-
mation. The α-GlogM distribution and its properties are presented in Section 3. Maximum
likelihood (ML) and method of moments (MoM) estimations of the parameters of the
α-GlogM distribution and Monto-Carlo simulation results for them are given in Section 4.
Section 5 includes applications with environmental data sets for illustrating the implemen-
tation of the α-GlogM distribution. The paper finishes with some concluding remarks.

2. Background Information

In this section, some brief background information is provided to follow the rest of
the paper easily. The following subsections present the GlogM distribution and some of its
properties, as well as concise information for the slash and α-monotone distributions. Note
that this study is constructed around these two subsections.

2.1. The GlogM Distribution

The GlogM distribution introduced by Bahti and Ravi [8] has the following probability
density function (pdf):

fX(x; β, σ) =
1√
2πβ

σ
1

2β x−
(

1+ 1
2β

)
exp

(
−1

2
σ

1
β x−

1
β

)
; x > 0, β > 0, σ > 0 (1)

and cumulative distribution function (cdf)

FX(x; β, σ) = Γ

[
0.5
(σ

x

) 1
β , 0.5

]
. (2)
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Here, β is the shape parameter, σ is the scale parameter, and Γ
[

0.5
(

σ
x
) 1

β , 0.5
]

represents

the upper-incomplete gamma function defined as

1
Γ(0.5)

∫ ∞

0.5( σ
x )

1
β

u0.5−1 exp(−u)du.

Some distributional properties and actuarial measures of the GlogM distribution were
derived by Bahti and Ravi [8]. Hereinafter, the random variable X, having the pdf given
in (1), will be represented as X ∼ GlogM(β, σ).

The GlogM distribution is reduced to the families of distributions given in the follow-
ing propositions.

Proposition 1. Let X ∼ GlogM(β, σ).

i. If β = 1/(2λ) and σ = 1/θ, the pdf of the random variable X reduces to the invGHN distribution

fX(x; β = 1/(2λ), σ = 1/θ) =

√
2
π

λ

θλ
x−(λ+1) exp

(
− 1

2

(
1

θx

)2λ
)

.

ii. If β = 1/2 and σ = 1/θ, the pdf of the random variable X reduces to the invHN distribution

fX(x; β = 1/2, σ = 1/θ) =

√
2
π

1
θ

x−2 exp
(
− 1

2

(
1

θx

)2
)

.

Proposition 2. Let Z = X−1, then it has the pdf

fZ(z; β, σ) =
1√
2πβ

σ
1

2β z
(

1
2β−1

)
exp

(
− 1

2 (σz)
1
β

)
; z > 0, β > 0, σ > 0.

Then:

i. If β = 1/(2λ) and σ = 1/θ, the pdf of the random variable Z reduces to the generalized
half-normal (GHN) distribution proposed by Cooray and Ananda [16];

ii. If β = 1/2 and σ = 1/θ, the pdf of the random variable Z reduces to the half-normal
(HN) distribution.

See Bahti and Ravi’s research [8] for further details.

2.2. The Slash and α-Monotone Distributions

The slash distribution has drawn attention from the practitioners, since Andrews et al. [17]
introduced the slash distribution as the distribution of Z

/
Y, where Z and Y are independent

random variables following the standard-normal and U(0, 1) distributions, respectively.
This distribution is also called the canonical slash distribution and has heavier tails than a
standard-normal distribution. Therefore, it plays an essential role in robustness studies—
see Rogers and Tukey [18] and Mosteller and Tukey [19].

Later on, various distributions are introduced based on the same philosophy of the
Andrews et al. [17]. They are also called slash distributions and are obtained by replacing
the nominator with some well-known distribution and the denominator with the

(
1
/

α
)
-

power of U(0, 1). Actually, Jones [20] called such distributions α-slash distributions.
In the literature, interesting studies on slash distributions are available considering

both theoretical and practical viewpoints. For example, see Gómez et al. [21], Genc [22],
Punathumparambath [23], Olmos et al. [15], Astorga et al. [24], Korkmaz [25], Gómez et al. [7]
and references given in these studies for the univariate slash distribution. Additionally, see,
for example, Arslan [26] and Arslan and Genc [27] in the context of multivariate slash distri-
butions.

Slash distributions have a simple concept; therefore, this leads to researchers introduc-
ing useful modified/generalized/extended slash distributions. These distributions differ
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from the usual slash distributions by replacing a denominator with an exponential, specific
gamma or beta distributions—see Reyes et al. [28], Iriarte et al. [29], Reyes et al. [30], and
Rojas et al. [31], respectively. See also Zörnig [32] for generalized slash distributions with
representation by hypergeometric functions.

Recently, Jones [20] conducted a study on univariate slash distributions, for both
continuous and discrete cases. In Appendix-A of this paper, Jones [20] also considered the
distribution of a form with multiplication signs rather than the division signs. Jones [20]
called it the α-monotone distribution. See Arslan [33] for an example in the context of
α-monotone inverse Weibull distributions.

The basic theory and conditions of the slash and α-monotone distributions are not
given here for the sake of brevity. Here, I refer to Jones’ work [20] and references therein
for detailed information about theoretical viewpoints.

3. The α-GlogM Distribution

In this section, the α-GlogM distribution is introduced by using the stochastic repre-
sentation of the α-monotone distribution. Some statistical properties of the α-GlogM are
also provided.

3.1. Density Function and Some Statistical Properties

Definition 1. Random variable T defined by the stochastic representation

T = X×Y1/α, α > 0 (3)

has the α-GLogM distribution, denoted as T ∼ α-GlogM(α, β, σ), where independent random
variables X and Y follow the GlogM(β, σ) and U(0, 1) distributions, respectively.

Proposition 3. Pdf of the random variable T having the α-GlogM distribution is

fT(t; α, β, σ) =
α2αβ

σα
√

π
Γ(αβ + 0.5)tα−1G

(
t−

1
β , αβ + 0.5, 0.5σ

1
β

)
(4)

where α and β are the shape parameters, σ is the scale parameter, and Γ(·) represents the gamma
function. Here,

G(t, a, b) =
ba

Γ(a)

∫ t

0
ua−1 exp(−bu)du

is the cdf of the Gamma distribution with shape parameter a and scale parameter b.

Proof. The proof is completed by using the stochastic representation in (3) and the Jacobian
transformation as follows:

T = XY
1
α

W = Y



⇒

X = TW−
1
α

Y = W

}
⇒ J =

∣∣∣∣∣∣

∂X
∂T

∂X
∂W

∂Y
∂T

∂Y
∂W

∣∣∣∣∣∣
=

∣∣∣∣∣
w−

1
α −t 1

q w−
1
α−1

0 1

∣∣∣∣∣ = w−
1
α

where J is the Jacobian transformation. Then, the joint pdf of T and W is

fT,W(t, w) = fX,Y

(
x(t, w), y(t, w)

)
|J|

=
σ

1
2β

β
√

2π
w−

1
α
(
tw−

1
α
)−
(

1+ 1
β

)
exp

(
−0.5σ

1
β

(
tw−

1
α

)− 1
β

)
.

The marginal pdf of the random variable T in (4) is obtained immediately by taking

integration with respect to the random variable W using the transformation t−
1
β w

1
αβ =

u.
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Proposition 4. The distribution of random variable T, defined in (3), is an α-monotone GlogM
distribution, since T has an α-monotone density iff

d
dt
(log fT) ≤

α− 1
t

, for all t > 0.

Proof. From Proposition 3,

fT(t; α, β, σ) =
∫ 1

0

σ
1

2β

β
√

2π
w−

1
α
(
tw−

1
α
)−
(

1+ 1
β

)
exp

(
−0.5σ

1
β

(
tw−

1
α

)− 1
β

)
dw.

By using the variable transformation tw−1/α = u, fT(t) is expressed as

fT(t; α, β, σ) =
∫ ∞

t
αtα−1 σ

1
2β

β
√

2π
u−αu−

(
1+ 1

β

)
exp

(
−0.5σ

1
β u−

1
β

)
du

= αtα−1
∫ ∞

t

1
uα

fX(u; β, σ)du.

It is seen that fT(t) satisfies

fT(t) = αtα−1
∫ ∞

t

1
xα

fX(x)dx.

Then,

f ′T(t) = α(α− 1)tα−2
∫ ∞

t

1
xα

fX(x)dx−
(

αtα−1
) 1

tα
fX(t)

= (α− 1)t−1 fT(t)− αt−1 fX(t)

α fX(t) = (α− 1) fT(t)− t f ′T(t).

From there

(α− 1) fT(t)− t f ′T(t) ≥ 0 since fX(t) ≥ 0

α− 1
t
≥ f ′T(t)

fT(t)
α− 1

t
≥ d

dt
log( fT(t))

d
dt

log( fT(t)) ≤
α− 1

t

The proof is completed; see Appendix-A in Jones [20] for further details about the
α-monotone density.

Proposition 5. If T|Y = y ∼ GlogM(β, σy
1
α ) and Y ∼ U(0, 1), then T ∼ α-GlogM(α, β, σ).

Proof.

fT(t; α, β, σ) =
∫ 1

0
fX(t; β, σy

1
α ) fY(y)dy

=
1

β
√

2π

∫ 1

0

(
σy

1
α

) 1
2β t−

(
1+ 1

2β

)
exp

[
−0.5

(
σy

1
α

) 1
β t−

1
β

]
dy

The proof is completed immediately after the following transformation, t−
1
β y

1
αβ =

u.
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Remark 1. From Proposition 5, it is clear that the α-GlogM(α, β, σ) distribution is a scale-mixture
between the GlogM(β, σy

1
α ) and U(0, 1) distributions.

Proposition 6. Let T ∼ α-GlogM(α, β, σ). Then,

i. Z = aT ∼ α-GlogM(α, β, aσ).
ii. The pdf of Z = T−1 is

fZ(z; α, β, σ) =
α2αβ

σα
√

π
Γ(αβ + 0.5)t−(α+1)G

(
t

1
β , αβ + 0.5, 0.5σ

1
β

)
, z > 0.

iii. The pdf of Z = ln T is

fZ(z; α, β, σ) =
α2αβ

σα
√

π
Γ(αβ + 0.5) exp(αz)G

(
exp

(
− z

β

)
, αβ + 0.5, 0.5σ

1
β

)
, z ∈ R.

Proof. The results follow the change-of-variable technique.

Remark 2. The first part of Proposition 6 shows that α-GlogM distributions belong to the scale
family. Therefore, if T ∼ α-GlogM(α, β, σ), then 1

σ T ∼ α-GlogM(α, β, 1). The random variable Z
with a pdf given in the second part of Proposition 6 follows the SGHN distribution proposed by
Olmos et al. [15] with a certain reparameterization. The result in the third part of the Proposition 6
can be used to study the regression model for positive random variables. See Iriarte [34] for an
example in the context of slashed generalized Rayleigh (SGR) distributions and references therein
for the regression model for the positive random variables.

Proposition 7. The cdf of the α-GlogM distribution is

FT(t; α, β, σ) =FX(t; β, σ) +
t
α

fT(t; α, β, σ)

=Γ

[
0.5
(σ

t

) 1
β , 0.5

]
+

2αβ

σα
√

π
Γ(αβ + 0.5)tαG

(
t−

1
β , αβ + 0.5, 0.5σ

1
β

)
.

Proof. The result follows from the definition of the α-monotone distribution—see Appendix-
A in Jones’ work [20].

Proposition 8. Hazard rate function (hrf) of the random variable T with the α-GlogM distribu-
tion is

hT(t; α, β, σ) =

α2αβ

σα
√

π
Γ(αβ + 0.5)tα−1G

(
t−

1
β , αβ + 0.5, 0.5σ

1
β

)

1− Γ
[

0.5
(

σ
t
) 1

β , 0.5
]
− 2αβ

σα
√

π
Γ(αβ + 0.5)tαG

(
t−

1
β , αβ + 0.5, 0.5σ

1
β

) .

Proof. The result follows from the definition of the hrf function.

In Figure 1, different density plots of the α-GlogM distribution are illustrated for
certain values of the distribution parameters. The α-GlogM distribution can be skewed
left or right based on the different parameter settings—see Figure 1a. Its pdf also has
a triangular or rectangular shape—see Figure 1b. It can be concluded that the shape
parameter α plays an important role in controlling the kurtosis of the distribution (see
Figure 1a) and changing the shape of the pdf of the distribution (see Figure 1b).

Note that the hrf of the α-GlogM distribution can be expressed by using the Propositions 3
and 7 in terms of the upper-incomplete gamma function and cdf of a gamma distribution.
However, analyzing the mathematical properties of the hrf of the α-GlogM distribution is
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intractable. Therefore, in Figure 1c, hrf of the α-GlogM distribution is plotted for the certain
values of the parameters to show the different shapes of it.

Figure 1c shows that for the particular values of the parameters, the hrf of the α-GlogM
distribution can form a variety of shapes such as monotonically decreasing, monotonically
increase–decrease and bathtub(monotonically decrease–increase–decrease) shapes.
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3.2. Moments

The moments of the random variable having the α-GlogM distribution were obtained
immediately via the stochastic representation given in (3). Following lemma is utilized to
acquire the moments of the random variable with the α-GlogM distribution.

Lemma 1. Let X ∼ GlogM(β, σ) and Y ∼ U(0, 1) be independent random variables; then, the
r-th moment of X and the

(
r
/

α
)
-th moment of the Y are

E[Xr] =
σr

2rβΓ(0.5)
Γ(0.5− rβ), rβ < 0.5 and E

[
Y

r
α

]
=

α

α + r
,

respectively.

Proposition 9. Let T ∼ α-GlogM(α, β, σ); then, the r-th moment of the α-GlogM distribution is
formulated by

E[Tr] =
σr
√

π2rβ
Γ(0.5− rβ)

α

α + r
, rβ < 0.5. (5)
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Proof. By using the stochastic representation in (3), we obtain

E[Tr] = E[Xr]E
[
Y

r
α

]

in which the expectations E[Xr] and E
[
Y

r
α

]
have been obtained in Lemma 1.

Corollary 1. The mean and variance of the random variable T having the α-GlogM(α, β, σ)
distribution are

E(T) = ασ√
π2β(α+1)

Γ(0.5− β); β < 0.5

and
V(T) = ασ2[

√
π(α+1)2Γ(0.5−2β)−α(α+2)Γ2(0.5−β)]

π4β(α+1)2(α+2)
; β < 0.25,

respectively.

Corollary 2. The skewness (
√

β1) and kurtosis (β2) coefficients of the α-GlogM(α, β, σ) distribu-
tion can be obtained by using (5) via the software MATHEMATICA. They are not given here for the
sake of brevity. However, the surface plots of the

√
β1 and β2 measures of the α-GlogM distribution

are illustrated in Figure 2.
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(a) Skewness (b) Kurtosis

Figure 2. The surface plots of the skewness and kurtosis measures of the α-GlogM distribution for
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3.3. Related Distributions

In this subsection, sub-models of the α-GlogM distribution, and also limiting distribu-
tions are provided.

3.3.1. Sub-Models

Let random variable T follow the α-GlogM(α, β, σ) having pdf given in (4).

i. If β = 1/(2λ) and σ = 1/θ, then T has α-invGHN density

fT(t; α, λ, θ) = αθα
√

2α/λ

π Γ
(

α+λ
2λ

)
tα−1G

[(
1
t

)2λ
, α+λ

2λ , 1
2θ2λ

]
; t > 0, α, λ, θ > 0.

ii. If β = 1/2 and σ = 1/θ, then T has α-invHN density

fT(t; α, θ) = αθα
√

2α

π Γ
(

α+1
2

)
tα−1G

[(
1
t

)2
, α+1

2 , 1
2θ2

]
; t > 0, α, θ > 0.

iii. If β = 1/(2λ) and σ = 1/θ, then a random variable Z = T−1 follow the SGHN
distribution, proposed by Olmos et al. [15], having pdf

gZ(z; α, λ, θ) = αθα
√

2α/λ

π Γ
(

α+λ
2λ

)
t−(α+1)G

[
z2λ, α+λ

2λ , 1
2θ2λ

]
; t > 0, α, λ, θ > 0.

iv. If β = 1/2 and σ = 1/θ, then a random variable Z = T−1 follow the SHN distribution,
proposed by Olmos et al. [14], having pdf

gZ(z; α, θ) = αθα

√
2α

π
Γ
(

α + 1
2

)
t−(α+1)G

[
z2,

α + 1
2

,
1

2θ2

]
; t > 0, α, θ > 0.

Figure 2. The surface plots of the skewness and kurtosis measures of the α-GlogM distribution for
0 < β < 0.1 and 0 < α < 50.

3.3. Related Distributions

In this subsection, submodels of the α-GlogM distribution and also limiting distribu-
tions are provided.

3.3.1. Submodels

Let random variable T follow the α-GlogM(α, β, σ), having the pdf given in (4).

i. If β = 1/(2λ) and σ = 1/θ, then T has α-invGHN density

fT(t; α, λ, θ) = αθα
√

2α/λ

π Γ
(

α+λ
2λ

)
tα−1G

[(
1
t

)2λ
, α+λ

2λ , 1
2θ2λ

]
; t > 0, α, λ, θ > 0.

ii. If β = 1/2 and σ = 1/θ, then T has α-invHN density

fT(t; α, θ) = αθα
√

2α

π Γ
(

α+1
2

)
tα−1G

[(
1
t

)2
, α+1

2 , 1
2θ2

]
; t > 0, α, θ > 0.
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iii. If β = 1/(2λ) and σ = 1/θ, then a random variable Z = T−1 follows the SGHN
distribution proposed by Olmos et al. [15] with pdf

gZ(z; α, λ, θ) = αθα
√

2α/λ

π Γ
(

α+λ
2λ

)
t−(α+1)G

[
z2λ, α+λ

2λ , 1
2θ2λ

]
; t > 0, α, λ, θ > 0.

iv. If β = 1/2 and σ = 1/θ, then a random variable Z = T−1 follows the SHN distribution
proposed by Olmos et al. [14] with pdf

gZ(z; α, θ) = αθα

√
2α

π
Γ
(

α + 1
2

)
t−(α+1)G

[
z2,

α + 1
2

,
1

2θ2

]
; t > 0, α, θ > 0.

3.3.2. Limiting Distributions

Let the α-GlogM distribution have the pdf given in (4).

i. If α→ ∞, then the α-GlogM(α, β, σ) converges to the GlogM(β, σ) distribution given
in (1), i.e.,

lim
α→∞

fT(t; α, β, σ) = fX(t; β, σ)

ii. If α → ∞, and β = 1/(2λ) and σ = 1/θ, then the α-GlogM(α, λ, θ) converges to the
invGHN distribution.

gT(t; λ, θ) =

√
2
π

λ

θλ
t−(λ+1) exp

[
−1

2

(
1

θx

)2λ
]

; t > 0, λ, θ > 0.

iii. If α→ ∞, and β = 1/2 and σ = 1/θ, then the α-GlogM(α, θ) converges to the invHN
distribution.

gT(t; θ) =

√
2
π

1
θ

t−2 exp

[
−1

2

(
1

θx

)2
]

; t > 0, θ > 0.

iv. Let Z = T−1. If α → ∞ and β = 1/(2λ) and σ = 1/θ, then the pdf of the random
variable Z converges to the GHN distribution proposed by Cooray and Ananda [16].

gZ(z; λ, θ) =

√
2
π

λ

θλ
zλ−1 exp

[
−1

2

( z
θ

)2λ
]

; z > 0, λ, θ > 0.

v. Let Z = T−1. If α → ∞, and β = 1/2 and σ = 1/θ, then the pdf of the random
variable Z converges to the HN distribution.

gZ(z; θ) =

√
2
π

1
θ

exp
[
−1

2

( z
θ

)2
]

; t > 0, θ > 0.

3.4. Data Generation

The following steps are used in generating random variates from the α-GlogM distribu-
tion in (4). Note that stochastic representation in (3) is used for the data generation process.

Step 1. Generate a p from U(0, 1) distribution and incorporate it into the equation

x = σ exp
[
−β ln

(
2Γ−1(p, 0.5)

)]

to generate a random number x from the GlogM(β, σ) distribution. Here, Γ−1(·, ·) is
inverse of the upper-incomplete gamma function.

Step 2. Generate a y from a U(0, 1) distribution and incorporate it into the equation

t = x× y1/α.
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to generate the random varaites from the α-GlogM distribution.

Remark 3. Notice that the equality given in Step 1 is obtained by using the relation GlogM
distribution with the Moyal distribution, i.e., if random variable Z follows a Moyal distribution,
then X = σ exp(βZ) has a GlogM distribution. This representation does not alter the data
generating process from the α-GlogM distribution. Alternatively, x = σ

[
2Γ−1(p, 0.5)

]−β can be
used to generate random variates from the GlogM(α, β) distribution. This alternative equality is
obtained by taking the inverse of the cdf of the GlogM distribution given in (2).

4. Estimation

In this section, the ML and MoM estimations of the parameters of the α-GlogM
distribution are provided. Then, a Monte-Carlo simulation experiment is carried out to
compare the efficiencies of the ML estimators of the parameters α, β and σ with their MoM
counterparts in terms of the bias, variance and mean squared error (MSE) criteria.

4.1. ML Estimation

Let t1, t2, . . . , tn be a random sample from the α-GlogM distribution. The ML estimates
of the parameters α, β and σ are the points at which the log-likelihood (ln L) function

ln L =− n
2

ln π + n ln α + nαβ ln 2− nα ln σ + n ln[Γ(αβ + 0.5)]

+ (α− 1)
n

∑
i=1

ln ti +
n

∑
i=1

ln
[

G
(

t
− 1

β

i , αβ + 0.5, 0.5σ
1
β

)] (6)

attains its maximum. After taking partial derivatives of the ln L with respect to the parame-
ters α, β and σ and then setting them equal to 0, likelihood equations

∂ ln L
∂α

=
n
α
+ nβ ln 2− n ln σ + nβψ(αβ + 0.5) +

n

∑
i=1

ln ti +
n

∑
i=1

d
dα G

(
t
− 1

β

i , αβ + 0.5, 0.5σ
1
β

)

G
(

t
− 1

β

i , αβ + 0.5, 0.5σ
1
β

) = 0,

∂ ln L
∂β

=nα ln 2 + nαψ(αβ + 0.5) +
n

∑
i=1

d
dβ G

(
t
− 1

β

i , αβ + 0.5, 0.5σ
1
β

)

G
(

t
− 1

β

i , αβ + 0.5, 0.5σ
1
β

) = 0,

and

∂ ln L
∂σ

= − nα
σ + ∑n

i=1

d
dσ G

(
t
− 1

β

i , αβ + 0.5, 0.5σ
1
β

)

G
(

t
− 1

β

i , αβ + 0.5, 0.5σ
1
β

) = 0

are obtained. Here, ψ(·) denotes the digamma function—i.e., ψ(x) = d
dx ln Γ(x). It is clear

that ML estimates of the unknown parameters of the α-GlogM distribution, i.e., the values
of the α̂ML, β̂ML and σ̂ML, can be obtained by using the numerical techniques such the as
Newton–Raphson method. The observed information matrix, which is a symmetric matrix,
i.e., J(Θ) where Θ = (α, β, σ)>, is

J(Θ) =




Jαα Jαβ Jασ

Jββ Jβσ

Jσσ


 where
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Jαα =
n
α2 − nβ2ψ1(αβ + 0.5)−

n

∑
i=1

d
dα




d
dα G

(
t−

1
β , αβ + 0.5, 0.5σ

1
β

)

G
(

t−
1
β , αβ + 0.5, 0.5σ

1
β

)


,

Jββ = −nα2ψ1(αβ + 0.5)−
n

∑
i=1

d
dβ




d
dβ G

(
t−

1
β , αβ + 0.5, 0.5σ

1
β

)

G
(

t−
1
β , αβ + 0.5, 0.5σ

1
β

)


,

Jσσ = −nα

σ2 −
n

∑
i=1

d
dσ




d
dσ G

(
t−

1
β , αβ + 0.5, 0.5σ

1
β

)

G
(

t−
1
β , αβ + 0.5, 0.5σ

1
β

)


,

Jαβ = −n ln 2− n[Ψ(αβ + 0.5) + αβψ1(αβ + 0.5)]−
n

∑
i=1

d
dβ




d
dα G

(
t−

1
β , αβ + 0.5, 0.5σ

1
β

)

G
(

t−
1
β , αβ + 0.5, 0.5σ

1
β

)


,

Jασ =
n
σ
−

n

∑
i=1

d
dσ




d
dα G

(
t−

1
β , αβ + 0.5, 0.5σ

1
β

)

G
(

t−
1
β , αβ + 0.5, 0.5σ

1
β

)


,

Jβσ = −
n

∑
i=1

d
dσ




d
dβ G

(
t−

1
β , αβ + 0.5, 0.5σ

1
β

)

G
(

t−
1
β , αβ + 0.5, 0.5σ

1
β

)




and ψ1(·) is the trigamma function—i.e., ψ1(x) = d2

dx2 ln Γ(x).

Remark 4. Asymptotic confidence intervals of the parameters of the α-GlogM distribution can
be obtained by using observed information matrix J(Θ) by assuming the ML estimators has
approximately a N3(Θ, I(Θ)−1) distribution where I(Θ) is expected information matrix. It should
be noted that expected information matrix I(Θ) for Θ cannot be obtained explicitly; therefore,
matrix J(Θ) evaluated at Θ̂ can be used in practice. See Iriarte et al. [34] in the context of observed
information matrix for parameters of the SGR distribution.

Remark 5. To find ML estimates of the parameters α, β, and σ, which the ln L function in (6)
attains its maximum, optimization tools “fminunc" or “fminsearch" whcih are available in
software MATLAB2015b can be used. However, finding the maximum value of the ln L function may
have some computational difficulties. To alleviate this problem, I recommend two approaches: (i)
using a population-based method such as the genetic algorithm, particle swarm, simulated annealing
that these optimization tools are available in MATLAB2015b; (ii) considering the reparameterization
λ = σ1/β

2 so that pdf of the α-GlogM distribution is rewritten as

fT(t; α, β, λ) =
α

λαβ
√

π
Γ(αβ + 0.5)tα−1G

(
t−

1
β , αβ + 0.5, λ

)
,

where α and β are shape parameters and λ is the scale parameter.

4.2. MoM Estimation

The MoM estimators of the parameters α, β, and σ can be obtained by equating the
first three theoretical moments to the corresponding sample moments as given below:

E[T] = ασ√
π2β(α + 1)

Γ(0.5− β) = T1; β < 0.5, (7)
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E[T2] =
ασ2

√
π22β(α + 2)

Γ(0.5− 2β) = T2; β < 0.25 (8)

and

E[T3] =
ασ3

√
π23β(α + 3)

Γ(0.5− 3β) = T3; β < 0.16̄. (9)

Here, T1 = (1/n)∑n
i=1 ti, T2 = (1/n)∑n

i=1 t2
i and T3 = (1/n)∑n

i=1 t3
i . From Equa-

tion (7), the MoM estimator of the σ, i.e., σ̂MoM, is

σ̂MoM =

√
π2β(α + 1)

αΓ(0.5− β)
T1. (10)

After incorparating the σ̂MoM into Equations (8) and (9), then equating them to zore,
the equations

√
π
(α + 1)2

α(α + 2)
Γ(0.5− 2β)

Γ2(0.5− β)
T2

1 − T2 =0,

√
π

(α + 1)3

α2(α + 3)
Γ(0.5− 3β)

Γ3(0.5− β)
T3

1 − T3 =0
(11)

are obtained.
The MoM estimates of α and β, i.e., values of the α̂MoM and β̂MoM, are obtained by

solving the system of equations in (11) simultaneously. Here, function “fsolve", available
in MATLAB2015b, can be used to solve them. See Olmos et al.’s work [15] for an example in
the context of MoM estimation of the parameters of an SGHN distribution.

4.3. Monte-Carlo Simulation

In this subsection, performances of the ML and MoM estimators of the α, β, and σ
parameters are compared via the Monte-Carlo simulation study. Simulation scenarios

Scenario α β σ E[T] V[T]
√

β1 β2

I 1.8 0.10 1.0 0.7506 0.1325 1.3991 16.7429
II 3.5 0.05 2.5 2.0856 0.2945 −0.1339 4.1345
III 1.2 0.01 1.2 0.6631 0.1148 −0.1489 1.8828
IV 0.9 0.10 5.0 2.7655 3.7250 1.1570 10.1785

are considered. Values of theE[T], V[T],
√

β1 and β2 are calculated by using the Proposition 9
via MATHEMATICA.

All the simulations were conducted for b100, 000/ncMonte-Carlo runs, where b·c de-
notes the integer value function via MATLAB2015b. Here, sample size, n, was considered as
20(small), 50(moderate), 100 and 200(large). For each generated sample, the ML estimates
of the α, β, and σ parameters were obtained by using the optimization tool “fminunc”,
i.e., unconstrained minimization function, and the corresponding MoM estimates were
computed via the “fsolve” function, both of which are available in the MATLAB2015b. Then,
simulated bias, variance, and MSE values for the ML and MoM estimators of the parame-
ters α, β, and σ were computed for each generated sample. The results of the Monte-Carlo
simulation study are reported in Table 1.

It can be seen from Table 1 that the simulated bias and variance values for each
parameter α, β, and σ, and therefore the MSE values of them are small for the large sample
sizes for all simulation scenarios. However, the ML method gives lower MSE values
than MoM.

Concerning the small sample size, in some cases, the MoM method produces lower
MSE values than the ML. It should also be noted that if the sample size increases, then the
MSE values for each parameter decrease, as expected.
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Table 1. The simulated bias, variance, and MSE values of the ML and MoM estimators.

Scenario-I
n ML MoM

Bias Variance MSE Bias Variance MSE

α̂ −0.13153 0.19941 0.21651 0.13275 0.31909 0.33671
20 β̂ 0.00139 0.00192 0.00192 0.03010 0.00077 0.00168

σ̂ 0.01034 0.01652 0.01663 −0.10730 0.02837 0.03988

α̂ −0.11841 0.16049 0.17443 0.12084 0.10649 0.12104
50 β̂ −0.00167 0.00080 0.00080 0.01888 0.00042 0.00078

σ̂ 0.00215 0.00738 0.00738 −0.08608 0.00940 0.01680

α̂ −0.03556 0.05736 0.05857 0.13539 0.04900 0.06729
100 β̂ −0.00017 0.00042 0.00042 0.01485 0.00034 0.00056

σ̂ −0.00157 0.00352 0.00352 −0.06626 0.00394 0.00833

α̂ −0.02077 0.02844 0.02882 0.11269 0.02589 0.03854
200 β̂ −0.00133 0.00020 0.00020 0.01107 0.00024 0.00036

σ̂ 0.00140 0.00167 0.00167 −0.04923 0.00192 0.00434

Scenario-II
n ML MoM

Bias Variance MSE Bias Variance MSE

α̂ −0.51300 1.55340 1.81657 −0.41089 1.26007 1.42368
20 β̂ −0.00017 0.00066 0.00066 0.00789 0.00059 0.00064

σ̂ 0.02281 0.03283 0.03321 −0.01732 0.03025 0.03042

α̂ −0.16020 0.50873 0.53414 −0.08283 0.47270 0.47932
50 β̂ −0.00129 0.00023 0.00023 0.00450 0.00036 0.00038

σ̂ 0.00035 0.01267 0.01267 −0.03229 0.01652 0.01756

α̂ −0.10093 0.24034 0.25029 −0.06002 0.29182 0.29513
100 β̂ −0.00134 0.00011 0.00011 0.00155 0.00017 0.00017

σ̂ 0.00443 0.00522 0.00524 −0.01462 0.00873 0.00893

α̂ −0.06286 0.09844 0.10219 −0.03714 0.11643 0.11758
200 β̂ −0.00109 0.00005 0.00005 0.00078 0.00007 0.00007

σ̂ 0.00295 0.00230 0.00230 −0.00865 0.00396 0.00403

Scenario-III
n ML MoM

Bias Variance MSE Bias Variance MSE

α̂ −0.13570 0.10631 0.12462 −0.26612 0.19742 0.26812
20 β̂ −0.03644 0.00072 0.00205 −0.02095 0.00099 0.00143

σ̂ 0.15882 0.01057 0.03579 0.12531 0.01390 0.02959

α̂ −0.09049 0.04164 0.04981 −0.09361 0.04758 0.05631
50 β̂ −0.02101 0.00027 0.00071 −0.01392 0.00070 0.00089

σ̂ 0.09206 0.00414 0.01262 0.07876 0.00807 0.01427

α̂ −0.04574 0.01675 0.01882 −0.05437 0.01966 0.02260
100 β̂ −0.01440 0.00009 0.00030 −0.01046 0.00051 0.00062

σ̂ 0.05926 0.00167 0.00518 0.05553 0.00516 0.00824

α̂ −0.03068 0.00843 0.00936 −0.04136 0.01091 0.01260
200 β̂ −0.01024 0.00002 0.00013 −0.00801 0.00046 0.00052

σ̂ 0.04120 0.00052 0.00222 0.04334 0.00323 0.00510

Scenario-IV
n ML MoM

Bias Variance MSE Bias Variance MSE

α̂ −0.11095 0.08495 0.09718 −0.01709 0.06358 0.06381
20 β̂ 0.02055 0.00438 0.00480 0.04348 0.00140 0.00329

σ̂ −0.00458 0.89955 0.89867 −0.48331 0.77694 1.00975

α̂ −0.02869 0.02844 0.02918 0.07019 0.02352 0.02838
50 β̂ −0.01916 0.00137 0.00173 0.01161 0.00041 0.00055

σ̂ 0.01344 0.42467 0.42354 −0.60497 0.43470 0.79936

α̂ −0.02454 0.01245 0.01302 0.05199 0.01208 0.01476
100 β̂ −0.01551 0.00065 0.00089 0.00791 0.00037 0.00043

σ̂ 0.02554 0.19268 0.19285 −0.44551 0.14778 0.34589

α̂ −0.00952 0.00617 0.00625 0.04917 0.00687 0.00928
200 β̂ −0.01128 0.00026 0.00038 0.00507 0.00028 0.00030

σ̂ 0.00976 0.07829 0.07823 −0.32986 0.07196 0.18063
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Covarage propability (CP) values based on the ML estimators are given in Table 2.
Here, inverse of the observed information matrix rather than inverse of the expected
information matrix is utilized, and preassumed values for CP are taken to be 95%, e.g.,
α̂− 1.96× J−1(Θ̂)11 ≤ α ≤ α̂ + 1.96× J−1(Θ̂)11 for α; see Remark 4.

Table 2. The simulated covarage probability values of the ML estimators.

n Scenario-I Scenario-II Scenario-III Scenario-IV

α̂ML 0.96 0.97 0.96 0.93
20 β̂ML 0.89 0.91 0.87 0.96

σ̂ML 0.90 0.93 0.90 0.87

α̂ML 0.95 0.95 0.95 0.94
50 β̂ML 0.94 0.92 0.88 0.95

σ̂ML 0.99 0.90 0.98 0.88

α̂ML 0.96 0.95 0.96 0.94
100 β̂ML 0.93 0.95 0.89 0.95

σ̂ML 0.99 0.93 0.99 0.91

α̂ML 0.94 0.96 0.94 0.94
200 β̂ML 0.95 0.95 0.90 0.97

σ̂ML 0.99 0.96 0.98 0.94

It is clear from Table 2 that the simulated CP values get closer to the preassumed value
of 95% when the sample size increases. Additionally, the CP results show that the α, β and
σ parameters are not under- or overestimated by corresponding ML estimators when the n
becomes larger.

5. Applications

As stated in the introduction, many authors have tried to find new statistical distributions
to model environmental events more accurately. For example, Bakouch et al. [5] proposed
to use BE2 distribution to model the rainfall data and Gómez et al. [7] introduced the SG
distribution to model the snow accumulation data. In this section, two environmental data
sets from Bakouch et al. [5] and Gómez et al. [7] are modeled by using the α-GlogM
distribution. The ML and MoM methodologies are used to obtain the estimates of the
α, β and σ parameters of the α-GlogM distribution. The ML and MoM estimates of α, β
and σ are obtained as in Sections 4.1 and 4.2. Modeling performances of the α-GlogM
distribution and its rivals are also compared. The comparisons are carried out using
well-known information criteria (IC), e.g., ln L, Akaike information criterion (AIC), and
corrected AIC (AICc). Additionally, goodness-of-fit statistics, e.g., Anderson–Darling (AD),
Kolmogorov–Smirnov (KS), coefficient of determination (R2), and root mean squared error
(RMSE) methods are used in the comparisons. The formulas for them are

AIC= −2 ln L + 2k
AICc= AIC + (2k(k + 1))/(n− k− 1)

RMSE=

[
1
n

n

∑
i=1

(
F(x(i); Θ̂)− i

n + 1

)2
]1/2

R2= 1−

n

∑
i=1

(
F(x(i); Θ̂)− i

n + 1

)2

n

∑
i=1

(
F(x(i); Θ̂)− F̄(x(i); Θ̂)

)2 , 0 < R2 < 1

KS= max
∣∣∣∣F(x(i); Θ̂)− i

n+1

∣∣∣∣

AD= −n−
n

∑
i=1

(
2i− 1

n

)[
ln
(

F(x(i); Θ̂)
)
+ ln

(
1− F(x(n+1−i); Θ̂)

)]

where F̄(x(i); Θ̂) = 1
n ∑n

i=1 F(x(i); Θ̂). Here, k, n, Θ̂ and x(·) denote number of parameters,
sample size, estimated parameter vector and ordered observations in ascending order,
respectively. Note that smaller values of the AIC, AICc, RMSE, AD and KS and a higher
value of ln L and R2 mean better modeling performance.
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Remark 6. The α-GlogM distribution has two shape parameters along with a scale parameter.
However, the BE2 and SG distributions only have one shape parameter with a scale parameter.
Therefore, the modeling performance of the α-GlogM distribution should be compared with the
more competitive model. For this purpose, the SGR distribution proposed by Iriarte et al. [34],
having two shape parameters and one scale parameter, is included in the comparisons to make the
study complete.

5.1. Application-I

In this subsection, total monthly rainfall data from Bakouch et al. [5] are considered to
show the modeling capability of the α-GlogM(α, β, σ) distribution. The data set contains
53 observations from Sao Carlos, Brazil, between the years 1960 to 2014 for April. The total
monthly rainfall data set is given in Table 3.

Table 3. The total monthly rainfall data (n = 53).

59.00 102.20 17.30 23.00 50.60 27.00 203.00 40.90 53.00 177.40 94.60
129.40 76.00 93.20 22.80 98.80 77.70 204.20 16.90 55.10 103.90 34.90
39.70 137.70 104.20 117.60 17.10 120.80 164.90 50.20 172.80 58.50 112.40
24.50 32.80 64.00 72.10 139.30 0.50 70.90 0.80 82.70 108.60 32.30
13.60 25.70 135.80 136.80 89.70 139.20 102.80 97.30 60.60

Note that Bakouch et al. [5] considered not only the BE2 distribution but also the
Weibull, Gamma, Log-normal, Gumbel, and generalized exponential distributions for
modeling the data given in Table 3. They showed that the BE2 distribution is preferable over
these distributions when the AIC, AICc, and KS criteria are taken into account. Therefore,
the Weibull, Gamma, Log-normal, Gumbel, and generalized exponential distributions are
not included to comparisons for sake of brevity.

The parameter estimates of the α-GlogM, BE2, and SGR distributions and correspond-
ing IC values and goodness-of-fit statistics for them are given in Table 4.

Table 4. Results for the total monthly rainfall data.

α-GlogM distribution

α̂ML β̂ML σ̂ML ln L AIC AICc AD KS RMSE R2

0.9390 0.0931 145.6986 −279.4682 564.9364 565.4262 0.2563 0.0638 0.0201 0.9950

α̂MoM β̂MoM σ̂MoM ln L AIC AICc AD KS RMSE R2

0.9407 0.0726 150.0158 — — — 0.3088 0.0622 0.0223 0.9938

BE2 distribution

θ̂ML λ̂ML ln L AIC AICc AD KS RMSE R2

0.9100 0.0227 −281.2113 566.4226 566.6626 0.5986 0.1002 0.0407 0.9796

SGR distribution

θ̂ML α̂ML q̂ML ln L AIC AICc AD KS RMSE R2

0.0001 −0.4161 22.4821 −279.9818 565.9637 566.4534 0.4296 0.0888 0.0334 0.9865

It can be seen from Table 4 that the AIC, RMSE, AD and KS values for the α-GlogM
distribution are smaller, and that ln L and R2 are greater than the corresponding values for
the BE2 and SGR distributions. These values show that the α-GlogM distribution exhibits a
better modeling performance than the BE2 and SGR distributions. Therefore, the α-GlogM
distribution can be considered as an alternative to the BE2 and SGR distributions. The
fitting performance of the α-GlogM distribution and surface plot of the ln L function are
also illustrated in Figure 3.
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(a) pdf (b) cdf (c) ln L (σ̂ML = 145.6986)

Figure 3. Fitting plots and surface plot of the ln L for the total monthly rain fall data.

5.2. Application-II

In this subsection, the data set involves 63 observations for the snow accumulation in
inches in the Raleigh-Durham airport at North Carolina is modeled by using the α-GlogM
distribution; see Gómez et al. [7] for further details. The snow accumulation data are given
in Table 5.

Table 5. The snow accumulation data (n = 63).

1.0 2.5 1.2 1.2 4.1 9.0 3.0 1.0 1.4 2.0 3.0 1.7 1.2 1.2 1.1 1.5 5.0
1.6 2.0 0.1 0.4 0.8 3.7 1.3 3.8 0.1 0.1 0.2 2.0 7.6 0.1 1.8 0.5 0.5
0.5 1.1 1.4 1.0 1.0 0.7 5.7 0.4 0.3 1.8 0.4 1.0 1.2 2.6 1.0 5.0 1.7
2.4 0.1 0.5 7.1 0.2 0.7 0.1 2.7 2.9 0.4 2.0 20.3

Note that Gómez et al. [7] considered not only the SG distribution but also the Gumbel
and slash distributions for modeling the data given in Table 5. They showed that the
SG distribution is preferable over the Gumbel and slash distributions when the AIC and
modified AD criteria are taken into account. Therefore, the Gumbel and slash distribution
are not included to comparsions for sake of the brevity.

The parameter estimates of the α-GlogM, SG and SGR distributions, and correspond-
ing IC values and goodness of fit statistics for them are given in Table 6.

Table 6. Results for the snow accumulation data.

α-GlogM distribution

α̂ML β̂ML σ̂ML ln L AIC AD KS RMSE R2

0.9706 0.3332 2.0709 −107.2595 220.5190 0.2999 0.0790 0.0247 0.9929

α̂MoM β̂MoM σ̂MoM ln L AIC AD KS RMSE R2

1.9497 0.1623 2.4131 — — 15.4246 0.3175 0.1754 0.7543

SG distribution

µ̂ML σ̂ML q̂ML ln L AIC AD KS RMSE R2

0.876 0.557 1.637 −116.496 238.992 1.0556 0.1105 0.043 0.9783

SGR distribution

θ̂ML α̂ML q̂ML ln L AIC AD KS RMSE R2

0.4423 −0.4779 1.5611 −107.3915 220.7830 0.3131 0.0891 0.0253 0.9925

As it can be seen from the Table 6 that the AIC, RMSE, AD and KS values, obtained by
using the ML estimates, of the α-GlogM distribution are smaller, and ln L and R2 are greater
than the corresponding values for the SG and SGR distributions. Hence, the α-GlogM
distribution performs better modeling performance than the SG and SGR distributions.
The fitting performance of the α-GlogM distribution and surface plot of the ln L function
are also illustrated in Figure 4.

Figure 3. Fitting plots and surface plot of the ln L for the total monthly rainfall data.

5.2. Application-II

In this subsection, the data set involves 63 observations for the snow accumulation in
inches for the Raleigh–Durham airport in North Carolina, modeled by using the α-GlogM
distribution—see Gómez et al. [7] for further details. The snow accumulation data are
given in Table 5.

Table 5. The snow accumulation data (n = 63).

1.0 2.5 1.2 1.2 4.1 9.0 3.0 1.0 1.4 2.0 3.0 1.7 1.2 1.2 1.1 1.5 5.0
1.6 2.0 0.1 0.4 0.8 3.7 1.3 3.8 0.1 0.1 0.2 2.0 7.6 0.1 1.8 0.5 0.5
0.5 1.1 1.4 1.0 1.0 0.7 5.7 0.4 0.3 1.8 0.4 1.0 1.2 2.6 1.0 5.0 1.7
2.4 0.1 0.5 7.1 0.2 0.7 0.1 2.7 2.9 0.4 2.0 20.3

Note that Gómez et al. [7] considered not only the SG distribution, but also the
Gumbel and slash distributions for modeling the data given in Table 5. They showed that
the SG distribution is preferable over the Gumbel and slash distributions when the AIC and
modified AD criteria are taken into account. Therefore, the Gumbel and slash distributions
are not included for comparisons for sake of brevity.

The parameter estimates of the α-GlogM, SG and SGR distributions and corresponding
IC values and goodness-of-fit statistics for them are given in Table 6.

Table 6. Results for the snow accumulation data.

α-GlogM distribution

α̂ML β̂ML σ̂ML ln L AIC AD KS RMSE R2

0.9706 0.3332 2.0709 −107.2595 220.5190 0.2999 0.0790 0.0247 0.9929

α̂MoM β̂MoM σ̂MoM ln L AIC AD KS RMSE R2

1.9497 0.1623 2.4131 — — 15.4246 0.3175 0.1754 0.7543

SG distribution

µ̂ML σ̂ML q̂ML ln L AIC AD KS RMSE R2

0.876 0.557 1.637 −116.496 238.992 1.0556 0.1105 0.043 0.9783

SGR distribution

θ̂ML α̂ML q̂ML ln L AIC AD KS RMSE R2

0.4423 −0.4779 1.5611 −107.3915 220.7830 0.3131 0.0891 0.0253 0.9925

It can be seen from Table 6 that the AIC, RMSE, AD and KS values, obtained by using
the ML estimates, of the α-GlogM distribution are smaller, and ln L and R2 are greater
than the corresponding values for the SG and SGR distributions. Hence, the α-GlogM
distribution exhibits a better modeling performance than the SG and SGR distributions.
The fitting performance of the α-GlogM distribution and surface plot of the ln L function
are also illustrated in Figure 4.
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(a) pdf (b) cdf (c) ln L (σ̂ML = 2.0709)

Figure 4. Fitting plots and surface plot of the ln L for the snow accumulation data.

6. Conclusions

In this study, the α-GlogM distribution is introduced, and some statistical properties
of it are derived. Then, the α-GlogM distribution is used to model the environmental data
sets from the different environmental events. Also, the modeling capability of the α-GlogM
and it’s rivals, e.g., BE2, SG, and SGR, are compared by using the well-known IC and
goodness of fit statistics. Results show that α-GlogM distribution is preferable over the
BE2, SG, and SGR distributions in modeling these data sets. It can be concluded that the
α-GlogM distribution can be considered as an alternative to the popular distributions in
modeling the environmental data.
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Figure 4. Fitting plots and surface plot of the ln L for the snow accumulation data.

6. Conclusions

In this study, the α-GlogM distribution is introduced, and some statistical properties
of it are derived. Then, the α-GlogM distribution is used to model the environmental
data sets from the different environmental events. Additionally, the modeling capability
of the α-GlogM and its rivals, e.g., the BE2, SG, and SGR, are compared by using the
well-known IC and goodness-of-fit statistics. Results show that the α-GlogM distribution is
preferable over the BE2, SG, and SGR distributions for modeling these data sets. It can be
concluded that the α-GlogM distribution can be considered as an alternative to the popular
distributions for modeling the environmental data.
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