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Abstract: The surface plasmon resonances of a monolayer graphene disk, excited by an impinging
plane wave, are studied by means of an analytical-numerical technique based on the Helmholtz de-
composition and the Galerkin method. An integral equation is obtained by imposing the impedance
boundary condition on the disk surface, assuming the graphene surface conductivity provided by
the Kubo formalism. The problem is equivalently formulated as a set of one-dimensional integral
equations for the harmonics of the surface current density. The Helmholtz decomposition of each
harmonic allows for scalar unknowns in the vector Hankel transform domain. A fast-converging
Fredholm second-kind matrix operator equation is achieved by selecting the eigenfunctions of the
most singular part of the integral operator, reconstructing the physical behavior of the unknowns, as
expansion functions in a Galerkin scheme. The surface plasmon resonance frequencies are simply
individuated by the peaks of the total scattering cross-section and the absorption cross-section, which
are expressed in closed form. It is shown that the surface plasmon resonance frequencies can be
tuned by operating on the chemical potential of the graphene and that, for orthogonal incidence, the
corresponding near field behavior resembles a cylindrical standing wave with one variation along
the disk azimuth.

Keywords: graphene disk; surface plasmon resonances; Helmholtz decomposition; Galerkin method;
Fredholm second-kind equation

1. Introduction

Graphene, a planar monolayer of carbon atoms which are arranged in a honeycomb
lattice, has been receiving great interest from the scientific community as of late, due to its
interesting mechanical, thermal, optical, and electronic properties [1–8], which make it a
promising material for the development of a huge number of devices including transparent
solar cells [9], amplifiers [10], plasmonic waveguides [11], ultra-high-speed transistors [12],
giant Faraday rotation [13], cloaks [14], transformation optics [15], modulators [16], phase-
shifters [17], switches [18], filters [19], novel antennas [20], and sensors [21], to name
a few. It is a zero band-gap semiconductor showing a conductivity depending on the
frequency, the temperature, the electron relaxation time, and the chemical potential, which
can be tuned by applying an external electrostatic/magnetostatic biasing field. An amazing
property of such a material is its ability to support the propagation of surface plasmon
polaritons in the terahertz (THz) and infrared spectrum, i.e., at frequencies which are about
two orders of magnitude lower with respect to the noble metals, with moderate losses,
strong wave localization, and tunability.

The electromagnetic analysis of a graphene object, which is a truly 2D structure, can be
approached by modelling it as an impedance surface with a suitable impedance level due
to the surface conductivity of the graphene, which, in turn, can be determined according
to the Kubo formalism [22]. Hence, by imposing the boundary condition, the radiation
condition and the power boundedness condition in each finite volume, a boundary value
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problem for the Maxwell equations is formulated. The problem can be solved by resorting
to an equivalent integral equation formulation for the surface current density [23,24].

The singular nature of the obtained integral equation is a key point because only the
uniqueness of the solution can be stated, while nothing can be generally claimed about
the existence. Anyway, even in case of existence of a solution, the classical methods of
solution, based on the discretization of the integral equation and the truncation of its
discretized counterpart, lead to approximate solutions which can or cannot converge to the
exact solution of the problem as the truncation order increases. A collection of methods
devised to overcome this problem, classified as Methods of Analytical Regularization
(MAR), are aimed at individuating a strategy to recast a singular integral equation to a
Fredholm equation of the second kind [25]. It can be done in different ways, all based on
a fundamental principle: individuate a part of the integral operator containing the most
singular part of the operator itself and analytically invert it. According to the Fredholm
theory, the obtained integral equation can then be solved by resorting to a discretization
scheme preserving the Fredholm second-kind nature of the integral equation. Hence,
from the uniqueness originates the existence and the approximate solution obtained by
truncating the matrix equation converges to the exact solution of the problem as the
truncation order increases.

In some problems, the analytical regularization and the discretization of the integral
equation are performed simultaneously. Indeed, by selecting the eigenfunctions of a
suitable singular part of the integral operator, containing the most singular part of the
operator itself, as expansion functions and adopting the Galerkin method, the obtained
matrix operator turns out to be of the Fredholm second kind. This method is appropriately
called the Method of Analytical Preconditioning (MAP) since the Galerkin-projection acts as
a perfect preconditioner for the integral equation at hand [25]. More generally, the Fredholm
theory can be applied if the obtained discretized operator can be written as the sum of
an invertible operator with a continuous two-side inverse and a completely continuous
operator [26]. The effectiveness of such a method is proven by the vast literature produced
in the past decades and even more recently in the field of the propagation, radiation, and
scattering problems [27–47].

In the analysis of the plane-wave scattering from perfectly electrically conducting,
resistive and dielectric disks [48–52], the integral equation formulations for the surface
current density/effective current densities are conveniently reduced to infinite sets of
independent one-dimensional singular integral equations by expanding the fields in Fourier
series. The formulation in the vector Hankel transform domain proves to be particularly
suitable because the spectral domain counterparts of the surface curl-free and surface
divergence-free contributions of the general harmonic of the unknowns, provided by
the Helmholtz decomposition, are scalar functions. According to MAP, such functions,
assumed as new unknowns, can be expanded in series of orthonormal eigenfunctions of
the most singular part of the involved integral operator, reconstructing the behavior of the
general harmonic of the currents at the disk rim and around the center of the disk. Hence,
the application of the Galerkin scheme immediately results in the diagonalization (identity
matrix operator) of the most singular part of the integral operator and the compactness
in l2 of the remaining part of the discretized operator, thus leading to a Fredholm second-
kind matrix operator equation, assuming that the free-term has a bounded l2-norm. The
convergence of the approximate solution, obtained by means of the truncation of the
matrix equation, to the exact solution of the problem is even fast because the selected
expansion functions reconstruct the expected physical behavior of the currents. Moreover,
the elements of the scattering matrix are quickly and accurately evaluated thanks to
analytical procedures specifically developed.

In this paper, the analysis of the plane-wave scattering from a graphene disk by means
of the effective method detailed above is aimed at characterizing the surface plasmon
resonances (SPRs) formed as Fabry–Perot-like standing waves due to the reflection of
the surface plasmon polaritons at the disk rim. The resonance frequencies are simply
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individuated by the peaks of the total scattering cross-section (TSCS) and the absorption
cross-section (ACS), which can be expressed in closed form, i.e., immediately evaluated
once the surface current density is known. It is shown that for a graphene scatterer, the
intensity of the peaks changes by changing the electron relaxation time, due to the variation
of the dissipation losses, while, more importantly, the resonance frequencies can be tuned
by varying the chemical potential of the graphene. The method is fast and convergent
and can be used as a benchmark for general-purpose commercial software. To the best of
the author’s knowledge, the only alternative to the proposed approach is the guaranteed-
convergence method in [23]. It is based on MAR and the Nystrom-type discretization
scheme and has been successfully applied to analyze the response of a graphene disk to a
dipole-field excitation, whereas no results have been provided regarding the plane-wave
scattering from a graphene disk.

This paper is organized as follows. Section 2 presents a brief description of the
proposed method. Section 3 is devoted to the numerical results. In Section 4, the conclusions
are summarized.

2. Formulation and Solution of the Problem

In Figure 1, a graphene disk of radius a in free-space (with dielectric permittivity
ε0 and magnetic permeability µ0), a Cartesian coordinate system (x, y, z) and a cylindri-
cal coordinate system (ρ, φ, z), with the origin at the center of the disk and the z axis
orthogonal to it, are sketched. The symbols λ, f , ω = 2π f , k0 = 2π/λ = ω

√
ε0µ0

and Z0 =
√

µ0/ε0 denote, respectively, the free-space wavelength, the frequency, the
angular frequency, the free-space wavenumber and the intrinsic impedance of free-space.
An impinging plane-wave of electric and magnetic fields given by Einc (r) = E0e− jk·r

and Hinc (r) = H0e− jk·r = k̂× E0e− jk·r/Z0, respectively, where r = (ρ, φ, z), k =
−k0

(
sin θ0 cos(φ0 − φ)ρ̂ + sin θ0 sin(φ0 − φ)φ̂ + cos θ0ẑ

)
and k̂ = k/k0, excites a surface

current density on the disk surface, J(ρ, φ), generating a scattered field, (Esc(r), Hsc(r)).
Let us denote the total field, given by the sum of the incident field and the scattered field,
by (E(r), H(r)).
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Figure 1. Geometry of the problem.

Thinking of the graphene disk as an impedance surface, the electromagnetic analysis
can be approached by properly defining the corresponding impedance level, due to the
graphene surface conductivity. Supposing to consider a disk with a radius larger than
50 nm, the edge effects on the graphene surface conductivity, which appear when the
dimensions of the structure are smaller than 100 nm, can be neglected, i.e., the electrical
conductivity model developed for an infinite graphene sheet can be used [53]. Moreover,
supposing not to apply a magnetic bias field, the graphene can be assumed to be isotropic.
Hence, according to the Kubo formalism [22], the surface conductivity of the graphene, σs,
can be expressed as follows:

σs = σintra + σinter, (1a)
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σintra = −j
e2kBT

π}2(ω− j/trelax)

(
µc

kBT
+ 2 ln

(
e−

µc
kBT + 1

))
, (1b)

σinter = − j
e2(ω− j/trelax)

π}2

+∞∫
0

fd(−ε)− fd(ε)

(ω− j/trelax)
2 − 4(ε/})2 dε, (1c)

fd(ε) = 1/
(

e
ε−µc
kBT + 1

)
, (1d)

where σintra is due to the intraband contributions while σinter is related to the interband
transitions, e is the electron charge, kB is the Boltzmann constant, T is the temperature,
} is the reduced Planck constant, trelax is the relaxation time of an electron, and µc is the
chemical potential.

By imposing the impedance boundary condition on the disk surface [54,55], i.e.,

ẑ×
(
E
(
ρ, φ, 0+

)
+ E

(
ρ, φ, 0−

))
× ẑ = 2RJ(ρ, φ) (2)

for ρ ≤ a and 0 ≤ φ < 2π, where R = 1/σs is the (complex) surface resistivity of the
graphene, a boundary value problem for the Maxwell equations is obtained, which is
uniquely solvable providing that the power boundedness condition and the Silver-Muller
radiation condition are satisfied [25,56].

According to the second Green formula, the scattered electric field can be written
in the form of a convolution integral involving the surface current density, the Green’s
function of the problem, and their normal to the disk derivatives. A suitable choice of the
Green’s function allows to automatically satisfy the radiation condition, while a proper
definition of the behavior of the surface current density at the disk rim ensures the finite
energy in any bounded domain including the edge. A surface integral equation for the
surface current density can be obtained by substituting the obtained integral expression of
the scattered electric field in Equation (2).

By expanding the fields in Fourier series, the revolution symmetry of the problem
allows to recast the obtained integral equation to an infinite set of independent one-
dimensional singular integral equations in the Hankel transform domain [50]. For the n-th
harmonic, the integral equation can be written as follows:

+∞∫
0

H(n)(wρ)

~
¯
G(w)

~
J
(n)

(w)wdw = −Einc(n)(ρ, 0) (3)

for ρ ≤ a, where

~
J
(n)

(w) =

(
J̃C(w)

−j J̃D(w)

)
=

+∞∫
0

H(n)(wρ)J(n)(ρ)ρdρ (4)

is the vector Hankel transform of order n (VHTn) of the n-th harmonic of the surface current
density [57],

J(n)(ρ) =

(
J(n)ρ (ρ)

−jJ(n)φ (ρ)

)
, (5)

the kernel of the VHTn is denoted by

H(n)(wρ) =

(
J′n(wρ) nJn(wρ)/(wρ)

nJn(wρ)/(wρ) J′n(wρ)

)
, (6)
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where Jn(·) and J′n(·) are the Bessel function of the first kind and order n and its first
derivative with respect to the argument, respectively [58],

~
¯
G(w) =

~
G(w)− RI, (7)

where
~
G(w) =

1
2ωε0

 −√k2
0 − w2 0

0 −k2
0/
√

k2
0 − w2

 (8)

with
√

k2
0 − w2 = −j

√
−k2

0 + w2 is the well-known spectral domain Green’s function of
the problem at hand, I is the identity matrix, and

Einc(n)(ρ, 0) =

(
Einc(n)

ρ (ρ, 0)
−jEinc(n)

φ (ρ, 0)

)
(9)

is the n-th harmonic of the incident electric field in the disk plane.
It is simple to demonstrate that the following functions:

VHT−1
n

[(
J̃(n)C (w)

0

)]
=

(
d

dρ
n
ρ

)
Φ(n)

C (ρ), (10a)

VHT−1
n

[(
0

−j J̃(n)D (w)

)]
= −j

( n
ρ
d

dρ

)
Φ(n)

D (ρ), (10b)

where the symbol VHT−1
n denotes the inverse vector Hankel transform of order n, are

the surface curl-free contribution and the surface divergence-free contribution of the n-th
harmonic of the surface current density, respectively, Φ(n)

r,T (ρ) for T = C, D being suitable
potential functions [59]. Hence, in order to deal with scalar unknowns in the spectral
domain, such contributions are assumed as new unknowns.

According to MAP, the obtained integral equations are numerically solved by means
of the Galerkin method. The key point is the proper selection of the expansion functions.
Due to the behavior of the field at the disk rim [60] and the properties of the Fourier series
expansion, the following behavior of the components of the n-th harmonic of the surface
current density can be readily stated:

J(n)t (ρ) =

{
ρ||n|−1|(a− ρ)pt J(n)t (ρ) ρ < a
0 ρ > a

, (11)

for t ∈ {ρ, φ}, where pρ = 1/2, pφ = 0, and J(n)t (ρ) are well behaved functions because
the sources are off the scatterer surface. By means of the procedure detailed in [48–52],
it is possible to demonstrate that such a behavior can be reconstructed by expanding
the functions J̃(n)T (w) in the following complete and non-redundant Neumann series of
weighted Bessel functions [61], orthonormal on the interval (0,+∞) with the weight
function w2pT−1 (according to the Weber-Schafheitlin discontinuous integral [62]):

J̃(n)T (w) =
+∞

∑
h=−1+δn,0

γ
(n)
T,h

√
2(|n|+ 2h + pT + 1)

J|n|+2h+pT+1(aw)

wpT
, (12a)

γ
(n)
D,−1 = α(n)γ

(n)
C,−1, (12b)
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α(n) =
jsgn(n)|n|!

Γ(|n|+ 3/2)

√
a(|n|+ 1/2)

2|n| , (12c)

where δn,m is the Kronecker delta, γ
(n)
T,h denotes the general expansion coefficient, and, for

a graphene disk, pC = 3/2 and pD = 1. Hence, the selected sets of expansion functions,
if used in a Galerkin scheme, diagonalize the most singular part of the integral operator

(leading to the identity matrix operator), which is obtained by replacing

~
¯
G(w) in (3) with

its asymptotic behavior, i.e.,

~
¯
G(w)

w→+∞∼
~
¯
G

∞

(w) =

(
j w
2ωε0

0
0 −R

)
. (13)

Moreover, it is possible to show that the discretized counterpart of the operator

obtained by subtracting

~
¯
G

∞

(w) from

~
¯
G(w) is compact in l2 [50]. Hence, the resulting

matrix equation is of the Fredholm second-kind in l2 because the free-term has a bounded
l2-norm [25].

3. Numerical Results and Discussion

In this section, for the sake of brevity, the SPRs excited by an orthogonally to the
disk impinging plane wave (θ0 = 0◦) are analyzed. In such a case, only the harmonics for
n = ±1 contribute to the representation of the fields. Hence, the attention is focused on
SPRs with one variation of the fields along the disk azimuth. Moreover, the electric field is
assumed directed along the y axis, i.e., E0 = E0ŷ.

As detailed above, in order to characterize SPRs, parameters such as TSCS and ACS
are very useful and handy tools. Indeed, the resonance frequencies can be individuated by
the position of the peaks of such parameters for varying values of the frequency. Moreover,
as shown in the following, they can be expressed in closed form.

Using the stationary phase method, the far scattered electric field can be expressed in
closed form as [56]

Esc
s (r, θ, φ)

r→+∞∼ e− j k0r

r
Fs(θ, φ) (14)

with s = θ, φ, where

Fθ(θ, φ) = − ωµ0

2
cos θ

+∞

∑
n=−∞

ej n(φ + π
2 ) J̃(n)C (k0 sin θ), (15a)

Fφ (θ, φ) = − ωµ0

2

+∞

∑
n=− ∞

ej n(φ + π
2 ) J̃(n)D (k0 sin θ). (15b)

TSCS and ACS are defined as follows:

σTSCS =
1

|E0|
2

π∫
0

2π∫
0

|F(θ, φ)|2 sin θdφdθ, (16a)

σACS =
Pabs

|E0|
2/(2Z0)

=
2πZ0< {R}
|E0|

2

+∞

∑
n=−∞

a∫
0

∣∣∣J(n)(ρ)∣∣∣2ρd ρ, (16b)

where Pabs is the power absorbed by the graphene disk and < {·} denotes the real part of a
complex number.
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According to the Parseval’s formula [63],

a∫
0

∣∣∣J(n)(ρ)∣∣∣2ρd ρ =

+∞∫
0

∣∣∣ J̃(n)C (w)
∣∣∣2wdw +

+∞∫
0

∣∣∣ J̃(n)D (w)
∣∣∣2wdw, (17)

which can be expressed in closed form by substituting (12a) in (17) and using the Weber-
Schafheitlin discontinuous integral. Hence, ACS is expressed in closed form. Moreover,
since TSCS and ACS are related to each other by means of the forward scattering theo-
rem [64], i.e.,

σTSCS + σACS = − 4π

k0|E0|
2={E

∗
0 · F(π − θ0, π + φ0)} (18)

where = {·} denotes the imaginary part of a complex number, even TSCS admits a closed
form expression.

In order to establish a convergence criterion for the truncated version of the obtained
Fredholm second-kind matrix operator equation, the following normalized truncation error
is introduced:

errN(M) =

√√√√ N−1

∑
n=−N+1

‖x(n)M+1 − x(n)M ‖
2
/

N−1

∑
n=−N+1

‖x(n)M ‖
2

(19)

where, in our case, N = 2, ‖ · ‖ is the usual Euclidean norm and x(n)M is a vector related to the

first M expansion coefficients of J̃
(n)
T (w) [50]. Since lim

M→+∞
errN(M) = 0, in the examples

detailed in the following M will be chosen in order to guarantee that errN(M) < 10−2

definitely. As stated above, the proposed method is fast convergent. Indeed, for the cases
examined in this paper, at most 8 expansion functions for each unknown are needed to
reconstruct the solution. The proposed method is very efficient even in terms of compu-
tation time as at most 2s are needed to reconstruct the solution by means of an in-house
C++ software code running on a laptop equipped with an Intel Core i7-10510U 1.8 GHz,
16 GB RAM. For the sake of completeness, it is worth mentioning that the implemented
software code has been checked in [50] by means of comparisons with the general-purpose
commercial software CST Microwave Studio (CST-MWS) showing a very good agreement.
Moreover, the comparisons provided in [50] demonstrate the effectiveness of the proposed
method, which drastically outperforms CST-MWS in terms of both computation time and
storage requirement in all the examined cases.

Figure 2 shows the normalized ACS and TSCS of the graphene disk with the ra-
dius a = 50 µm and the electron relaxation time trelax = 1 ps, at the room temperature
T = 300 K, for different values of the chemical potential µc = 0.25 eV, 0.5 eV, 0.75 eV,
1 eV and for varying values of the frequency. Many peaks can be observed in both the
figures corresponding to the SPRs. In Figure 2a, the resonance frequencies discussed
throughout this section are marked. Moreover, Figure 2b clearly shows that the resonance
frequencies up-shift as the chemical potential increases (see, for example, the peaks circled
in the figure).

Figure 3 shows the normalized ACS and TSCS of the graphene disk with a = 50 µm,
and µc = 1 eV, at the room temperature T = 300 K, for different values of the electron
relaxation time trelax = 0.5 ps, 1 ps,1.5 ps and for varying values of the frequency. As can
be observed, the resonance frequencies are independent of the electron relaxation time (see,
for example, the peaks circled in Figure 3). However, the peaks intensity changes from case
to case due to the different dissipation losses.
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(a) 

 

(b) 

Figure 2. Normalized ACS and TSCS of the graphene disk with a = 50 µm, T = 300 K, trelax = 1 ps, µc = 0.25 eV,
0.5 eV, 0.75 eV, 1 eV , for varying values of the frequency (f ) when a plane wave orthogonally impinges onto the disk.
(a) Normalized ACS; (b) Normalized TSCS.

It is interesting to observe that, according to [55,65,66], the obtained resonance fre-
quencies can be estimated as the solution of the following approximate equation:

J′1

k0a<


√

1−
(

2
σsZ0

)2

 ≈ 0, (20)

with an error which decreases as the frequency increases (see Figure 3).
In Figure 4, the total electric field of the graphene disk with a = 50 µm, trelax = 1 ps,

T = 300 K, µc = 1 eV is plotted in the near-field region at the resonance frequency
f = 3.304433 THz. As can be clearly seen, the SPR is formed as a Fabry–Pérot-like standing
wave due to the reflection of the surface plasmon polariton at the disk rim. Moreover,
a bright behavior due to the divergence of the electric field at the edge can be observed.
Analogously, in Figures 5 and 6, for the same disk, the near total electric field is plotted
at the resonance frequencies f = 4.637150 THz and f = 5.662107 THz, respectively. Now,
two and three oscillations along the radial direction can be observed for the excited SPRs,
respectively.
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Figure 3. Normalized ACS and TSCS, when a plane wave orthogonally impinges onto the disk, and solutions of Equation (20)
of the graphene disk with a = 50 µm, T = 300 K, trelax = 0.5 ps, 1 ps,1.5 ps, µc = 1 eV, for varying values of the frequency
(f ). (a) Normalized ACS; (b) Normalized TSCS.
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Figure 4. Near E-field behavior in the Cartesian coordinate planes of the graphene disk with a = 50 µm, T = 300 K,
trelax = 1 ps, µc = 1 eV, at the resonance frequency f = 3.304433 THz, when a plane wave orthogonally impinges onto the
disk with E0 = E0ŷ. (a) Near E-field in the xz plane; (b) Near E-field in the yz plane; (c) Near E-field in the xy plane.
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Figure 5. Near E-field behavior in the Cartesian coordinate planes of the graphene disk with a = 50 µm, T = 300 K,
trelax = 1 ps, µc = 1 eV at the resonance frequency f = 4.637150 THz, when a plane wave orthogonally impinges onto the
disk with E0 = E0ŷ. (a) Near E-field in the xz plane; (b) Near E-field in the yz plane; (c) Near E-field in the xy plane.
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Figure 6. Near E-field behavior in the Cartesian coordinate planes of the graphene disk with 50μma  , 300KT  , 

1psrelaxt  , 1eVc   at the resonance frequency 5.662107THzf  , when a plane wave orthogonally impinges onto the 
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Figure 6. Near E-field behavior in the Cartesian coordinate planes of the graphene disk with a = 50 µm, T = 300 K,
trelax = 1 ps, µc = 1 eV at the resonance frequency f = 5.662107 THz, when a plane wave orthogonally impinges onto the
disk with E0 = E0ŷ. (a) Near E-field in the xz plane; (b) Near E-field in the yz plane; (c) Near E-field in the xy plane.

To conclude, in order to show that a change of the chemical potential simply results in
a shift of the resonance frequencies, without a significant variation of the field behavior,
in Figure 7, the near total electric field is shown for a = 50 µm, trelax = 1 ps, T = 300 K,
and for different values of the chemical potential, µc = 0.25 eV, 0.5 eV, 0.75 eV, 1 eV, at
the resonance frequencies f = 2.536462 THz, 3.478723 THz, 4.135205 THz, 4.637150 THz,
respectively, corresponding to the standing waves with two oscillations along the radial
direction. It is clear as the plotted fields are almost indistinguishable.
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Figure 7. Near E-field behavior in the xy plane of the graphene disk with a = 50 µm, T = 300 K, trelax = 1 ps, for different
values of the chemical potential at the resonance frequencies corresponding to the standing waves with two oscillations
along the radial direction, when a plane wave orthogonally impinges onto the disk with E0 = E0ŷ. (a) Near E-field for
µc = 0.25 eV and f = 2.536462 THz; (b) Near E-field for µc = 0.5 eV and f = 3.478723 THz; (c) Near E-field for µc = 0.75 eV
and f = 4.135205 THz; (d) Near E-field for µc = 1 eV and f = 4.637150 THz.

4. Conclusions

In this paper, the SPRs of a graphene disk were studied by means of a guaranteed-
convergence method, based on the Helmholtz decomposition and MAP. The proposed
method has revealed to be very efficient in terms of both computation time and storage
requirement, confirming the very good results previously obtained in analyzing the elec-
tromagnetic scattering from PEC, resistive and dielectric disks. The SPRs were excited by
an impinging plane wave and the resonance frequencies have been searched for the peaks
of TSCS and ACS, which were simply evaluated by means of closed form expressions. The
obtained numerical results confirm that the resonance frequencies shift-up by increasing
the chemical potential of the graphene and show that, for orthogonal incidence, the field
behavior resembles a cylindrical standing wave with one variation along the disk azimuth.

The proposed method can be readily generalized to analyze arrays of graphene disks
in homogeneous and layered media. Further generalizations of the method for the analysis
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of composite graphene-dielectric disks, graphene annular rings, finite-length graphene
nano-tubes and cylindrical arcs are being worked on.
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