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Abstract: A resource network is a non-classical flow model where the infinitely divisible resource
is iteratively distributed among the vertices of a weighted digraph. The model operates in discrete
time. The weights of the edges denote their throughputs. The basic model, a standard resource
network, has one general characteristic of resource amount—the network threshold value. This value
depends on graph topology and weights of edges. This paper briefly outlines the main characteristics
of standard resource networks and describes two its modifications. In both non-standard models, the
changes concern the rules of receiving the resource by the vertices. The first modification imposes
restrictions on the selected vertices’ capacity, preventing them from accumulating resource surpluses.
In the second modification, a network with so-called greedy vertices, on the contrary, vertices
first accumulate resource themselves and only then begin to give it away. It is noteworthy that
completely different changes lead, in general, to the same consequences: the appearance of a second
threshold value. At some intervals of resource values in networks, their functioning is described by a
homogeneous Markov chain, at others by more complex rules. Transient processes and limit states in
networks with different topologies and different operation rules are investigated and described.

Keywords: resource network; graph dynamic model; network dynamics; threshold resource
propagation; Markov chain

1. Introduction

A resource network is a dynamic flow model based on a directed weighted graph.
Vertices exchange a homogeneous resource in infinite discrete time. The resource flows
through the edges with limited throughputs indicated by their weights. Vertices, in general,
can store an unlimited amount of resources. In the network, the conservation law is fulfilled:
the total resource amount is constant. In this sense, there are no source and sink vertices in
the network; the resource does not come from outside and is not consumed. The network
states are described by the vector of the resource distribution over the vertices. The change
of states occurs due to the resources reallocation. The resource contained in the edges
between two consecutive time steps forms a flow in the network.

For the first time, the resource network was introduced in [1], where a simple special
case was considered—a complete uniform network with loops. Since then, the mathe-
matical properties of networks for all graph topologies have been investigated. Some
results concerning this paper are presented in [2–5] (regular networks) and in [6] (Eulerian
networks). The classification of resource networks and notions of “regular” and “Eulerian”
networks will be given in Section 2.4. The present article summarizes and reinterprets
some of the old results obtained for the standard model of a resource network, gives
theorems with new proofs, and presents new results—both for the standard model and
for two its modifications, as well as for their combination. The first modification is a
network with limited vertex capacities introduced in [7]. The second model, a network
with “greedy” vertices is defined in [8], where the simple special case, complete uniform
networks were investigated.
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The study of flows in networks has a long history. In 1962, L. Ford and D. Fulkerson
proposed a static flow model and proved their famous “maximum-flow minimum-cut”
theorem [9]. Since then, many modifications and extensions of this classical model have
appeared; various methods and algorithms are developed to solve different network flow
problems [10]. As a rule, these models and methods are devoted to studying homogeneous
and heterogeneous flows directed from one or more sources to one or more sinks, possibly
with some constraints.

Resource network is a non-linear threshold flow model. Each vertex can send resources
to outgoing edges according to one of two rules with threshold switching. The choice of
the rule depends on the resource amount at the vertex. If this amount is small (below the
threshold value), then the entire resource is distributed in proportion to the throughputs of
the edges if it is large (above the threshold value), then the vertex gives to the edges their
throughputs and leaves the surplus for itself.

The network with such operation rules inherits the properties of two classes of models.
The first one is random walks and diffusion on graphs. This mathematical tool is used to
simulate and investigate a wide class of theoretical and applied problems [11–15].

The second class combines integer threshold models. The most studied of them is
the model of the combinatorial problem on graphs chip-firing game. This model gave rise
to many non-trivial mathematical results [16–21]. It is noteworthy that in both classes
of models, a special place is occupied by the study of dynamics on regular graphs, in
particular, lattices [14,19]. The chip-firing model on different regular directed lattices
is proved to be an appropriate mathematical formalism for describing processes of self-
organized criticality [22] and, in particular, of Abelian sandpile model [23–25]. In this way,
the chip-firing game, which is a combinatorial model, and Abelian sandpile model, which
is a probabilistic cellular automaton [26,27], are two equivalent forms of one model. In [28],
an avalanche model is introduced where the regular lattice of sandpile is generalized to
an arbitrary directed graph with multiple arcs. The diffusion game, a parallel variation of
chip-firing game, is investigated in [29]. Special mention should be made of networks with
different constraints on the flow distribution [30]. Mathematical properties of some of the
above and a number of other models are described in a survey [31].

Resource network is both flow and diffusion model. It is completely deterministic,
however with small amounts of resource, it is described by a homogeneous Markov chain,
which makes it similar to random walks. On the other hand, with large amounts of resource,
it becomes similar to a parallel chip-firing game. In this case, it is also deterministic, and its
operation is described by a non-homogeneous Markov chain.

The structure of the article is as follows.
In the second section, we will give definitions regarding the basic (standard) model of

the resource network and build a classification of networks.
In the third section, we describe the mathematical properties of a resource network.
The fourth section presents the main analytical results for a standard model.
The fifth section is devoted to studying a network with a constraint on the capacity of

some selected vertices.
The sixth section describes a resource network with “greedy” vertices and its main

features. This is a new model; its research began this year. So far, only complete uniform
networks have been described.

The seventh section introduces a combination of two modifications.
Then, we discuss the main findings and research perspectives.

2. Resource Network, the Standard Model
2.1. Basic Definitions

A resource network is a dynamic flow model. It is represented by directed weighted
graph G = (V, E) with vertices vi ∈ V and edges eij = (vi, vj) ∈ E. Edges have the
non-negative weights rij constant in time. The weights specify throughputs of edges.
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Matrix R = (rij)n×n is the throughput matrix of a network, rij ∈ {0} ∪R+. Edge eij
has a throughput equal to rij > 0.

Definition 1. Resources qi(t) are non-negative numbers assigned to vertices vi, i = 1, n,
and changing in discrete time t. In the standard model, vertices vi can store an unlimited re-
source amount.

Definition 2. A state Q(t) of a network at time step t is a vector of resource values at each vertex

Q(t) = (q1(t), . . . , qn(t)).

Definition 3. A total resource in a network at time t is the value

W =
n

∑
i=1

qi(t).

The network operation fulfills the conservation law: the resource does not flow in
from the outside and does not flow out or dissipates:

∀t
n

∑
i=1

qi(t) = W = const.

Definition 4. Between the two consecutive steps t and t + 1, the resource moves along the edges.
Such a resource in the edges is called a flow.

F(t) = ( fij(t))n×n is a flow matrix at time t. By definition, ∀t fij(t) ≤ rij.

Definition 5. The total flow in the network at time step t is the value

fsum(t) =
n

∑
i=1

n

∑
j=1

fij(t).

Definition 6. The total throughput of the network is the value

rsum =
n

∑
i=1

n

∑
j=1

rij.

Obviously, ∀W ∀t fsum(t) ≤ rsum.

Remark 1. Unlike the total resource in the network, the total flow is always limited by its throughput.

In addition, there is an essential difference between states and flows: fsum(t) changes
over time if the network is not in an equilibrium state; W is always constant, despite the
fact that the values qi(t) change.

2.2. Rules of Resource Distribution

First, we introduce two characteristics of the network vertices.

Definition 7. The values

rin
i =

n

∑
j=1

rji and rout
i =

n

∑
j=1

rij

are total in- and out-throughputs of vertex vi, respectively. A loop’s throughput, if it exists, is
included in both sums.
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At time step t, the vertex vi sends to the edge eik the resource amount fik(t) equal to

fik(t) =

{
rik, if qi(t) > rout

i (rule 1);
rik

rout
i

qi(t), if qi(t) ≤ rout
i (rule 2).

(1)

Rule one is applied when a vertex contains more resource than it can send to all adja-
cent vertices through outgoing edges; in this case, each edge transmits the resource amount
equal to its throughput: fij(t) = rij, and totally, the vertex gives away resource amount

n

∑
j=1

fij(t) =
n

∑
j=1

rij = rout
i ,

or its total output throughput.
According to rule two, a vertex sends out its entire resource. It distributes the resource

to all outgoing edges in proportion to their throughputs.

Remark 2. The value qi(t) = rout
i is the local threshold value of a vertex that switches its

functioning rules. This switching occurs without discontinuity: at the value qi(t) = rout
i , applying

both rules will give the same result.

Unlike the classic chip-firing game, in a resource network, all vertices “fire” in parallel.
All non-empty vertices send resource into all outgoing edges at every time step according
to rule 1 or 2; adjacent vertices receive the resource through incoming edges.

2.3. Network Operation

First, we introduce the concepts of the output and input total flow.

Definition 8. For vertex vi, at time step t, the total output flow is

f out
i (t) =

n

∑
j=1

fij(t) = min{qi(t), rout
i }. (2)

The total input flow at time step t + 1 is

f in
i (t + 1) =

n

∑
j=1

f ji(t). (3)

We will assume that f in
i (0) = 0.

Definition 9. Vectors Fout(t) = ( f out
1 (t), . . . , f out

n (t)) and Fin(t) = ( f in
1 (t), . . . , f in

n (t)) are
called the output and input flow vectors, respectively.

The network operates in infinite discrete time. The initial state is determined by the
vector of resource distribution over the vertices: Q(0) = (q1(0), ..., qn(0)).

At time step t, each vertex forms its output flow by one of the rules 1 or 2 (Formulae (1)
and (2)). The new state is obtained as follows:

Q(t + 1) = Q(t)− Fout(t) + Fin(t + 1).

The examples of network operation for the network represented by complete uniform
graph are demonstrated in [32].

Definition 10. The state Q(t) is called steady if Q(t) = Q(t + 1) = . . . .
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Definition 11. The state Q′ = (q′1, . . . , q′n) is called asymptotically reachable if for some
Q(t) = (q1(t), ..., qn(t))

lim
t→∞

qi(t) = q′i, i = 1, n.

Definition 12. The state Q∗ = (q∗1 , . . . , q∗n) is called a limit state if it is either steady or
asymptotically reachable.

If the state of a network Q∗ = (q∗1 , . . . , q∗n) is steady, then the flow is also steady.

Definition 13. F∗ = ( f ∗ij)n×n is a limit flow matrix. The values f in∗
i and f out∗

i are determined
similarly to Formulaes (2) and (3).

The study of the dynamics of network states and flows during its operation showed
that networks with different properties function in different ways [1–5]. We introduce two
classifications: by topology and by total in- and out-throughputs of vertices.

2.4. Classification of Networks by Topology

In this classification, the following classes are distinguished (Figure 1).

1. Ergodic networks

• Regular networks;
• Cyclic networks;

2. Non-ergodic networks

• Absorbing networks;
• Mixed networks.

Definition 14. A resource network is ergodic if it is represented by a strongly connected graph.

In a random walk on such a graph, any vertex is recurrent. In terms of resource
allocation, this means that all vertices both receive and send the resource.

The functioning of an ergodic network at a small resource value (see Section 3.1 for
details) is described by an ergodic homogeneous Markov chain [2].

Definition 15. An ergodic resource network is regular if the greatest common divisor (GCD) of
the lengths of all cycles in its graph is equal to one.

Definition 16. An ergodic resource network is cyclic if GCD of the lengths of all cycles in its graph
is more than one.

Definition 17. A resource network is non-ergodic if its graph is not strongly connected.

Definition 18. A vertex is called irreversible if there is a path from it to a vertex from which it
is unreachable.

Definition 19. A subnetwork is called transient component if it contains only irreversible vertices.

Definition 20. A non-ergodic resource network is mixed if it contains transient and ergodic
components (Figure 1).

Definition 21. A mixed resource network is absorbing if all ergodic components are represented by
single vertices. Absorbing vertices are an analog of the sink vertices in classical flow networks.

An absorbing network is a special case of a mixed non-ergodic network. On the other
hand, a mixed network can be considered an absorbing network if each ergodic component
is condensed into one sink vertex.
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Ergodic Non-Ergodic

Regular

(GCD = 1)

Cyclic

(GCD > 1)

Mixed 
(with absorbing and 

transient components)

Resource Networks

v4

v1

v3

v2

GCD = 1 GCD = 2

v4

v1

v3

v2

v4

v1

v3

v2

v8

v5

v7

v6

Absorbing
(with sink vertices)

v6

v5

v4

v1

v3

v2

Figure 1. Classification of networks by topology.

2.5. Classification of Networks by Total Throughputs of Vertices

This classification, unlike the previous one, does not have a tree structure. Some
classes are not “pure” and may inherit properties from two ancestors (Figure 2).

Definition 22. A resource network is called uniform if all its edges have the same weights.

We have separated complete uniform networks into a particular class because it is a
simple and convenient object for demonstrating various properties of networks.

The nonuniform networks are divided into non-symmetric and Eulerian networks.
Consider the tuple

ρ = ((rin
1 , rout

1 ), . . . , (rin
n , rout

n )). (4)

It characterizes vertices by their total in- and out-throughputs.
If for the vertex vi, holds rin

i > rout
i , then it can receive more than it can transmit. If

rin
i < rout

i , then, accordingly, it can transmit more than it receives. If rin
i = rout

i , this vertex
can receive and transmit the same resource amount.

Definition 23. All the vertices of a network are divided into three classes according to the sign of
the rin

i − rout
i value:

• Receiver-vertices, rin
i − rout

i > 0 ;
• Source-vertices, rin

i − rout
i < 0 ;

• Neutral vertices, rin
i − rout

i = 0 .

If at least one receiver-vertex exists in the network, then at least one source also exists,
and vice versa.

Definition 24. A resource network is called non-symmetric if it has at least one receiver-vertex
and one source-vertex.

Definition 25. A resource network is called Eulerian if all its vertices are neutral.

An Eulerian network can be symmetric when the matrix of its graph is symmetric and
quasi-symmetric when the matrix is not symmetric, but the equality rin

i = rout
i holds for

each vertex.
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Complete Incomplete

Resource Networks

Symmetric Quasi-Symmetric

Non-Uniform

Non-Symmetric

Uniform

Eulerian

Figure 2. Classification of networks by total throughputs of vertices.

2.6. General Classification of Networks

We introduce a general classification of networks as the Cartesian product of the two
introduced classifications (Figure 3).

Uniform
Non-

Symmetric
Eulerian

Regular
Complete

Uniform

Regular 

Non-Symmetric

Regular Eulerian
(Symmetric & 

Quasi-Symmetric)

Cyclic
  

Absorbing
  

Topology

Weights

Figure 3. The general classification of networks. The focus of the study is the top row of the table. It
lists the classes of networks under consideration.

As mentioned above, uniform networks are an illustrative model example. However,
this is not a fully independent class. The results for uniform networks are included in the
results for other classes (asymmetric, Eulerian networks) depending on the topology of a
uniform network.

This study focuses on the models from the top row of the table in Figure 3. In
some cases, they will be considered separately; in other cases, when their properties
coincide together.

3. Materials and Methods: The Standard Model
3.1. Regular Resource Networks and Homogeneous Markov Chains

Given a regular network from any throughput-class (the entire top row of the table in
Figure 3), consider its operation for the total resource equal to one (W = 1).

It was proved that in this case, the resource distribution process is described by a
regular homogeneous Markov chain [2].

Denote the vectors of an arbitrary state and of the limit state for W = 1 as Q1(t) and
Q1∗, respectively.
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In this case, the vector Q1(0) is a vector of the initial probability distribution. The
transition matrix R′ is obtained from the matrix R as follows:

R′ =


r11
rout

1
. . . r1n

rout
1

. . . . . . . . .
rn1
rout

n
. . . rnn

rout
n

, (5)

or R′ = D−1R, where D = diag(rout
1 , . . . , rout

n ). R′ is a stochastic matrix.
The change of states is described by the formula

Q1(t + 1) = Q1(t)R′. (6)

Formula (6) follows directly from the application of rule 2 of the network operation to
all vertices. (We assume that the throughputs of the network edges are such that for W = 1,
all vertices operate according to rule 2).

Therefore, all the results valid for regular homogeneous Markov chains [33] can be
transferred to the resource network with W = 1.

Proposition 1. If a regular network is given by matrix R, and matrix R′ is the corresponding
stochastic matrix, then

1. The limit of degrees of matrix R′ exists:

lim
t→∞

(R′)t = R′∗;

2. The limit state exists and is unique for any initial state.
For an arbitrary state Q1(t) the equality holds

Q1(t)R′∗ = Q1∗;

3. The limit matrix R′∗ and limit vector Q1∗ are related by the following formula:

R′∗ = 1 ·Q1∗,

where 1 = (1, . . . , 1)T.
In other words, matrix R′∗ consists of n identical rows represented by vector Q1∗.

4. Vector Q1∗ is a single left eigenvector of matrices R′ and R′∗ corresponding to eigenvalue
λ = 1:

Q1∗R′ = Q1∗; (7)

Q1∗R′∗ = Q1∗. (8)

Corollary 1. The limit flow exists and is unique for any initial state: Fin1∗ = (Fout1∗)T = Q1∗;
fsum∗ = 1.

If W > 1 and all the vertices give out their resource according to rule 2, all of the above
results will also be correct.

The limit state and flow vectors are unique for any initial state and can be found by
the formulae

Q∗ = W ·Q1∗; Fin∗ = (Fout∗)T = W ·Q1∗; fsum∗ = W. (9)

Lemma 1. In a regular non-symmetric resource network, for any total resource W and its initial
distribution, the resource at source and neutral vertices vi becomes less than rout

i in a finite number
of steps (they start functioning according to rule 2).

Proof. Consider the source and neutral vertices separately.



Mathematics 2021, 9, 1444 9 of 34

1. Consider an arbitrary source-vertex vi. Let at t = 0 its resource be more than its
out-throughput: qi(0) > rout

i . It operates according to rule 1. At first time step it loses
resource amount bounded from below by value ∆qi = rout

i − rin
i > 0. Then it will

loose all the surplus si = qi(0)− rout
i in at most t′ = si

∆qi
steps.

2. Let there be neutral vertices in the network.
Consider the time step t′′ when all the source-vertices switched to rule 2.
Consider a neutral vertex vj adjacent to any source vertex. As the network is reg-
ular, such a vertex always exists. Let at t = t′′ its resource be more than its out-
throughput: qj(t′′) > rout

j . Then, it loses resource amount bounded from below by
value ∆qj = rji − f ji(t′′) > 0, as the source vertex cannot increase its resource. Then,
it will loose all the surplus sj = qj(t′′)− rout

j in at most t′′′ =
sj

∆qj
steps.

Consider the next neutral vertex adjacent either to the source vertex or to vj.
Repeating these arguments, we get that in a finite number of steps, all neutral vertices
will switch to rule 2.

Corollary 2. In a regular non-symmetric network, if the value W is large, the resource will be
accumulated in some of the sink-vertices. Source and neutral vertices can neither attract nor hold a
resource in excess of a certain value strictly less than their total out-throughput.

Lemma 2. In a regular Eulerian resource network, for total resource W ≤ rsum and any its initial
distribution, all the vertices switch to operation according to rule 2. If W < rsum the switching
occurs in a finite number of steps; if W = rsum resources at some vertices vi reach the values rout

i
asymptotically from above.

Proof. If W < rsum the proof is similar to the proof of Lemma 1.
Let W = rsum. As the network is Eulerian, then ∀ j rin

j = rout
j . Let vi be the vertex for

which inequality qi(0) ≥ rout
i holds.

Its output flow is equal to rout
i , its input flow does not exceed rout

i . The input flow is
equal to rout

i if and only if for all the rest vertices vk holds qk(0) = rout
k , k 6= i. In this case,

qi(0) = rout
i , as W = rsum, and the state Q(0) =

(
rout

1 , . . . , rout
n
)

is stable.
If qi(0) > rout

i and ∀ t qi(t) > rout
i then the value q∗i > rout

i will be reached asymptoti-
cally from above. The limit state is Q∗ =

(
rout

1 , . . . , rout
n
)
.

If qi(0) > rout
i and ∃ t′ : qi(t′) < rout

i then the value q∗i > rout
i will be reached

asymptotically from below. The limit state is Q∗ =
(
rout

1 , . . . , rout
n
)
.

Theorem 1. In a regular resource network, there exists a unique threshold value of the resource
W = T, such that

• if W ≤ T for any initial state Q(0) = (q1(0), . . . , qn(0)), there is a time step t′, such that if
t > t′ all vertices operate according to rule 2.

• if W > T for any initial state Q(0) = (q1(0), . . . , qn(0)), there will always be at least one
vertex operating according to rule 1.

Proof. It follows from Lemma 1 that in a non-symmetric network all the source- and
neutral vertices switch to rule 2 in a finite number of steps t(k).

It follows from Lemma 2 that in an Eulerian network all the vertices switch to rule 2
in a finite number of steps t(m) if W < rsum.

For a non-symmetric network, let the value W be such that all receivers also function
according to rule 2.

Consider the functioning of an arbitrary regular network starting from the moment
t′ > max{t(k), t(m)}.

It follows from Formula (9) that in this case the limit state exists and Q∗ = W ·Q1∗.
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We will consider the vector Q∗ = Q∗(W) as a function of W. Let us increase W until
at least one coordinate q∗i reach the value rout

i .
Denote the limit vector with at least one coordinate satisfying the equality q∗i = rout

i ,
by Q̃.

As the vector Q1∗ is unique, the vector Q̃ is also unique.
If the resource is increased further, vertex vi will switch to rule 1.
The resource value at which the equality q∗i = rout

i holds, is the threshold value W = T.
It is unique and does not depend on the initial state.

T =
n

∑
i=1

q̃i.

Corollary 3. If W ≤ T, then the limit state and flow vectors are unique for any initial state. They
can be found by formula (9).

The following theorem was first formulated in [3] for non-symmetric networks. Here,
we generalize it to all regular networks and give a more compact proof.

Theorem 2. In a regular resource network, the threshold value T is expressed by formula

T = min
i=1, n

rout
i

q1∗
i

. (10)

Proof. The formula for vector Q̃ = (q̃1, . . . , q̃n) is

Q̃ = T ·Q1∗.

Let the vertices with q̃i = rout
i have the indices from 1 to l, l ≥ 1. Then,

(rout
1 , . . . , rout

l , q̃l+1, . . . , q̃n) = T(q1∗
1 , . . . , q1∗

l , q1∗
l+1, . . . , q1∗

n );

or
T · q1∗

i = rout
i , i = 1, l; T · q1∗

j = q̃j < rout
j , j = l + 1, n.

Then,
rout

1
q1∗

1
= · · · =

rout
l

q1∗
l

= T;

rout
j

q1∗
j

>
q̃j

q1∗
j

= T, j = l + 1, n.

This immediately implies Formula (10).

Definition 26. The total resource W ≤ T will be called small; the total resource W > T will be
called large.

In the following sections, the limit state vector Q̃ at W = T will play an important role.
As the total resource W = T is covered by rule 2, the vector Q̃ exists and is unique for any
regular network. The flow vectors F̃in and F̃out also exist.

Q̃ = F̃out =
(

F̃in
)T

= TQ1∗.

Consider the distinctions in the behavior of regular networks of different classes with
a small resource (the top row of the table in Figure 3).
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Remark 3. If W ≤ T, the total steady flow in networks of all these classes is equal to W.

In [32], two examples of uniform complete network operation with small and large
resources demonstrate the difference in network dynamics.

3.1.1. Complete Uniform Resource Networks. Small Resource

For complete uniform networks, simpler formulas can be obtained for the limit state
and flow vectors, as well as for the threshold value T. This section briefly outlines the
results obtained in [1].

The uniform network is defined by only two parameters: the number of vertices n
and the throughput of all edges r. The characteristics of a complete uniform network are
expressed by the same parameters.

For an arbitrary W ≤ T, the limit vectors are

Q∗ = Fout∗ =
(

Fin∗
)T

=

(
W
n

, . . . ,
W
n

)
. (11)

The limit flow in an arbitrary edge eij is

f ∗ij =
W
n2 .

If W = 1 then

Q1∗ =

(
1
n

, . . . ,
1
n

)
. (12)

The threshold value T is expressed by formula

T = rn2.

The limit vectors for W = T are

Q̃ = F̃out =
(

F̃in
)T

= (rn, . . . , rn). (13)

The resource above the threshold value is not aligned. The limit state depends on the
initial state. The network operation with large resources will be considered in Section 3.2.

3.1.2. Eulerian Networks: Small Resource

Complete uniform networks are a special case of Eulerian networks. In Eulerian
networks, the equality rin

i = rout
i holds for each vertex vi. The results obtained for such

networks are a generalization of the results obtained for complete uniform networks.
If W = 1, then

Q1∗ =

(
rout

1
rsum

, . . . ,
rout

n
rsum

)
. (14)

In the complete uniform network rout
i = rn, rsum = rn2, whence we obtain its steady

state vector Q1∗ =
(

1
n , . . . , 1

n

)
(Formula (12)).

For an arbitrary W ≤ T the limit vectors are

Q∗ = Fout∗ =
(

Fin∗
)T

= W

(
rout

1
rsum

, . . . ,
rout

n
rsum

)
. (15)

The threshold value T is expressed by formula

T = rsum.

The limit vectors for W = T are
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Q̃ = F̃out =
(

F̃in
)T

= (rout
1 , . . . , rout

n ). (16)

For the complete uniform network, this formula transforms into Formula (13).

3.1.3. Non-Symmetric Networks: Small Resource

For non-symmetric networks, only the most general formulae can be obtained. Vector
Q1∗ cannot be expressed only in terms of network parameters. It can be found as the
eigenvector of matrices R′ and R′∗ (Formulae (7) and (8)).

For an arbitrary W ≤ T the limit state vector is

Q∗ = W ·Q1∗.

For the threshold value T, a strict inequality holds:

T < rsum. (17)

In the limit state, at least one vertex has the resource value equal to its total out-
throughput

q̃i = rout
i , (18)

and at least one vertex has the resource value strictly less than its total out-throughput

q̃i < rout
i .

Let there be l vertices satisfying the condition (18) in a network, 1 ≤ l < n. Introduce
such numbering that these vertices have the first numbers. Then, the limit vectors for
W = T are

Q̃ = F̃out =
(

F̃in
)T

= (rout
1 , . . . , rout

l , q̃l+1, . . . , q̃n). (19)

Comparing Formula (19) with Formulae (13) and (16), we find that for complete
uniform and Eulerian networks, the equality l = n holds. For non-symmetric networks,
the strict inequality l < n is required.

As the threshold value is equal to the sum of the coordinates of vector Q̃, the nature of
inequality (17) becomes clear.

3.2. Regular Networks. Large resource
3.2.1. Non-Symmetric Networks

In this section, for introducing a number of properties, we turn first to non-symmetric
networks.

When the resource in the network is above the threshold, some vertices start ac-
cumulating surpluses. It is natural to assume that these are the receiver-vertices (see
Definition 23).

Examples with different networks functioning are considered in [32] (Examples 3–5).
Example 5 demonstrates that not all receivers can accumulate a resource surplus. Moreover,
based only on the network topology and characteristics of the vertices rin

i , rout
i , it is not

always possible to determine which of the receivers will attract the resource.
Let us introduce the concept of an attractor vertex.

Definition 27. A vertex capable of accumulating a surplus of resource is called an attractor vertex.

Attractors can be receiver-vertices and some neutral vertices. Results for neutral
vertices will be presented in Section 3.2.2.

Receivers are active attractors. They can attract the resource from other vertices.
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Neutral vertices can only partially keep the surplus if they already have it. Such
attractors will be called passive.

3.2.2. Complete Uniform and Eulerian Networks: Large Resource

For the complete uniform network with parameters n and r, the threshold value is
T = rn2, and the limit vector Q̃ is defined by Formula (13):

Q̃ = (rn, . . . , rn).

Let W > T. Consider an arbitrary initial state. There exists at least one vertex vi in a
network for which holds

qi(0) > rn. (20)

This vertex has a surplus equal qi(0)− rn > 0. Let us denote this surplus as si(0). At
least at time step t = 0 this vertex will operate according to rule 1.

Arrange the vertices in descending order of their resource.
Let there be l vertices in a network satisfying condition (20). Then, the vector of initial

distribution has the form

Q(0) = (rn + s1(0), . . . , rn + sl(0), rn− dl+1(0), . . . , rn− dn(0)), (21)

where di(0) ≥ 0, i = l + 1, n are deficits of resources to value rn.
The total surplus in a network at t = 0 is denoted as ssum(0) and the total deficit as

dsum(0):

ssum(0) =
l

∑
i=1

si(0); dsum(0) =
n

∑
i=l+1

di(0).

If W > T then ssum(0) > dsum(0) and ∀t ssum(t) > dsum(t).
Experiments show that in a complete uniform network with the initial distribution

given by (21) the limit state exists. It has a form

Q∗ = (rn + s∗1 , . . . , rn + s∗m, rn, . . . , rn),

where m ≤ l. The Example 6 in [32] shows both these cases: (1) m = l, and (2) m < l.

Proposition 2. In the complete uniform network with parameters r, n, for given Q(0) = (rn +
s1(0), . . . , rn + sl(0), rn− dl+1(0), . . . , rn− dn(0)) if

sl(0) >
dsum(0)

l

then m = l and
Q∗ = (rn + s∗1 , . . . , rn + s∗l , rn, . . . , rn)

where

s∗i = si(0)−
dsum(0)

l
, i = 1, l,

m < l otherwise.

This statement is demonstrated in Example 6 [32].
For an arbitrary Eulerian network, all the results obtained for complete uniform

networks are transferred almost unchanged as any vertex of the Eulerian network is also
a passive attractor. However, finding the limit state with a large resource is much more
complicated (Section 4.3).

4. Results: Standard Model

In this section, we present the main results for regular resource networks.
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4.1. Non-Symmetric Networks

In Definition 27, we introduced a notion of an attractor vertex. In general, this is a
vertex that can have resource surpluses in the limit state at W > T.

Except for some special cases, in asymmetric networks, the attractors are always
receiver-vertices. Experiments show that not every receiver-vertex can be an attractor.
Moreover, the Example 4 in [32] demonstrates that in a number of cases, it is impossible
to recognize an attractor only by the topology of the graph and the total capacities of the
vertices. An attractiveness criterion is formulated and proved in [4]. Here, we give a much
shorter proof. This criterion is universal. It is suitable for all classes of resource networks,
not just regular ones.

Theorem 3. The vertex vk of resource network is an attractor if it satisfies the equality

k = arg min
i=1, n

rout
i

q1∗
i

. (22)

Proof. The threshold value T is defined by Formula (10) in Theorem 2.

T = min
i=1, n

rout
i

q1∗
i

.

The minimum of this ratio is achieved on the attractor vertices. Therefore, vertex vk is
an attractor if and only if Formula (22) is true.

The following theorems determine the limit states and flows in a regular asymmetric
network for any total resource and its initial distribution. They summarize the above
results.

Theorem 4. The limit state Q∗ in an asymmetric regular network with l attractor vertices exists
for any total resource W.

1. If W < T then vector Q∗ = (q∗1 , . . . , q∗n) is unique and defined by the formula

Q∗ = W ·Q1∗,

where Q1∗ is the limit stochastic vector of corresponding homogeneous regular Markov chain
with stochastic matrix

R′ = diag

(
1

rout
1

, . . . ,
1

rout
n

)
· R.

All components of Q∗ are positive.
2. If W = T then vector Q̃ is unique and has the form

Q̃ = T ·Q1∗ = (rout
1 , . . . , rout

l , q̃l+1, . . . , q̃n),

where vertices with first l, indexes ( l ≥ 1) are attractor vertices; the rest (n− l) vertices
satisfy the strict inequality

q̃i < rout
i , i = l + 1, n.

3. If W > T, then vector Q∗ has the form

Q̃ = T ·Q1∗ = (rout
1 + s∗1 , . . . , rout

l + s∗l , q̃l+1, . . . , q̃n),

where s∗i > 0, i = 1, l, are resource surpluses distributed among attractors:

l

∑
i=1

s∗i = W − T.
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The values of s∗i depend on the initial distribution.

Theorem 5. The limit flow F∗ = ( f ∗ij)n×n in an asymmetric regular network with l attractor
vertices exists and is unique for any total resource W. Vectors Fin∗ and Fout∗ are defined as follows.

1. If W < T then

Fin∗ =
(

Fout∗)T
= W ·Q1∗,

All components of matrix F∗ are positive.

fsum = W.

2. If W ≥ T then

F̃in =
(

F̃out∗)T
= T ·Q1∗ = Q̃ = (rout

1 , . . . , rout
l , q̃l+1, . . . , q̃n),

where vertices with first l, indexes ( l ≥ 1) are attractor vertices; the rest (n− l) vertices
satisfy the strict inequality

q̃i < rout
i , i = l + 1, n.

fsum = T.

Remark 4. For any arbitrarily large resource W > T, the total flow is limited by the value T.

As follows from the theorems, the resource is accumulated only by the attractor
vertices. The rest of the vertices at W > T have the same small amount of resources, no
matter how large W is.

To investigate a more even distribution of the resource, we created a model with
constraints on attractors. It will be described in Section 5.

4.2. Complete Uniform Networks

In Eulerian networks in general, and in complete uniform networks in particular, each
vertex is an attractor. This feature determines their behavior with a large resource. All
vertices are passive attractors. They can hold a resource at certain initial states, but they
cannot accumulate it.

We remind that for a complete uniform network, the threshold value is T = rn2.
First, describe the results for complete uniform networks. Uniform complete networks

were introduced and investigated in [1]. However, in that work, the apparatus of converg-
ing series was used, which was reflected not only in the proofs, but also in the formulation
of the statements. In the present article, the results obtained are structured and simplified.
All theorem proofs are new.

Theorem 6. The limit state Q∗ in a complete uniform network exists for any total resource W. For
W ≤ T, it is unique.

1. If W < T then

Q∗ =
(

W
n

, . . . ,
W
n

)
,

2. If W = T = rn2 then
Q∗ = (rn, . . . , rn),

3. If W > T, then vector Q∗ depends on the initial state

Q(0) = (rn + s1(0), . . . , rn + sl(0), rn− dl+1(0), . . . , rn− dn(0)) (23)

and has the form

Q∗ = (rn + s∗1 , . . . , rn + s∗m, rn, . . . , rn), m ≤ l,
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where s∗i > 0, i = 1, m, are resource surpluses:

m

∑
i=1

s∗i = W − T.

The values of s∗i depend on the initial distribution.

• If

sl(0) ≥
dsum(0)

l
(24)

then m = l ant the limit state has the form (Proposition 2):

Q∗ =
(

rn + s1(0)−
dsum(0)

l
, . . . , rn + sl(0)−

dsum(0)
l

, rn, . . . , rn
)

, (25)

• If

sl(0) <
dsum(0)

l
then m < l is the highest index for which the inequality holds

sm(0) ≥
1
m

(
dsum(0)−

l

∑
i=m

i · si(0)

)

and the limit state vector is

Q∗ = (rn + s1(0)− wm(0), . . . , rn + sm(0)− wm(0), rn, . . . , rn) (26)

where

wm(0) =
1
m

(
dsum(0)−

l

∑
i=m

i · si(0)

)
.

Proof. The validity of items 1 and 2 follows directly from the results obtained for regular
homogeneous Markov chains [33].

Consider an arbitrary initial state of the network for W > T where the vertices are
ordered in descending order of the resource (Formula (23)). As the network is complete
and uniform, all vertices have the same input flows. The output flow of the first l vertices
is equal to rn. The remaining vertices give all their resources equally to all other vertices
of the network. Then, all vertices v1, . . . , vl during the network operation must give the
resource equally. The resource at each vertex must decrease by dsum(0)/l.

• If sl(0) ≥
dsum(0)

l then the limit state is described by the Formula (25).

• If sl(0) <
dsum(0)

l then perform a number of steps.

1. Reduce the surplus in each of the first l vertices by the value cl(0).
2. Distribute the resource l · cl(0) equally between the vertices vl+1, . . . , vn.
3. Take the resulting vector

Q′(0) = (rn + s1(0)− sl(0), . . . , rn + sl−1(0)− sl(0), rn,

rn− dl+1(0) +
l · cl(0)
n− l

, . . . , rn− dn(0) +
l · cl(0)
n− l

)

as a new initial state Q′(0) = (rn+ s′1(0), . . . , rn+ s′l−1(0), rn, rn− d′l+1(0), . . . ,
rn− dn(0)).

4. Calculate the new value of the total deficit: d′sum(0) = dsum(0)− l · cl(0).
5. Evaluate the new value s′l−1(0).
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– If s′l−1(0) ≥
dsum(0)−l·cl(0)

l−1 then m = l − 1 and the limit state is described by
the Formula (26).

– If s′l−1(0) <
dsum(0)−l·cl(0)

l−1 then all steps 1÷ 5 must be repeated.

The limit state will be found in at most l − 1 iterations and is expressed by the
formula (25) or (26) depending on the condition (24).

The limit flow is defined by the following theorem.

Theorem 7. The limit flow F∗ = ( f ∗ij)n×n in a complete uniform network exists and unique for
any total resource W.

1. If W < T then

Fin∗ =
(

Fout∗)T
=

(
W
n

, . . . ,
W
n

)
,

fsum = W.

2. If W ≥ T = rn2 then

F̃in =
(

F̃out)T
= Q̃ = (rn, . . . , rn),

fsum = T = rn2.

4.3. Eulerian Networks

The threshold value for Eulerian networks is T = rsum.
For W > T, let the vector of initial distribution be Q(0) = (rout

1 + s1(0), . . . , rout
l +

sl(0), rout
l+1 − dl+1(0), . . . , rout

n − dn(0)) where

si(0) > 0, i = 1, l, dj(0) ≥ 0, j = l + 1, n.

The following theorem was proved in [6].

Theorem 8. The limit state Q∗ in an Eulerian network exists for any total resource W. For W ≤ T,
it is unique.

1. If W < T then

Q∗ = W

(
rout

1
rsum

, . . . ,
rout

n
rsum

)
,

2. If W = T = rsum then
Q∗ =

(
rout

1 , . . . , rout
n
)
.

3. If W > T, then vector Q∗ depends on the initial state Q(0) = (rout
1 + s1(0), . . . , rout

l +
sl(0), rout

l+1 − dl+1(0), . . . , rout
n − dn(0)) and has the form

Q∗ = (rout
1 + s∗1 , . . . , rout

m + s∗m, rout
m+1, . . . , rout

n ), m ≤ l, (27)

where s∗i ≥ 0, i = 1, m are resource surpluses:

m

∑
i=1

s∗i = W − T.

The values of s∗i depend on the initial distribution.

Remark 5. For W > T, the relationship between the initial and limit states in Eulerian networks
is much more complicated than this relationship in complete uniform networks. It is not enough to
arrange the vertices in descending order of surpluses to find out which of them will not be able to
hold the resource. In formula (27), some of the first l vertices may have zero surpluses.
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This remark is illustrated by Example 7 in [32].

4.3.1. Initial State Analysis

First, consider symmetric networks. The behavior of quasi-symmetric networks is
more complicated. If a network is symmetric, every vertex v1, . . . , vl has paired in- and
out- edges with the same weights, so the flows between these vertices are also symmetric.
The flow fij(t) = rij sent by vertex vi along the output edge eij into vertex vj, i, j = 1, l,
returns along the coupled input edge eji, (rij = rji). Therefore, the flow within the
subnetwork of the first l vertices is constant. In quasi-symmetric network this symmetry is
violated.

Let W = T = rsum and the initial state has the form

Q(0) = (rout
1 + s1(0), . . . , rout

l + sl(0), rout
l+1 − dl+1(0), . . . , rout

n − dn(0)).

The total deficit is denoted as dsum(0), the total surplus as ssum(0). For W = T,
dsum(0) = ssum(0), and ∀t dsum(t) = ssum(t).

The vectors of deficit and surplus at time t are

D(t) = (0, . . . , 0, dl+1(t), . . . , dn(t)), S(t) = (s1(0), . . . , sl(0), 0, . . . , 0).

Then
Q(t) = (rout

1 , . . . , rout
n ) + S(t)− D(t).

Formulate the problem as follows.
Let the vector of initial deficits D(0) is known. Find a vector of initial surpluses

S(0) = S̃, (28)

at which none of the first l vertices will switch to rule 2 during the network operation. This
is a necessary and sufficient condition for m = l (item 3 of Theorem 8, Formula (27)).

When this vector is found, for any initial state with W > rsum, for each of the first l
vertices it will be possible to determine its surplus in the limit state: s∗i = max{0, si(0)− s̃i}.
Generally, if si(0)− s̃i, i = 1, l, finding the vector S̃ is equal to finding the limit state vector,
as

Q∗ = (rout
1 , . . . , rout

n ) + S∗,

where S∗ = S(0)− S̃, D∗ = 0.
Comparing vectors Fout(t + 1) and Fout(t)

Fout(t + 1) = (rout
1 , . . . , rout

l , ql+1(t + 1), . . . , qn(t + 1)),

Fout(t) = (rout
1 , . . . , rout

l , ql+1(t), . . . , qn(t)),

we get the formula
Fout(t + 1) = Fout(t)P, (29)

where

P =

(
I1 R′1
O R′3

)
.

Here, I1 is the identity matrix of size l × l; O is the zero matrix of size l × (n− l), R′1 and
R′3 are corresponding blocks of matrix R′:

R′ =
(

R′0 R′1
R′2 R′3

)
. (30)
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It follows directly from (29) that

Fout(t + k) = Fout(t)Pk; Fout∗ = Fout(0)P∗,

where P∗ = limk→∞ Pk. The formula for P∗ is obtained in [6].

P∗ =
(

I1 R′1(I2 − R′3)
−1

O O

)
, (31)

where I2 is the identity matrix of size (n− l)× (n− l).
Split vector Rout = (rout

1 , . . . , rout
n ) into two components: Rout

[1, l] of length l, and

Rout
[l+1, n] of length n− l.

It follows from (31) that

Rout
[1, l] · P

SD = Rout
[l+1, n], or

(rout
1 , . . . , rout

l ) · PSD = (rout
l+1, . . . , rout

n ), (32)

where matrix PSD of size (n− l)× l is the upper right block of matrix P∗: PSD = R′1(I2 −
R′3)
−1.

Proposition 3. Let W = rsum and Q(0) = Rout + S(0)− D(0). Then, the first l coordinates of
vector S̃ (28) are found as follows:

s̃i = rout
i

n−l

∑
j=1

dl+j(0)

rout
l+j

pSD
ij . (33)

Proof. 1. If ∀ j = l + 1, n qj(0) = 0, the deficits in the corresponding vertices are

rout
j ,

dj(0)
rout

j
= 1, and the proof follows from Formula (32).

2. If ∃ j = l + 1, n : qj(0) > 0, then the j-th term in sum (33) will be reduced so
that the right side of formula (32) has vector (dl+1(0), . . . , dn(0)) instead of vector
(rout

l+1, . . . , rout
n ).

In [6], an algorithm for finding the limit state is proposed for the case m < l. It is
based on the same principles as Theorem 6, formulated for complete uniform networks,
but in the case of arbitrary symmetric networks, the formulas are more cumbersome.

4.3.2. Operation Analysis

Write out the formulas for changing the network states with a large total resource.
Again, assume that the first l vertices at each time step operate according to rule 1.

Q(t + 1) = Q(t)− Fout(t) + FinT(t + 1).

By definition,
FinT(t + 1) = Fout(t)R′.

Then
Q(t + 1) = Q(t)− Fout(t) + Fout(t)R′ = Q(t)− Fout(t)(I − R′).

It is easy to see that I − R′ = L where L is the normalized Laplacian matrix.

Q(t + 2) = Q(t + 1)− Fout(t + 1) + Fout(t + 1)R′ =

= Q(t)− Fout(t)(I − R′)− Fout(t)P + Fout(t)PR′ =

= Q(t)− Fout(t)(I + P)(I − R′).
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Generally,

Q(t + k) = Q(t)− Fout(t)
k−1

∑
i=0

Pk(I − R′).

The sequence of vectors Q(t) converges to Q∗. The sum ∑k−1
i=0 Pk does not converge

as k → ∞, as P∗ is not equal to the zero-matrix (Formula (31)). However, Fout(t + k) =
PkFout(t) tends to Fout∗, which, in turn, is the unique eigenvector of matrix R′. Therefore,
Fout(t)Pk(I − R′) tends to the zero vector. Passing to the limit, obtain

Q∗ = Q(t)−
∞

∑
i=0

Fout(t)Pk(I − R′).

As t is an arbitrary time step, then

Q∗ = Q(0)−
∞

∑
i=0

Fout(0)Pk(I − R′).

Q(0) = Rout + S(0)− D(0),

where
Rout = (rout

1 , . . . , rout
n ).

Then,

Q∗ = Rout + S(0)− D(0)−
∞

∑
i=0

Fout(0)Pk(I − R′).

On the other hand, Q∗ = Rout. Then,

S(0) = D(0) +
∞

∑
i=0

Fout(0)Pk(I − R′).

If S(0) = S̃ for a given network, W = T = rsum and given vector D(0) then

S̃ = D(0) +
∞

∑
i=0

Fout(0)Pk(I − R′).

The first l coordinates of this vector are defined by Formula (33), the remaining are equal
to zero.

The flow behavior in Eulerian networks is much simpler to describe. The flow in an
arbitrary Eulerian network (both symmetric and quasi-symmetric) with W > T depends
only on its throughputs. Each edge is filled completely.

Theorem 9. In an Eulerian network, the limit flow F∗ = ( f ∗ij)n×n exists and is unique for any
total resource W.

1. If W < T, then

Fin∗ =
(

Fout∗)T
= W

(
rout

1
rsum

, . . . ,
rout

n
rsum

)
, fsum = W.

2. If W ≥ T = rsum, then

F̃in =
(

F̃out)T
= Q̃ =

(
rout

1 , . . . , rout
n
)
, fsum = T = rsum.

Proof. The proof follows directly from the properties of homogeneous Markov chains,
since unlike network states, flows are always described by homogeneous chains.
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5. Resource Network with Limited Capacity of Attractor Vertices

In this section, we consider only non-symmetric regular networks, as in Eulerian
networks, each vertex is a potential attractor, and there is no point in limiting such vertices.
In non-symmetric networks, for any arbitrarily large resource, attractors accumulate all the
surplus. Capacity limitations are introduced for a more even distribution of the resource.

A vertex is an attractor of an asymmetric network if it satisfies criterion (22). In this
modification of the standard model, such vertices will be called primary attractors. For such
vertices, we impose a limitation on the capacity of the following form

qk(t) ≤ rout
k + p, p ≥ 0. (34)

This limitation applies only if qk(0) ≤ rout
k + p; otherwise, for a given initial state, the

capacity of the vertex will remain unbounded.
The form of constraint (34) is due to the fact that for attractor vk, the equality q̃k = rout

k
holds. And p > 0 is some constant value limiting resource surplus s∗k .

The following two propositions are proved in [29].

Proposition 4. In a regular non-symmetric network with restrictions, there is a second threshold
value of the total resource T2, T < T2 < rsum:

• if W ≤ T2 + lp, the network operates as a network without capacity limitations;
• if W > T2 + lp, the dynamics of the network changes,

where l is the number of attractors.

Proposition 5. For the values of total resource W, there are four intervals with different network
functioning.

• For W ∈ (0, T], from some moment t′ ≥ 0 the network operation is described by a homoge-
neous Markov chain. The limit state and flow vectors exist, are unique and coincide. The total
limit flow is equal to W and increases with the growth of W.

• For W ∈ (T, T + lp], the limit state and flow exist. The limit flow is unique, the limit state
is unique for l = 1; for l > 1, the limit state is unique at all vertices, except attractors. The
resource in attractors is not less than their output throughputs. The surpluses in attractors
depend on the initial distribution of the resource, but the sum of these surpluses does not
depend on the initial state and is equal to W − T ≤ lp. The total limit flow is equal to T and
does not change with increasing W.

• For W ∈ (T + lp, T2 + lp], all attractors reach a capacity limitation. An excess resource
begins to accumulate in the remaining vertices, but none of them is still able to exceed the
value rout

i , that is, switch to rule 1 operation. The total limit flow is equal to W − lp and
increases with the growth of W.

• For W ∈ (T2 + lp, ∞), the new vertices are saturated to the total output rout
i and the flow is

stabilized at the value T2. For any arbitrarily large value of W, the total limit flow is equal
to T2.

If the limitations of attractors are equal to zero (p = 0), the second interval disappears and
three remain: (0, T], (T, T2], (T2, ∞).

Definition 28. The vertices vi that saturate to the total output throughput rout
i when W ≥ T2 + lp

are called secondary attractors.

Example 8 in [32] illustrates the concept of a secondary attractor. It demonstrates the
functioning of an asymmetric network with a total resource W belonging to the last interval
W ∈ (T2 + lp, ∞).

The first two intervals of the total resource in Proposition 5 specify the conditions
under which restrictions on attractors do not apply, and the operation of the network is
standard.
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Consider the two remaining intervals. Without loss of generality, we assume that
p = 0.

5.1. Network Operation with Resource W ∈ (T, T2)

In this interval, such a moment t′ exists when all attractors are saturated. Then they
cannot receive the entire input flow and start to return its part back; and this part is
redistributed between the non-attractive vertices. For all t > t′ the operation of a network
can be described by formula

Q(t) =

(
−c1(t)

n

∑
j=l+1

f j1(t), . . . , − cl(t)
n

∑
j=l+1

f jl(t),
l

∑
i=1

ci(t) fl+1,i(t), . . . ,
l

∑
i=1

ci(t) fni(t)

)
+ Q(t− 1) · R′, or

Q(t) +

(
c1(t)

n

∑
j=l+1

f j1(t), . . . , cl(t)
n

∑
j=l+1

f jl(t), −
l

∑
i=1

ci(t) fl+1,i(t), . . . , −
l

∑
i=1

ci(t) fni(t)

)
= Q(t− 1) · R′, (35)

where ci(t), i = 1, l, are excess surpluses of the input flow in saturated attractors, which
are redistributed between other vertices. They are expressed by formula

ci(t) =
∆qi(t)

∑n
j=l+1 f ji(t)

; ∆qi(t) = qi(t)− rout
i .

Note that in formula (35), for all flows fkm(t) holds k > l. This means that these are
flows from non-attractive vertices, and according to rule 2, they are equal to the fractions
of qk(t)

fkm(t) = qk(t)
rkm

rout
k

.

Then, expression (35) can be rewritten in terms of Q(t).
In the matrix form, it is written as

Q(t)S′(t) = Q(t− 1)R′, (36)

where R′ is the stochastic matrix of a standard network (Formula (5)). To define matrix
S′(t), we introduce additional notation.

As in the previous section, represent the matrix R′ in block form (30).
Block R′0 has dimension l × l and corresponds to attractor vertices.
Then matrix S′(t) can be expressed in terms of blocks of matrix R′ and ci(t) values,

i = 1, l

S′(t) =
(

I1 O
R′2diag(c1(t), . . . , cl(t)) I2 − diag

(
(c1(t), . . . , cl(t))(R′2)

T) ),

where I1 and I2 are the identity matrices of size l × l and (n− l)× (n− l) accordingly; O is
the zero matrix of size l × (n− l) .

Proposition 6. S′(t) is a stochastic matrix.

Proof. Consider the two lower blocks of matrix S′(t).

R′2diag(c1(t), . . . , cl(t)) =


rl+1,1
rout

l+1
c1(t) · · ·

rl+1,l
rout

l+1
cl(t)

...
. . .

...
rn,1
rout

n
c1(t) · · · rn,l

rout
n

cl(t)

, (37)
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I2 − diag
(
(c1(t), . . . , cl(t))(R′2)

T
)
=


1−∑l

i=1 ci(t)
rl+1,1
rout

l+1
· · · 0

...
. . .

...
0 · · · 1−∑l

i=1 ci(t)
rn,1
rout

n

.

The diagonal elements of matrix I2−diag
(
(c1(t), . . . , cl(t))(R′2)

T) are positive. The values
∑l

i=1 ci(t)
rl+k,1
rout

l+k
, k = 1, n− l in this matrix are the sums of the elements of the corresponding

row of matrix (37). Then, the total sum of elements of each row is equal to one.

Proposition 7. S′(t) is an invertible matrix. The inverse matrix S′−1(t) is expressed by formula

S′−1(t) =
(

I1 0
−D(t)R′2diag(c1(t), . . . , cl(t)) D(t)

)
, (38)

where
D(t) =

(
I2 − diag

(
(c1(t), . . . , cl(t))(R′2)

T
))−1

.

Proof. It is easy to verify that for the matrix given by Formula (38), the equality holds

S′(t)S′−1(t) = S′−1(t)S′(t) = I.

Due to this proposition, Equation (36) can be rewritten to find Q(t).

Q(t) = Q(t− 1)R′S′−1(t). (39)

Proposition 8. S′−1(t) · 1 = 1 where 1 is a column vector of ones.

As matrix S′−1(t) has negative elements, it is pseudo-stochastic.

Remark 6. For different networks, matrix R′S′−1(t) can be stochastic or pseudo-stochastic. The
work in [34] introduces reversible network transformations that convert a pseudo-stochastic matrix
R′S′−1(t) into a stochastic one. Without loss of generality, we will assume that the matrix is
stochastic. Then, the equality (39) describing the operation of a network defines a heterogeneous
Markov chain [35].

The network operation is described as follows:

Q(t + k) = Q(t)
k−1

∏
i=0

R′S′−1(t + i).

Definition 29. A heterogeneous Markov chain with stochastic matrices P(i) is called strongly
ergodic if

lim
t→∞

t

∏
i=1

P(i) = 1 · πT,

where 1 is a column vector of n units, π is a certain probability vector.

Proposition 9. The heterogeneous Markov chain with stochastic matrices R′S′−1(t) is strongly
ergodic.

Proof. First, prove that limt→∞ S′−1(t) exists.

R′S′−1(t) =
(

R′0 − R′1D(t)R′2diag(c1(t), . . . , cl(t)) R′1D(t)
R′2 − R′3D(t)R′2diag(c1(t), . . . , cl(t)) R′3D(t)

)
.
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For W ∈ (T, T2] the first l components of vector Q(t) tend to values rout
i by definition

of a network with attractor limitations.
It means that two left blocks of R′S′−1(t) have limits; and then the sequences ci(t)

converge and two right blocks also have limits.
The sequence R′S′−1(t) converges. Therefore, the sequence S′−1(t) converges too. Let

limt→∞ S′−1(t) = S′∗−1.
Consider matrix R′S′∗−1. This is a regular stochastic matrix and then it defines a

homogeneous Markov chain. Thus,

lim
t→∞

(R′S′∗−1)t = 1 · πT,

and therefore

lim
t→∞

t

∏
i=1

R′S′−1(t) = 1 · πT.

Theorem 10. In a regular non-symmetric network with a limited capacity of attractors for W ∈
(T, T2], the limit state exists, is unique, and is an eigenvector of matrix

R′′∗ = lim
t→∞

t

∏
i=1

R′(S′)−1(i).

The proof the proof follows directly from Proposition 9.

5.2. Network Operation with Resource W = T2

All the statements in this section are proved in [34].

Theorem 11. The second threshold value T2, for which at least one non-attractive vertex vi, i > l,
has the limit resource q̂i = rout

i , is unique.

The limit state vector at W = T2 is denoted by Q̂.
Matrices S′(t) depend not only on time but also on the total amount of resource W in

the network.
The limit matrix at W = T2 is denoted by Ŝ′.
Matrix Ŝ′

−1
is expressed by formula

Ŝ′
−1

=

(
I1 0

−
(

I1 − diag(ĉ1, . . . , ĉl)(R′2)
T)−1R′2diag(ĉ1, . . . , ĉl)

(
I2 − diag(ĉ1, . . . , ĉl)(R′2)

T)−1

)
,

where ĉi are the limit flow surpluses

ĉi =
∆q̂i

∑n
j=l+1

rji

rout
i

q̂i
, i = 1, l,

the numerator contains the i-th coordinate of vector

∆Q̂ = Q̂R′ − (rout
1 , . . . , rout

l , 0, . . . , 0).

The limit state vector Q̂ is the left eigenvector of matrix R′Ŝ′
−1

with eigenvalue λ = 1:

Q̂ = Q̂R′Ŝ′
−1

.



Mathematics 2021, 9, 1444 25 of 34

Proposition 10. The limit of powers
(

R′Ŝ′
−1
)t

as t→ ∞ exists and is equal to the limit matrix

of a homogeneous Markov chain with limit probability distribution 1/T2 · Q̂:

lim
t→∞

(
R′Ŝ′

−1
)t

=
(

R′Ŝ′
−1
)∗

=
1
T2
·
(
1 · Q̂

)
,

where 1 is a column vector of n units.

Corollary 4. Each network with limitations can be uniquely associated with a regular homogeneous
Markov chain with matrix R′′ = R′Ŝ′

−1
defining a new network without constraints (a standard

model) with the following parameters:

• Q1′′∗ = 1
T2

Q̂;
• the threshold value T′′ = T2;
• the limit state vector at W = T′′ is Q̃′′ = Q̂;
• the limit of powers of the stochastic matrix is

R′′∗ =
(

R′Ŝ′
−1
)∗

=
1
T2
·
(
1 · Q̂

)
.

Proposition 11. A non-attractive vertex vi of a regular asymmetric network is a secondary
attractor of this network with limitations if and only if, for W = T2, it satisfies the condition

q̂i = rout
i .

Matrix R′Ŝ′
−1

is stochastic (see Remark 6). Any stochastic matrix defines a family
of networks, which corresponds to a family of throughput matrices, the corresponding
rows of which are proportional. Let Rnew be the matrix of the network whose threshold
value T coincides with T2 of the original network. Moreover, for all primary and secondary
attractors, the equality q̃k = rout

k will hold, i.e., both the primary and secondary attractors
of the original network are the primary attractors of the induced network. Such a network
is given by the formula

Rnew = diag
(
rout

1 , . . . , rout
n
)

R′Ŝ′
−1

. (40)

Thus, knowing the limit vector of resource distribution at W = T2 in a network
without limitations given by matrix R, it is possible to construct a homogeneous Markov
chain and the induced matrix Rnew such that at W = T2, their limit states coincide.

Now, we can formulate the criterion of secondary attractiveness.

Theorem 12 (Secondary Attractiveness Criterion). A non-attractive vertex vj of a regular
asymmetric network without constraints with matrix R is a secondary attractor if and only if in
induced network Rnew it satisfies

j = arg min
i=1, n

rout
i

q1∗new
i

,

where q1∗
i are coordinates of limit vector Q1∗ of induced network Rnew with W = 1.

Theorem 13 (Threshold theorem). The second threshold value of the network with constraints is
determined by the formula

T2 = min
i=1, n

rout
i

q1∗new
i

.

The Limit State Theorem summarizes the results of this section.
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Theorem 14 (Limit State Theorem). In a regular non-symmetric network with constraints on
attractors p, the limit state Q∗ exists for any value of the total resource W. There are two threshold
values T and T2, (0 < T < T2 < rsum), such that:

• For W ∈ (0, T], the limit state is unique and is found by the formula Q∗ = W ·Q1∗;
• For W ∈ (T, T + lp], the limit state is unique for l = 1; for l > 1, the limit state is unique at

all vertices, except for attractors:

Q∗ = (rout
1 + s∗1 , . . . , rout

l + s∗l , q̃l+1, . . . , q̃n)

where q̃i are components of limit vector Q̃ at W = T;
• For W ∈ (T + lp, T2 + lp], the limit state is unique. It consists of the sum of two vectors

Q∗ = P + Q∗W . Here P = (p, . . . , p, 0, . . . , 0); Q∗W is the limit state of an induced
network with matrix

Rnew(W) = diag
(
rout

1 , . . . , rout
n
)

R′S′∗−1
(W).

If W = T2 + lp, then this equality transforms into formula (40) and the limit state is

Q∗ = Q̂ + P =
(
rout

1 + p, . . . , rout
l + p, rout

l+1, . . . , rout
m , q̂m+1, . . . , q̂n

)
,

the vertices vl+1, . . . , vm are the secondary attractors.
• For W ∈ (T2 + lp, ∞), the limit state is unique up to surpluses in the secondary attractors. It

is found by the formula

Q∗ =
(
rout

1 + p, . . . , rout
l + p, rout

l+1 + s∗l+1, . . . , rout
m + s∗m, q̂m+1, . . . , q̂n

)
.

Q̂ is the left eigenvector of matrix R′Ŝ′
−1

corresponding to the maximum eigenvalue λ = 1;
s∗i are surpluses of resource in excess of the T2 + lp value, distributed among secondary
attractors.

6. Resource Network with Greedy Vertices

Consider a resource network with loops and define its functioning as follows. At time
step t vertex vi sends to the loop the resource value equal to

fii(t) =

{
rii, if qi(t) > rii,
qi(t), if qi(t) ≤ rii.

If qi(t) > rii the remaining resource ∆qi(t) = qi(t)− rii is distributed among other
vertices according to the rules of the standard resource network.

Thus, the nodes of the network are “greedy”; they allocate the available resource first
of all to themselves.

Definition 30. We will say that the network stopped at time step t′ if ∀t > t′ ∀i, j = 1, n (i 6=
j), fij(t) = 0.

Remark 7. Note that in the first two described models, the network did not stop at any resource
value. The stop is a new state that has appeared in a network with greedy vertices.

Proposition 12. The network stopped at time step t′ if and only if ∀t > t′ ∀i = 1, n qi(t) ≤ rii.

The proof of this proposition follows from the rules of the network operation.

Definition 31. Given time step t, vertex vi is called unsaturated if qi(t) < rii, saturated if
qi(t) ≥ rii, and oversaturated if qi(t) > rii.
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Definition 32. The resource at the vertex in excess of the loop throughput is called free and
denoted as

∆qi(t) = qi(t)− rii.

Proposition 13. A vertex saturated at time t will also remain saturated at time t + 1.

6.1. Two Threshold Values

There is one threshold value T of total resource W in a standard resource network.
This threshold divides the resource into small values, when all vertices give away their
entire resource at each time step, and large values, when resource surpluses accumulate in
one or several vertices.

In resource networks with greedy vertices, there are two threshold values T0 and T1,
which separate zones of different network behavior. If W ≤ T0 the network stops—in a
finite number of time steps, or asymptotically, depending on the initial state.

Definition 33. The total resource value at which the network stops operating is called insufficient;
otherwise, it is called sufficient.

The threshold value separating insufficient and sufficient resources is denoted by T0.
The threshold value at which at least one vertex switches from rule 2 to rule 1 is denoted
by T1.

Proposition 14. The first threshold value of the resource T0 of a regular network with greedy
vertices is unique for any initial state and is found by formula

T0 =
n

∑
i=1

rii.

Theorem 15. If the total resource W > T0, all the vertices of a regular network are saturated in a
finite number of time steps.

Proof. Consider an arbitrary vertex vi with the resource value qi(0) < rii. As W > T0 and
the network is regular, its input flow f in

i (0) > 0. Its output flow is equal to zero. Then, at
each time step the resource of the unsaturated vertex increases by a positive value bounded
from below, as the total flow fsum(t) is strictly positive and does not tend to zero. If W ≤ T1
and all the vertices operate according rule 2 then

fsum(t) =
n

∑
i=1

∆qi(t) ≥W − T0 > 0.

If W > T1 the flow is bounded from below at least by the sum of all out-throughputs of
vertices operating according to rule 1.

Therefore, f in
i (t) is bounded from below at every step t by a strictly positive constant

δqi. The number of the time steps for its saturation is not greater than (rii − qi(0))/δqi.

The following theorem is important since it allows to reduce the study of networks
with greedy vertices to the standard model, passing to a new initial state, when W > T0.

Theorem 16. For W > T0, a regular resource network with greedy vertices from moment t′

operates equivalently to the corresponding standard resource network without loops, in which the
resource at each vertex is reduced by the loop throughput rii.

Theorem 17. The threshold value of a network with greedy vertices T1 coincides with the threshold
value T of a corresponding standard model.
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The proofs of these two theorems follow from the definition of the resource allocation
rules in a network with greedy vertices.

These theorems show that only two cases are of interest for networks with greedy
vertices.

The first case is W < T0. The resource is absorbed by the loops during the network
operation. Such a network can be considered as an absorbing network with sink vertices
corresponding to unsaturated greedy vertices. The main difference is that a greedy vertex
can saturate and start giving up the resource, while this is impossible for a sink vertex.

The second case is a violation of the regularity of the network when removing loops.
Below we consider both cases.

6.2. Insufficient Resource W < T0

Proposition 15. The network stopped at time step t′ if and only if there is no such cycle vk1 , . . . ,
vkm , vk1 in the network that ∀t > t′ qk1(t) ≥ rk1k1 , . . . , qkm(t) ≥ rkmkm and for every t, at least
one inequality is strict.

Proof. 1. Consider the cycle where all the vertices are saturated and, at every time step, at
least one of them is oversaturated. The vertex that has become saturated remains saturated
in the future. The part of the free resources of oversaturated vertices will be dispersed
to other unsaturated vertices, but the other part will still stay inside the cycle. Then, the
network will not stop.

2. If the network stopped, then all free resource was absorbed by the loops, which
means that there is no saturated cycle in the network.

Note that the unsaturated vertex only accepts the resource, but does not give it away.
This means that if we eliminate all of its outgoing edges, the network operating will not
change. Thus, unsaturated vertices in the regular network correspond to sinks in the
absorbing network.

Depending on the total resource and its initial allocation, some unsaturated vertices
may become saturated over time. However, some of them will remain unsaturated, since
W < T0.

Let t′ be the time step starting from which the set of unsaturated vertices has stabilized
and let these vertices have indices 1, . . . , l. Then, matrix R can be represented as follows:

R =

(
D O
R1 R2

)
.

Here, the weights of all outgoing edges of unsaturated vertices are equal to zero. D is
a diagonal matrix with weights of loops, R1 and R2 are the unchanged blocks of matrix R.

The corresponding stochastic matrix has a form

R′ =
(

I O
R′1 R′2

)
.

Its powers are

R′k =
(

I O
R′1 + R′2R′1 + · · ·+ (R′2)

k−1R′1 (R′2)
k

)
.

The two results follow directly from Theorem 1.11.1 in [33]: (1) matrices (R′2)
k tend to zero

matrix, and (2) the series I + R′2 + R′2
2 + . . . converges to matrix (I − R2)

−1. Therefore, the
limit of powers exists and is expressed by the formula

R′∗ =
(

I O
(I − R′2)

−1R′1 O

)
. (41)

Theorem 18. Matrix R′∗ remains unchanged for any changes in the diagonal elements of matrix R.
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Proof. Consider the new matrix Rd = R + diag(d1, . . . , dn) where diag(d1, . . . , dn) is the
diagonal matrix with arbitrary values di ≥ −rii.

The blocks of a new stochastic matrix will have a form

R′d1 = diag

(
rout

1
rout

1 + d1
, . . . ,

rout
n

rout
n + dn

)
R′1,

R′d2 = diag

(
rout

1
rout

1 + d1
, . . . ,

rout
n

rout
n + dn

)(
R′2 + diag

(
d1

rout
1

, . . . ,
dn

rout
n

))
.

This imposes a constraint on di: di 6= rout
i . To fulfill this condition at the first l vertices, we

assume that di > −rii.
Substitute these values into the expression for the matrix R′∗d. Let

diag

(
rout

1
rout

1 + d1
, . . . ,

rout
n

rout
n + dn

)
= D1, diag

(
d1

rout
1

, . . . ,
dn

rout
n

)
= D2. (42)

R′∗ =
(

I O
(I − D1(R′2 + D2))

−1D1R′1 O

)
.

Therefore,
(I − R′d2)

−1R′d1 = (I − D1(R′2 + D2))
−1D1R′1.

All the diagonal elements of matrix D1 are nonzero then it is invertible. Therefore,

(I − D1(R′2 + D2))
−1D1R′1 = (D−1

1 − (R′2 + D2))
−1R′1.

D−1
1 − D2 = diag

(
rout

1 + d1

rout
1

, . . . ,
rout

n + dn

rout
n

)
− diag

(
d1

rout
1

, . . . ,
dn

rout
n

)
= I.

Thus, we have that
(I − R′d2)

−1R′d1 = (I − R′2)
−1R′1

and R′∗d = R′∗.

Theorem 19. Let the set of unsaturated vertices not change from time step t′ and these vertices
have indices from 1 to l. Then, the limit state of the network is found by the formula

Q∗ = Q(t)R′∗, ∀t ≥ t′.

Proof. If for t ≥ t′ all vertices vl+1, . . . , vn operate according to rule 2, the proof is obvious,
since the network is described by a homogeneous Markov chain.

Let some of vertices vl+1, . . . , vn operate according to rule 1. Since the network is
absorbing, and these vertices are in the transient component, they will lose surplus in a
finite number of time steps t′′. During the time interval [t′, t′′], the network will be described
by an inhomogeneous Markov chain with stochastic matrices R′(t) corresponding to the
matrices R(t), differing from each other by the weights of some loops. The elements of
stochastic matrices R′(t) are

r′ij(t) =


rij

rout
i

, if qi(t) ≤ rout
i ,

rij
q(t) , if qi(t) > rout

i and i 6= j

1− ∑i 6=j rij
qi(t)

, if qi(t) > rout
i and i = j.
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The limit vector is described by the following expression:

Q∗ = Q(t′)
t′′

∏
t=t′

R′(t)R′∗.

Prove that for arbitrary matrix R′(t), the equality holds R′(t)R′∗ = R′∗, where R′∗ has the
form (41).

As matrices R(t) differ only in diagonal elements, the two lower blocks of the matrix
R′(t) can be represented as R′1(t) = R′1d = D1R′1, R′2(t) = R′2d = D1(R′2 + D2), where D1
and D2 are defined by formula (42). Consider the product R′(t)R′∗

R′(t)R′∗ =
(

I O
R′1d + R′2d(I − R′2))

−1R′1 O

)
.

Transform the bottom left block

R′1d + R′2d(I − R′2)
−1R′1 = D1R′1 + D1(R′2 + D2)(I − R′2)

−1R′1 =

= D1R′1 + (D1R′2 + D1D2)(I − R′2)
−1R′1.

Note that
D1D2 = I − D1,

thus

D1R′1 + (D1R′2 + D1D2)(I − R′2)
−1R′1 = D1R′1 + (D1R′2 + I − D1)(I − R′2)

−1R′1 =

= D1R′1 + (D1(R′2 − I) + I)(I − R′2)
−1R′1 =

= D1R′1 − D1(I − R′2)(I − R′2)
−1R′1 + (I − R′2)

−1R′1 =

= D1R′1 − D1R′1 + (I − R′2)
−1R′1 = (I − R′2)

−1R′1.

We obtain that R′(t)R′∗ = R′∗, and

Q∗ = Q(t′)
t′′

∏
t=t′

R′(t)R′∗ = Q(t′)R′∗.

6.3. Greedy Vertices and Cyclic Networks

Theorem 16 has an important corollary. In Section 2.4, a notion of a cyclic resource
network was introduced (Definition 16). In a cyclic network, the greatest common divisor
of the lengths of all cycles is greater than one. Note that even a single loop turns a cyclic
network into a regular one. The reverse process, i.e., the elimination of all loops, can turn
the regular network into a cyclic one.

Definition 34. Let the GCD of all cycles of a network without loops be d > 1. Such a network
with greedy vertices is called d-cyclic.

Theorem 20. If, after removing the loops in the standard model, the regular network turns into a
d-cyclic one, then in a network with greedy vertices for T0 < W ≤ T1 there is a limit cycle with d
limit vectors Q∗1 , . . . , Q∗d .

This theorem is illustrated by Example 9 in [32]. Its proof follows from the definition
of a network with greedy vertices.

Consider the network operation with the resource value satisfying inequality T0 <
W ≤ T1, i.e., with sufficient small resource. The results listed below are obtained for cyclic
networks of the standard model in [36].



Mathematics 2021, 9, 1444 31 of 34

Let R0 is the throughput matrix of a d-cyclic network with greedy vertices where all
diagonal elements are replaced with zeros.

Let R
′
0 be the stochastic matrix corresponding to R0. The sequence of its powers:

R
′
0, R

′2
0 , . . . . It consists of d convergent subsequences:

(1) R
′
0, R

′d+1
0 , R

′2d+1
0 , . . .

(2) R
′2
0 , R

′d+2
0 , R

′2d+2
0 , . . .

. . .
(d) R

′d
0 , R

′2d
0 , R

′3d
0 , . . .

Matrices of each subsequence have zero elements in the same places.
All limits of these subsequences are expressed in terms of one limit matrix

R
′∗
0 = lim

t→∞
(R
′d
0 )

t.

Then, these limits are

R
′∗
0 · R

′
0, R

′∗
0 · R

′2
0 , . . . , R

′∗
0 · R

′(d−1)
0 , R

′∗
0 · R

′d
0 = R

′∗
0 .

A saturated d-cyclic resource network has a limit cycle of length d:

Q∗1 = Q(t) · R′∗0 · R
′
0, Q∗2 = Q(t) · R′∗0 · R

′2
0 , . . . , Q∗d−1 = Q(t) · R′∗0 · R

′(d−1)
0 , Q∗d = Q(t) · R′∗0 .

Here, Q(t) is a vector of state at any time step t > t′, when all the vertices have already
saturated and operate according to rule 2.

Each vector cyclically passes to the next one:

Q∗i+1 = Q∗i · R
′
0, i = 1, d− 1, Q∗1 = Q∗d · R

′
0.

Vectors Q∗1 , . . . , Q∗d are eigenvectors of matrix R
′∗
0 corresponding to the eigenvalue

λ = 1 of multiplicity d.
If these vectors coincide, then the network has an equilibrium state. The equilibrium

vector is vector WQ1∗
0 , where Q1∗

0 is any row of Cesaro limit matrix A:

A =
1
d

R
′∗
0

(
E + R

′
0 + . . . + R

′(d−1)
0

)
.

Vector Q1∗
0 is the unique positive eigenvector of the matrix R′. It can be calculated as

Q1∗
0 =

(
Q∗1 + . . . + Q∗d

)
dW

for any T0 < W ≤ T1.
For a large resource W > T1, the cyclic nature of the network ceases to matter. For

such a network, all the results obtained for regular networks in the standard model are
true. The limit state and flow exist. The limit flow is unique. The limit state is unique up to
the surplus of resources in the attractors. The attractiveness criterion remains unchanged.

7. Resource Networks with the Limited Capacity and Greedy Vertices

Consider combining two modifications of the standard model. The models are com-
pletely independent. Features of a network with limitations on attractor capacities appear
at a large resource, features of a network with greedy vertices appear at an insufficient
resource. However, both of these models allow vertices to accumulate resource at different
intervals. Primary and secondary attractors can attract a resource due to the structure of
their connections; greedy vertices can only use the capacity of their loops.

The combination of the two models will allow the vertices to have both features. The
new model will have three thresholds. This process can be continued. By limiting the
secondary attractors, we obtain attractors of rank 3, etc. (Figure 4).
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Stop

Small Resource   Rule 2

W

T1

T0

0

Sufficient

Insufficient

Large Resource   Rule 1

T2

…
Secondary Attractors

N-ary Attractors

…

Tn

Figure 4. Threshold scheme in a resource network with greedy vertices: T0 separates insufficient and
sufficient resource values, T1 divides the sufficient resource into small and large values, T2 determines
the interval at which the limitations on the attractors begin to apply. Attractors of the next ranks are
schematically shown.

8. Discussion

Resource network is a graph dynamic model with threshold switching of functioning
rules. Transient processes and limit states depend on the topology of the graph and the
weights of its edges, as well as on the total network resource, and, in some cases, its initial
distribution. Each vertex operates according to one of two rules of functioning, depending
on the available resource. The local threshold value of vertex vi is equal to its total out-
throughput rout

i . Despite many local thresholds, it has been proven that there is only one
global threshold T in the network. If the total resource has exceeded this threshold, the
network ceases to be described by a homogeneous Markov chain. Some vertices begin
to accumulate surplus resources. They are called attractor vertices. If the graph weights
are given by rational random variables, there is a single attractor in the network with
a probability equal to one. However, for any stochastic matrix, it is possible to create a
network with an arbitrary number of attractors. If every vertex in the graph is an attractor,
the network generated by this graph belongs to the class of quasi-symmetric networks. A
special case of quasi-symmetric networks is a class of complete homogeneous networks, a
convenient tool for illustrating the various properties of resource networks.

A criterion of vertex attractiveness is formulated and proved. Attractors can be active
and passive. Active attractors are receiver vertices in an asymmetric network. Passive at-
tractors are neutral vertices in symmetric and quasi-symmetric networks. Active attractors
attract resources from other vertices. Passive attractors are only able to keep it. Thus, in a
passive attractor, the property of “attraction” is manifested only in potency—it depends on
the initial resource allocation. An active attractor accumulates surpluses regardless of the
initial state.

Two different modifications of the standard resource network model are proposed.
The first describes a model with constraints on attractor vertices. This model allows
redistributing surplus resources more evenly. Other vertices appear in the network, accu-
mulating surpluses. They are called secondary attractors. Vertices that are neither primary
nor secondary attractors also slightly increase their resources in the limit state. A non-
homogeneous Markov chain describing the operation of a network with limitations on
attractors is constructed. Its strong ergodicity is proved. Based on the obtained non-
homogeneous Markov chain, a homogeneous chain and a matrix of weights Rnew are
constructed, describing the functioning of a new resource network, in which the primary
attractors are the primary and secondary attractors of the original network. The criterion
of secondary attractiveness is formulated and proved. It is proved that in a network with
constraints, there is a second threshold value, and a formula for its value is found. The
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behavior of networks is investigated in each range of resource values bounded by the
thresholds.

By limiting the secondary attractors, the attractors of the rank three can be found.
Continuing this operation, you can rank all the vertices of the network by the rank of
attraction. In this case, the attractiveness rank can serve as a new measure of the vertex
centrality in a graph.

In the second modification of the model, the network with greedy vertices, the vertices
first take the resource for themselves and only then begin to give the rest to other vertices.
The resource reserve of a vertex is equal to the throughput of its loop. A new state appears
in this network, a network stop. In the two previous models, this state was impossible. Two
cases of interest are considered: the case of insufficient resource and the loss of regularity
with a large resource.

Of particular interest is the fact that these networks also have a second threshold value.
However, in networks with limitations, the additional threshold value is greater than the
first, and in networks with greedy vertices, it is less than first.

For networks with greedy vertices, only the first results are obtained. Complete
homogeneous networks are investigated [8]. The present paper considers the general
case–regular networks with an arbitrary topology. New results are obtained for networks
with insufficient resource. A formula for the limit state is obtained, theorems are proved
on the independence of the resource allocation from the loops’ throughputs. In terms of
matrices, this means that the limit of the powers of stochastic matrices does not depend on
the diagonal elements of the original matrix.

Further research will include a description of the remained classes of networks. It
is planned to develop resource networks on graphs with constraints imposed on some
selected arcs. A separate large area is the development of applications using resource
networks in various subject areas, in particular, in telecommunication technologies.
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