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Abstract: The analytical and numerical solutions of the (2+1) dimensional, Fisher-Kolmogorov-
Petrovskii-Piskunov ((2+1) D-Fisher-KPP) model are investigated by employing the modified di-
rect algebraic (MDA), modified Kudryashov (MKud.), and trigonometric-quantic B-spline (TQBS)
schemes. This model, which arises in population genetics and nematic liquid crystals, describes the
reaction–diffusion system by traveling waves in population genetics and the propagation of domain
walls, pattern formation in bi-stable systems, and nematic liquid crystals. Many novel analytical
solutions are constructed. These solutions are used to evaluate the requested numerical technique’s
conditions. The numerical solutions of the considered model are studied, and the absolute value
of error between analytical and numerical is calculated to demonstrate the matching between both
solutions. Some figures are represented to explain the obtained analytical solutions and the match
between analytical and numerical results. The used schemes’ performance shows their effectiveness
and power and their ability to handle many nonlinear evolution equations.

Keywords: (2+1) D-Fisher-KPP model; computational and approximate solutions

1. Introduction

In the last century, and especially in the biological system, diffusion has been employed
as one of the most famous models for spatial spread. It has been used for several services,
such as invasion and pattern formation, ecology, motile cell populations, wound healing,
the capillary growth network, the spatial movement of cell populations, and so on [1–5].
However, for studying closely packed cells such as epithelium [6], the linear diffusion
model is not considered as an excellent idea where it contains a movement cell population;
that is why the reaction–diffusion equation is a perfect bi-mathematical model [7]. Thus,
the definition of the diffusion term in different cell populations is the ability of various cell
populations to mix entirely. However, the fact shows in the different side where the cell
will stop moving when it suddenly comes across another section that is well-known by
contact inhibition of migration [8]. Thus, the wave propagation is considered as the ideal
way of conveying biological information through the cells [9]. The simple model of the
diffusion equation in one dimensional is given by [10–13]

Ct = Υ Cx x, (1)

where C = C(x, t), Υ respectively describe the nutrient or cell concentration and diffusion
coefficient, while the exchanging information’s time is evaluated by Q

(
L2

Υ

)
, where L is

the length of the domain.

Mathematics 2021, 9, 1440. https://doi.org/10.3390/math9121440 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8466-168X
https://doi.org/10.3390/math9121440
https://doi.org/10.3390/math9121440
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9121440
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9121440?type=check_update&version=1


Mathematics 2021, 9, 1440 2 of 13

Fisher and Kolmogorov give the classical model for propagating an advantageous
gene in a one-dimensional habitat [14]. This model is provided by [15,16]

Ct = Υ Cx x + ζ C(1− C), (2)

where ζ demonstrates the growth rate of the chemical reaction. This model is known
too with the extended Fisher–Kolmogorov equation [17] and the Fisher–KPP equation [18].
Equation (2) takes into account diffusion processes in accordance with Fick’s law (term Υ Cx x),
population reproduction at a rate ζ linear term ζ C and density-dependent losses (term −
ζ C2). This model has also been used in several fields, such as auto-catalytic chemical
reactions, flame propagation, neurophysiology, logistic growth models, and the nuclear
reactor theory. Luther was the first researcher who found the wave speed of this model
[19]. Many researchers have investigated the traveling wave solutions of this model, and
they have also improved it into (2+1)-dimensional form, that is given by [20–23]

Ft + µ
(
Fx x + 2Fx y +Fy y

)
−
(
Fx +Fy

)
+=(F ) = 0, (3)

where µ is a positive diffusion coefficient, while F = F (x, y, t) is a function of the chem-
ical concentration. Handling Equation (3) through the following wave transformation
F (x, y, t) = K(S), S = x + y + r t, where r is an arbitrary constant to be evaluated later,
converts Equation (3) into the following nonlinear ordinary differential equation

(r− 2)K′ +K3 + 4 µK′′ −K = 0, (4)

where
(
=(F ) = F 3 −F

)
[17]. In this context, investigating this model is considered a

primary icon in various fields [24–26]. Based on the computer revolution that has a sig-
nificant effect on deriving computational, semi-analytical, and numerical schemes, many
schemes have derived, such as the sech-tanh expansion method, auxiliary equation method,
direct algebraic equation method, iteration method, exponential expansion method, B-
spline schemes, Kudryashov methods, Adomian decomposition method, Khater methods,(

Θ′
Θ

)
-expansion methods, and so on [27–33]. This paper employs three recent analytical

and numerical techniques [34–38] to investigate novel analytical wave solutions of Equa-
tion (3)’s accuracy of the used analytical schemes. colorred Our results in the case n = 1
are proved using the homogeneous balance principles and the well-known frameworks of
the MDA and MKud. methods. Thus, the general solutions of Equation (4) are evaluated
by [39,40]

K(S) =



n
∑

i=−n
ai Z(S)i = a1 Z(S) + a−1

Z(S)
+ a0, ,

n
∑

i=0
ai G(S)i = a1 G(S) + a0, ,

(5)

where a0, a1, a−1 are arbitrary constants.
The other sections in this paper are given in the following order; Section 2 shows

the novel and accurate solutions of the considered model through the above-mentioned
analytical and numerical schemes. Section 3 demonstrates the novelty and originality of
our paper. Section 4 gives a summary of the manuscript.

2. Analytical and Numerical Matching for the (2+1) D-Fisher-KPP Model

Here, the matching between the analytical and numerical solutions is discussed
through implementing two recent analytical (MDA and MKud.) and one numerical (TQBS)
scheme to Equation (4). This study also shows the accuracy of the obtained computational
solutions and strategies used.
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2.1. MDA Analytical Versus TQBS Numerical Techniques along (2+1) D-Fisher-KPP Model

Applying the MDA scheme’s framework and its auxiliary

(
Υ′(S) = l3 Υ(S)2 + l2 Υ(S)

+l1

)
where li, i = 1, 2, 3 are arbitrary constants to be determined later, to Equation (4), we

obtain the following sets of the above-mentioned parameters:

Set I

a0 =

√(
l2
2 − 4l1l3

)
2 − l2

√
l2
2 − 4l1l3

2
(
l2
2 − 4l1l3

) , a−1 = − l1√
l2
2 − 4l1l3

, a1 = 0, r = 2−
3
√(

l2
2 − 4l1l3

)
2

2
(
l2
2 − 4l1l3

)
3/2

,

µ = − 1
4
(
l2
2 − 4l1l3

) .

Set II

a0 =

√(
l2
2 − 4l1l3

)
2 − l2

√
l2
2 − 4l1l3

2
(
l2
2 − 4l1l3

) , a−1 = 0, a1 = − l3√
l2
2 − 4l1l3

, r =
3
√(

l2
2 − 4l1l3

)
2

2
(
l2
2 − 4l1l3

)
3/2

+ 2,

µ = − 1
4
(
l2
2 − 4l1l3

) .

Set III

a0 =
l2√

l2
2 − 4l1l3

, a−1 = 0, a1 =
2l3√

l2
2 − 4l1l3

, r = 2, µ =
1

4l1l3 − l2
2

.

Therefore, the computational wave solutions of the (2+1) D-(2+1) D-Fisher-KPP model
are constructed in the following formulas:

For l2 = 0, l1l3 > 0, we get

FI,1(x, y, t) =
√
−l1l3

√
l1l3

2l1l3
cot

√l1l3

η −
3
√

l2
1 l2

3t

4(−l1l3)3/2 + 2t + x + y

−
√

l2
1 l2

3

2l1l3
, (6)

FI,2(x, y, t) =
√
−l1l3

√
l1l3

2l1l3
tan

√l1l3

η −
3
√

l2
1 l2

3t

4(−l1l3)3/2 + 2t + x + y

−
√

l2
1 l2

3

2l1l3
, (7)

FII,1(x, y, t) =
√
−l1l3

√
l1l3

2l1l3
tan

√l1l3

η +
3
√

l2
1 l2

3t

4(−l1l3)3/2 + 2t + x + y

−
√

l2
1 l2

3

2l1l3
, (8)

FII,2(x, y, t) =
√
−l1l3

√
l1l3

2l1l3
cot

√l1l3

η +
3
√

l2
1 l2

3t

4(−l1l3)3/2 + 2t + x + y

−
√

l2
1 l2

3

2l1l3
, (9)

FIII,1(x, y, t) = −
√
−l1l3

√
l1l3

l1l3
tan
(√

l1l3(η + 2t + x + y)
)

, (10)
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FIII,2(x, y, t) = −
√
−l1l3

√
l1l3

l1l3
cot
(√

l1l3(η + 2t + x + y)
)

. (11)

For l2 = 0, l1l3 < 0, we get

FI,3(x, y, t) =
1
2

coth

√−l1l3

− 3
√

l2
1 l2

3t

4(−l1l3)3/2 + 2t + x + y

∓ log(η)
2

−
√

l2
1 l2

3

2l1l3
, (12)

FI,4(x, y, t) =
1
2

tanh

√−l1l3

− 3
√

l2
1 l2

3t

4(−l1l3)3/2 + 2t + x + y

∓ log(η)
2

−
√

l2
1 l2

3

2l1l3
, (13)

FII,3(x, y, t) = −1
2

tanh

√−l1l3

 3
√

l2
1 l2

3t

4(−l1l3)3/2 + 2t + x + y

∓ log(η)
2

−
√

l2
1 l2

3

2l1l3
, (14)

FII,4(x, y, t) = −1
2

coth

√−l1l3

 3
√

l2
1 l2

3t

4(−l1l3)3/2 + 2t + x + y

∓ log(η)
2

−
√

l2
1 l2

3

2l1l3
, (15)

FIII,3(x, y, t) = tanh
(√
−l1l3(2t + x + y)∓ log(η)

2

)
, (16)

FIII,4(x, y, t) = coth
(√
−l1l3(2t + x + y)∓ log(η)

2

)
. (17)

For l1 = 0, l2 > 0, we get

FII,5(x, y, t) =

√
l2
2

l2

(
l3 exp

(
l2

(
η +

3
√

l4
2 t

2(l2
2)3/2 + 2t + x + y

))
− 1
) +

√
l2
2

2l2
+

√
l4
2

2l2
2

, (18)

FIII,5(x, y, t) = − l3
√

l2
2 el2(η+2t+x+y)

l2(l3el2(η+2t+x+y)−1)
−

√
l2
2

l2(l3el2(η+2t+x+y)−1)
. (19)

For l1 = 0, l2 < 0, we get

FII,6(x, y, t) = − l3√
l2
2

(
l3 exp

(
l2

(
η +

3
√

l4
2 t

2(l2
2)3/2 + 2t + x + y

))
+ 1
) −

√
l2
2

2l2
+

√
l4
2

2l2
2

+
l3√
l2
2

, (20)

FIII,6(x, y, t) =
2l3√

l2
2
(
l3el2(η+2t+x+y) + 1

) +
√

l2
2

l2
− 2l3√

l2
2

. (21)
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For 4 l1 l3 > l2
2 , we get

FI,5(x, y, t) =
2l1l3√

l2
2 − 4l1l3

(
l2 −

√
4l1l3 − l2

2 tan

(
1
2

√
4l1l3 − l2

2

(
η −

3
√
(l2

2−4l1l3)2t

2(l2
2−4l1l3)3/2 + 2t + x + y

)))

+
l2
2

2
√(

l2
2 − 4l1l3

)
2
− l2

2
√

l2
2 − 4l1l3

− 2l1l3√(
l2
2 − 4l1l3

)
2

,

(22)

FI,6(x, y, t) =
2l1l3√

l2
2 − 4l1l3

(
l2 −

√
4l1l3 − l2

2 cot

(
1
2

√
4l1l3 − l2

2

(
η −

3
√
(l2

2−4l1l3)2t

2(l2
2−4l1l3)3/2 + 2t + x + y

)))

+
l2
2

2
√(

l2
2 − 4l1l3

)
2
− l2

2
√

l2
2 − 4l1l3

− 2l1l3√(
l2
2 − 4l1l3

)
2

,

(23)

FII,7(x, y, t) =−

√
−
(
l2
2 − 4l1l3

)
2 tan

(
1
2

√
4l1l3 − l2

2

(
η +

3
√
(l2

2−4l1l3)2t

2(l2
2−4l1l3)3/2 + 2t + x + y

))
2
(
l2
2 − 4l1l3

)
+

√(
l2
2 − 4l1l3

)
2

2
(
l2
2 − 4l1l3

) ,

(24)

FII,8(x, y, t) =−

√
−
(
l2
2 − 4l1l3

)
2 cot

(
1
2

√
4l1l3 − l2

2

(
η +

3
√
(l2

2−4l1l3)2t

2(l2
2−4l1l3)3/2 + 2t + x + y

))
2
(
l2
2 − 4l1l3

)
+

√(
l2
2 − 4l1l3

)
2

2
(
l2
2 − 4l1l3

) ,

(25)

FIII,7(x, y, t) =
√

4l1l3−l2
2√

l2
2−4l1l3

tan
(

1
2

√
4l1l3 − l2

2(η + 2t + x + y)
)

, (26)

FIII,8(x, y, t) =

√
4l1l3 − l2

2√
l2
2 − 4l1l3

cot
(

1
2

√
4l1l3 − l2

2(η + 2t + x + y)
)

. (27)

Matching between Analytical and Numerical

Applying the TQBS numerical technique with the following initial condition
F (x, 0, 0) = 1

2 tanh(25 x) + 1
2 gets the following shown analytical and numerical solu-

tions’ values with respect to different values of x in Table 1.
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Table 1. Analytical and numerical matching through MDA and TQBS schemes.

Value of x Analytical Numerical Error Value of x Analytical Numerical Error
0 0.5 0.5 0 0.515625 0.925947 0.999254 0.073307

0.015625 0.519127 0.596515 0.077388 0.53125 0.931028 0.999203 0.068176
0.03125 0.538199 0.705602 0.167403 0.546875 0.935784 0.999146 0.063362

0.046875 0.557159 0.77828 0.221121 0.5625 0.940233 0.999082 0.058849
0.0625 0.575954 0.835791 0.259837 0.578125 0.944392 0.999013 0.05462

0.078125 0.594532 0.878033 0.283501 0.59375 0.948278 0.998936 0.050658
0.09375 0.612843 0.909745 0.296901 0.609375 0.951906 0.998854 0.046947

0.109375 0.630841 0.933241 0.3024 0.625 0.955292 0.998764 0.043472
0.125 0.648482 0.950674 0.302192 0.640625 0.95845 0.998667 0.040217

0.140625 0.665726 0.963567 0.297841 0.65625 0.961393 0.998561 0.037168
0.15625 0.682539 0.973094 0.290555 0.671875 0.964136 0.998448 0.034312

0.171875 0.698889 0.980124 0.281235 0.6875 0.966691 0.998325 0.031634
0.1875 0.714748 0.985307 0.270559 0.703125 0.96907 0.998192 0.029123

0.203125 0.730095 0.989125 0.25903 0.71875 0.971283 0.998049 0.026765
0.21875 0.744911 0.991936 0.247025 0.734375 0.973343 0.997894 0.024551

0.234375 0.759182 0.994003 0.234821 0.75 0.975259 0.997727 0.022468
0.25 0.772897 0.995521 0.222623 0.765625 0.97704 0.997547 0.020506

0.265625 0.786052 0.996634 0.210582 0.78125 0.978696 0.997352 0.018656
0.28125 0.798644 0.997448 0.198805 0.796875 0.980235 0.997142 0.016907

0.296875 0.810672 0.998042 0.18737 0.8125 0.981665 0.996915 0.015251
0.3125 0.822143 0.998474 0.176331 0.828125 0.982993 0.996671 0.013678

0.328125 0.833061 0.998784 0.165724 0.84375 0.984226 0.996407 0.012181
0.34375 0.843437 0.999006 0.155569 0.859375 0.985372 0.996122 0.010751

0.359375 0.853281 0.999161 0.14588 0.875 0.986435 0.995815 0.00938
0.375 0.862607 0.999267 0.13666 0.890625 0.987422 0.995484 0.008062

0.390625 0.87143 0.999336 0.127906 0.90625 0.988338 0.995126 0.006788
0.40625 0.879765 0.999377 0.119611 0.921875 0.989188 0.99474 0.005552

0.421875 0.88763 0.999396 0.111766 0.9375 0.989977 0.994326 0.004349
0.4375 0.895041 0.999399 0.104357 0.953125 0.990709 0.993871 0.003162

0.453125 0.902018 0.999388 0.09737 0.96875 0.991387 0.993411 0.002023
0.46875 0.908578 0.999367 0.090789 0.984375 0.992017 0.992795 0.000778

0.484375 0.914741 0.999337 0.084596 1 0.992601 0.992601 5.55× 10−17

2.2. Kud Analytical vs. TQBS Numerical Techniques along (2+1) D-Fisher-KPP Model

Applying the MKud. scheme’s framework and its auxiliary

(
Γ′(S) = ln(k)(Γ(S)2

−Γ(S))

)
where k is an arbitrary constant to be determined later, to Equation (4), we obtain

the following sets of the above-mentioned parameters:

Set I

a0 = −1, a1 = 2, r = 2, µ = − 1
log2(k)

.

Set II
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a0 = 0, a1 = 1, r =
4 log(k)− 3

2 log(k)
, µ = − 1

4 log2(k)
.

Set III

a0 = 1, a1 = −1, r =
4 log(k) + 3

2 log(k)
, µ = − 1

4 log2(k)
.

Therefore, the computational wave solutions of the (2+1) D-Fisher-KPP model are
constructed in the following formulas:

SI(x, y, t) =
2

1± k2t+x+y − 1, (28)

SII(x, y, t) =
1

1± k−
3t

2 log(k)+2t+x+y
, (29)

SIII(x, y, t) = 1− 1

1± k
3t

2 log(k)+2t+x+y
. (30)

Semi-Analytical Solutions

Applying the TQBS numerical technique with the following initial condition
F (x, 0, 0) = 1

ex+1 gets the following shown analytical and numerical solutions’ values
with respect to different values of x in Table 2.

Table 2. Analytical and numerical matching along MKud. and TQBS techniques.

Value of x Analytical Numerical Error Value of x Analytical Numerical Error
0 0.5 0.5 0 0.515625 0.373876 0.373876 1.62 ×10−11

0.015625 0.496094 0.496094 1.2 ×10−12 0.53125 0.370225 0.370225 1.59 ×10−11

0.03125 0.492188 0.492188 2.94 ×10−12 0.546875 0.36659 0.36659 1.56 ×10−11

0.046875 0.488283 0.488283 4.39 ×10−12 0.5625 0.362969 0.362969 1.52 ×10−11

0.0625 0.48438 0.48438 5.79 ×10−12 0.578125 0.359364 0.359364 1.49 ×10−11

0.078125 0.480479 0.480479 7.07 ×10−12 0.59375 0.355775 0.355775 1.45 ×10−11

0.09375 0.47658 0.47658 8.26 ×10−12 0.609375 0.352202 0.352202 1.41 ×10−11

0.109375 0.472683 0.472683 9.37 ×10−12 0.625 0.348645 0.348645 1.37 ×10−11

0.125 0.468791 0.468791 1.04 ×10−11 0.640625 0.345105 0.345105 1.32 ×10−11

0.140625 0.464902 0.464902 1.13 ×10−11 0.65625 0.341582 0.341582 1.28 ×10−11

0.15625 0.461017 0.461017 1.22 ×10−11 0.671875 0.338077 0.338077 1.23 ×10−11

0.171875 0.457137 0.457137 1.29 ×10−11 0.6875 0.334589 0.334589 1.18 ×10−11

0.1875 0.453262 0.453262 1.36 ×10−11 0.703125 0.33112 0.33112 1.13 ×10−11

0.203125 0.449393 0.449393 1.43 ×10−11 0.71875 0.327668 0.327668 1.08 ×10−11

0.21875 0.44553 0.44553 1.48 ×10−11 0.734375 0.324235 0.324235 1.02 ×10−11

0.234375 0.441673 0.441673 1.53 ×10−11 0.75 0.320821 0.320821 9.68 ×10−12

0.25 0.437823 0.437823 1.58 ×10−11 0.765625 0.317426 0.317426 9.13 ×10−12

0.265625 0.433981 0.433981 1.62 ×10−11 0.78125 0.314051 0.314051 8.56 ×10−12

0.28125 0.430147 0.430147 1.65 ×10−11 0.796875 0.310694 0.310694 7.98 ×10−12

0.296875 0.426322 0.426322 1.68 ×10−11 0.8125 0.307358 0.307358 7.39 ×10−12

0.3125 0.422505 0.422505 1.7 ×10−11 0.828125 0.304042 0.304042 6.8 ×10−12

0.328125 0.418697 0.418697 1.72 ×10−11 0.84375 0.300746 0.300746 6.19 ×10−12
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Table 2. Cont.

Value of x Analytical Numerical Error Value of x Analytical Numerical Error
0.34375 0.414899 0.414899 1.73 ×10−11 0.859375 0.29747 0.29747 5.58 ×10−12

0.359375 0.411111 0.411111 1.74 ×10−11 0.875 0.294215 0.294215 4.96 ×10−12

0.375 0.407333 0.407333 1.74 ×10−11 0.890625 0.290981 0.290981 4.34 ×10−12

0.390625 0.403567 0.403567 1.74 ×10−11 0.90625 0.287768 0.287768 3.71 ×10−12

0.40625 0.399812 0.399812 1.74 ×10−11 0.921875 0.284576 0.284576 3.07 ×10−12

0.421875 0.396068 0.396068 1.73 ×10−11 0.9375 0.281406 0.281406 2.44 ×10−12

0.4375 0.392337 0.392337 1.72 ×10−11 0.953125 0.278257 0.278257 1.79 ×10−12

0.453125 0.388618 0.388618 1.71 ×10−11 0.96875 0.27513 0.27513 1.16 ×10−12

0.46875 0.384912 0.384912 1.69 ×10−11 0.984375 0.272025 0.272025 4.57 ×10−13

0.484375 0.38122 0.38122 1.67 ×10−11 1 0.268941 0.268941 5.55 ×10−17

3. Results’ Interpretation

This section studies the originality and novelty of this research paper. It also shows
the accuracy of the obtained analytical solutions. The MDA and MKud. computational
schemes have been applied to the (2+1) D-Fisher-KPP model for constructed novel analyti-
cal wave solutions. Many distinct analytical wave solutions have been obtained, and some
of them have been demonstrated through sketches in 2D, 3D, and contour plots. These
figures explain the dynamical characterization of the reaction–diffusion system by travel-
ing waves in population genetics and propagating domain walls and pattern formation
in bi-stable systems in nematic liquid crystals. Figures 1–4 show some novel analytical
wave solutions with different values to the above–mentioned parameters. Comparing our
solutions with those that have been obtained in a previously published paper [17,41] shows
our solutions are completely different from those that have been evaluated in [41]. Still,
some of our solutions match the obtained solutions in [17] when α = 1, where in that paper,
the authors in that paper studied the fractional form of the considered model.

Figure 1. Computation wave solutions of Equation (12) in 3D (a), 2D (b), and contour (c) plots.
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Figure 2. Computational wave solutions of Equation (16) in 3D (a), 2D (b), and contour (c) plots.

Figure 3. Computational wave solutions of Equation (28) in 3D (a), 2D (b), and contour (c) plots.

The TQBS scheme has been applied to the considered model based on the obtained
computational solutions. The absolute error between the analytical and numerical solu-
tions has been calculated to show the accuracy of the obtained results and used methods
(Tables 1 and 2 and Figures 5 and 6). This calculating shows the arrogance of the MKud.
method over the MDA method, where its absolute values of error are much smaller than
those obtained by the MDA method (Figure 7).
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Figure 4. Computational wave solutions of Equation (29) in 3D (a), 2D (b), and contour (c) plots.

Figure 5. Two-dimensional plot (a), double y-column plot (b) for the matching between obtained analytical and numerical
solutions, and two-dimensional plot of the absolute error (c) for Equation (3) with respect to Table 1.

Figure 6. Two-dimensional plot (a) and double y-column plot (b) for the matching between obtained analytical and
numerical solutions, and two-dimensional plot of the absolute error (c) for Equation (3) with respect to Table 2.
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Figure 7. Two-dimensional (a) and radar (b) plots for the calculated absolute error along the MDA,
MKud. analytical schemes and the TQBS numerical scheme.

4. Conclusions

This research paper has successfully handled the nonlinear (2+1) D-Fisher-KPP model
in population genetics and nematic liquid crystals through analytical and numerical in-
vestigations. The MDA, MKud., and TQBS schemes have been employed to find accurate
novel analytical wave solutions of the considered model. Some obtained solutions have
been represented in three different types of sketches. The accuracy of the MKud. method
has been verified over the MDA method, where it is our fourth paper in keeping with the
title’s accuracy on the computational schemes.
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