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Abstract: General fractional dynamics (GFDynamics) can be viewed as an interdisciplinary science,
in which the nonlocal properties of linear and nonlinear dynamical systems are studied by using
general fractional calculus, equations with general fractional integrals (GFI) and derivatives (GFD),
or general nonlocal mappings with discrete time. GFDynamics implies research and obtaining results
concerning the general form of nonlocality, which can be described by general-form operator kernels
and not by its particular implementations and representations. In this paper, the concept of “general
nonlocal mappings” is proposed; these are the exact solutions of equations with GFI and GFD at
discrete points. In these mappings, the nonlocality is determined by the operator kernels that belong
to the Sonin and Luchko sets of kernel pairs. These types of kernels are used in general fractional
integrals and derivatives for the initial equations. Using general fractional calculus, we considered
fractional systems with general nonlocality in time, which are described by equations with general
fractional operators and periodic kicks. Equations with GFI and GFD of arbitrary order were also
used to derive general nonlocal mappings. The exact solutions for these general fractional differential
and integral equations with kicks were obtained. These exact solutions with discrete timepoints were
used to derive general nonlocal mappings without approximations. Some examples of nonlocality in
time are described.

Keywords: fractional dynamics; fractional calculus; general fractional calculus; nonlocality fractional
derivative; fractional integral; nonlocal mappings

MSC: 26A33; 34A08; 70G60; 70Kxx; 45E10 PACS: 45.10.Hj

1. Introduction

Fractional dynamics [1–4] is an interdisciplinary science in which the nonlocal prop-
erties of dynamical systems are studied by using methods of fractional calculus [5–12],
integro-differential equations of non-integer orders and discrete nonlocal mappings. A
fractional dynamical system is understood as a nonlocal system of any nature (physical,
biological, economic, etc.), the state of which changes (discretely or continuously) in time.
Fractional dynamics uses fractional differential equations and fractional discrete map-
pings to describe dynamical systems with nonlocality in space and time in, for example,
physics [13,14], biology [15], and economics [16,17].

The processes with nonlocality in time are characterized by the dependence of behavior
of dynamical systems at a given moment in time on the history of its behavior in a finite
time interval in the past. To describe this dependence, the integral and integro-differential
operators that form fractional calculus can be used. Fractional calculus is a branch of
mathematical analysis that studies two types of integro-differential operators, for which
generalized analogs of fundamental theorems hold, and therefore these types of operators
are called fractional derivatives and fractional integrals. The characteristic property of
fractional derivatives and integrals is nonlocality in space and time [18,19].

Mathematics 2021, 9, 1464. https://doi.org/10.3390/math9131464 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-4718-6274
https://doi.org/10.3390/math9131464
https://doi.org/10.3390/math9131464
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9131464
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9131464?type=check_update&version=2


Mathematics 2021, 9, 1464 2 of 26

In fractional calculus, nonlocality is described by the kernels of the operators, which
are fractional integrals (FI) and fractional derivatives (FD) of non-integer orders. To describe
dynamical systems with various types of nonlocality in space and time, it is important to
use integral and integro-differential operators with various types of kernels that allow us
to describe various types of nonlocality. Therefore, it is important to have general fractional
calculus that allows us to describe nonlocality in the most general form.

The concept of general fractional calculus (GFC) was suggested by Anatoly N. Kochubei
in his work [20] in 2011 (see also [21–23]). In [20,21], general fractional derivatives (GFD)
and general fractional integrals (GFI) are defined. For these operators, the general fun-
damental theorems are proved in [20,21]. This approach to GFC is based on the concept
of kernel pairs, which was proposed by the Russian mathematician Nikolay Ya. Sonin
(1849–1915) in his 1884 article [24] (see also [25]). Note that in the mathematical literature,
his name “Sonin” [26] is mistakenly used in French transliteration as “Sonine” from French
journals [25]. Then, very important results in constructing GFC were derived by Yuri
Luchko in 2021 [27–29]. In [27,28], GFD and GFI of arbitrary order are suggested, and
the general fundamental theorems for GFI and GFD are proved. Operational calculus for
equations with general fractional derivatives is proposed in [29].

As a result, a mathematical basis was created for constructing general fractional
dynamics. In the framework of general fractional dynamics, it is assumed and implied to
obtain not only and not so much the results concerning studies of specific types of operator
kernels, but, first of all, general results that do not depend on specific types (particular
implementations) of operator kernels. In general fractional dynamics, all research and
results should concern the general form of nonlocality, operator kernels of almost all types
(all sets of kernels), or a wide subset of such kernels.

It should be noted that by now, solutions of some equations with general operators
have already been described, which form the basis of general fractional dynamics and
can be used to describe some dynamic processes in different fields of science. Let us note
some ordinary and particular fractional differential equations with GFD and GFI, which
have already been considered by now and can be used in GFDynamics. A solution of the
relaxation equations with GFD with respect to time is described in [20,22]. The general
growth equation with GFD which can be used in macroeconomic models for processes
with memory and distributed lag is described in [23]. Equations with GFD are considered
in [30,31]. Time-fractional diffusion equations with GFD are described in [20,22,32,33]. To
solve a general fractional differential equation, general operational calculus was proposed
in [29]. Integral equations of the first kind with kernels from the Sonin set and the GFI and
GFD of the Liouville and Marchaud type are described in [34,35]. The partial differential
equations containing GFD and GFI are considered in [36,37]. Some applications of GFC are
described in recent published works (see [31–33,38,39] and references therein).

In nonlinear dynamics, discrete time description is usually derived from differential
equations with integer-order derivatives and periodic kicks (Section 5 in [40], Sections 5.2
and 5.3 in [1] (pp. 60–68), Chapter 18 in [41] (pp. 432–482), Chapter 18 in [2] (pp. 409–453),
and Section 1.2 in [42] (pp. 16–17)). This description is represented by mappings in which
the value Xn+1 is determined by the value Xn (or a fixed finite number of the values Xn
and Xn−1, for example), i.e., Xn+1 = F(Xn) (or Xn+1 = F(Xn, Xn−1), for example). These
mappings cannot describe nonlocal dynamical systems since the original equations contain
only derivatives of integer order and thus are local.

We should note that discrete general fractional calculus has not yet been created.
However, it should be noted that discrete GFDynamics can be described by using the
proposed concept of general nonlocal mappings. Such discrete nonlocal mappings must be
described by kernels of the operators that are used in general fractional calculus. These
mappings can be derived from equations with GFD and GFI without approximations.
In fact, these general nonlocal mappings are the exact solutions of fractional differential
equations at discrete points. The concept of “general nonlocal mappings” is based on the
approach that was proposed for discrete fractional dynamics in [2,43–45].
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In discrete fractional dynamics, the nonlocality in time is taken into account by
the mappings, in which the value Xn+1 is determined by all the past values, Xn+1 =
F(Xn, Xn−1, . . . , X1), where the number of variables in the function F increases with the
number n ∈ N. For the first time such discrete mappings were derived from fractional
differential equations in [43]. Then, this approach was developed in [2,44,45], and it was
applied in [17,46–50]. We should emphasize that nonlocal mappings were derived from
fractional differential equations without approximations. The first computer simulations of
these nonlocal mappings were proposed in [51,52]. Then, new types of chaotic behavior of
systems with nonlocality in time were discovered [53–67]. Discrete fractional calculus [10]
was also used to derive nonlocal mappings in [53–67]. All these mappings were described
by discrete fractional dynamics with power-law nonlocality in time only.

Therefore, it is important to derive general fractional dynamics where we take into
account the general form of nonlocality in time. General nonlocal mappings should be
derived from equations with GFD and GFI. These nonlocal mappings can demonstrate
new types of attractors and chaotic behavior of nonlocal systems. We should emphasize
that these discrete GFDynamics can be derived from equations with GFD and GFI without
approximations.

In this paper, using general fractional calculus, we considered fractional systems with
nonlocality in time which are described by equations with general fractional derivatives,
integrals and periodic kicks. The exact solutions for these nonlinear fractional differen-
tial and integral equations with kicks were obtained. These exact solutions for discrete
timepoints used to derive mappings with nonlocality in time were described without
approximations. The nonlocality of general nonlocal mappings was determined by the
kernels that belong to the Sonin and Luchko sets of kernels which were used in GFI and
GFD of the initial equations.

2. Equations of General Fractional Dynamical Systems

Fractional dynamics with continuous time is described by integral and integro-
differential equations. To take into account nonlocality in time, we require these equations
not to be represented as differential equations or systems of differential equations of integer
order only.

To describe dynamical systems with the general form of nonlocality in time, it is
possible to use the following equations

It
(M)[τ] X(τ) = FI(t, X(t)), (1)

Dt
(K)[τ] X(τ) = FD(t, X(t)), (2)

Dt,∗
(K)[τ] X(τ) = FD∗(t, X(t)), (3)

where the operators It
(M)

, Dt
(K), Dt,∗

(K) have the forms

It
(M)[τ]X(τ) = (M ∗ X)(t) =

∫ t

0
dτM(t− τ)X(τ), (4)

Dt
(K)[τ]X(τ) =

d
dt
(K ∗ X)(t) =

d
dt

∫ t

0
dτK(t− τ)X(τ), (5)

Dt,∗
(K)[τ]X(τ) =

(
K ∗ X(1)

)
(t) =

∫ t

0
dτK(t− τ). (6)

In this case, the nonlocality in time is characterized by the kernels M(t− τ), K(t− τ).
The operators (4)–(6) are defined through the Laplace convolution ∗ with these kernels.
The notation X(1)(t) = dX(t)/dt is used as a special form of the notation X(n)(τ), which
is used in Section 5 of the manuscript where GFI and GFD of arbitrary order are applied
(X(1)(τ) is X(n)(τ) for n = 1).
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Example 1. For the integral kernel

M(t− τ) =
(t− τ)α−1

Γ(α)
, (7)

Equation (1) gives the equation

Iα
RL[τ]X(τ) = FI(t, X(t)), (8)

where Iα
RL is the Riemann–Liouville integral of the order α ∈ (0, ∞), [8].

Example 2. For the kernel

K(t− τ) =
(t− τ)−α

Γ(1− α)
, (9)

Equations (2) and (3) give the equations

Dα
RL[τ]X(τ) = FD(t, X(t)), Dα

C[τ]X(τ) = FD∗(t, X(t)), (10)

where Dα
RL and Dα

C are the Riemann–Liouville and Caputo fractional derivatives of the order α(0, 1),
respectively, [8] (pp. 70,92).

Equations (8) and (10) describe dynamical systems with power-law nonlocality in time,
which is interpreted as a fading memory, and the kernels are called the memory function.

The kernels (7) and (9) can be considered an approximation of a more general form of
kernels [68] to describe dynamical systems with nonlocality in time. In article [68], using
the generalization of the Taylor series that is proposed in [69] for the kernels, we proved
that a wide class of kernels can be approximately considered power function.

For applications, it is important to describe dynamical systems with a more general
form of nonlocality in time. Therefore, it is necessary to consider the general type of kernels
for the integral and integro-differential operators (4)–(6).

To do this, we must have general integral operators and integro-differential operators
which can be interpreted as a generalization of the standard integrals and derivatives of
integer order. Moreover, these general fractional operators must form a certain calculus,
and the fundamental theorems of this calculus must hold for these operators.

General fractional calculus (GFC) is a branch of mathematical analysis of the integral
and integro-differential operators that are generalizations of integrals and derivatives of
integer order for which the generalization of the fundamental theorems of the calculus
are satisfied.

GFC is based on the concept of a pair of mutually associated kernels. This type of
kernels (the set of operator kernels) was proposed by the Russian mathematician Nikolay
Ya. Sonin (1849–1915) in 1884 [25,26] who published articles in French as “N. Sonine”.

The concept of mutually associated kernels of two operators which are defined through
the Laplace convolution assumes that the Laplace convolution for the kernels of these
operators is equal to one. For the operators (4)–(6), the Sonin condition for the kernels M(t)
and K(t) requires that the relation∫ t

0
M(t− τ)K(τ)dτ = 1 (11)

holds for all t ∈ (0, ∞).
In this work about GFDynamics, we followed Luchko’s approach to general fractional

calculus that was proposed by Yuri Luchko in [27,28] in 2021.

Definition 1. The functions M(t), K(t) are a Sonin pair of kernels if

M(t), K(t) ∈ C−1,0(0, ∞) (12)
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and the Sonin condition (11) holds where

Ca,b(0, ∞) = {X(t) : X(t) = tp Y(t), t > 0, a < p < b, Y(t) ∈ C[0, ∞)}. (13)

The set of such kernels is denoted by S−1, and (M(t), K(t)) ∈ S−1 if

M(t), K(t) ∈ C−1,0(0, ∞) and (M ∗ K)(t) = 1 (14)

for all t ∈ (0, ∞).

Definition 2. Let M(t) ∈ S−1 and X(t) ∈ C−1(0, ∞) = C−1,∞(0, ∞). The general fractional
integral with the kernel M(t) ∈ C−1,0(0, ∞) is the operator on the space C−1(0, ∞), that is,

It
(M) : C−1(0, ∞) → C−1(0, ∞), (15)

that is defined by the equation

It
(M)[τ]X(τ) = (M ∗ X)(t) =

∫ t

0
dτM(t− τ)X(τ). (16)

The following important property allows us define the repeated-action general opera-
tor (16). Let M1(t), M2(t) ∈ S−1 and X(t) ∈ C−1(0, ∞). Then, the equation

It
(M1)

[τ] Iτ
(M2)

[s]X(s) = It
(M1∗M2)

[τ]X(τ) (17)

holds for t > 0.
Let us assume that the kernels M(t) and K(t) form are a Sonin pair of kernels. This

allows us to define the general fractional derivatives Dt
(K) and Dt,∗

(K) that are associated with

the general fractional integral It
(M)

.
The space Cm

−1(0, ∞) ⊂ C−1(0, ∞) where m ∈ N consists of the functions X(t), for
which X(m) ∈ C−1(0, ∞).

Definition 3. Let K(t) ∈ S−1 and X(t) ∈ C1
−1(0, ∞). The general fractional derivative of the

Riemann–Liouville type with the kernel K(t) ∈ C−1,0(0, ∞) which is associated with the GFI (16)
is defined as

Dt
(K)[τ]X(τ) =

d
dt
(K ∗ X)(t) =

d
dt

∫ t

0
dτK(t− τ)X(τ) (18)

for t ∈ (0, ∞).

The general fractional derivative of the Caputo type with the kernel K(t) ∈ C−1,0(0, ∞)
is defined as

Dt,∗
(K)[τ]X(τ) =

(
K ∗ X(1)

)
(t) =

∫ t

0
dτK(t− τ)X(1)(τ) (19)

for t ∈ (0, ∞).
These GFI and GFD satisfy the fundamental theorems of GFC [27,28].

3. General Fractional Dynamics

General fractional dynamics is an interdisciplinary science, in which the nonlocal
properties of nonlinear dynamical systems are studied. General fractional dynamics uses
linear and nonlinear models to describe systems with general forms of nonlocality in space
and time by using equations with operators of general fractional calculus.

We can conditionally distinguish the following three directions in general fractional
dynamics with nonlocality in time.
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(1) General fractional dynamics with continuous time is described by the equations
with GFD and GFI with the kernels belonging to the Sonin set S−1. For example, the
solution of integral equations with kernels from the Sonin set∫ t

−∞
dτM(t− τ)X(τ) = F(t), (20)

in which the lower limit is not zero but minus infinity, were proposed by Stefan G. Samko
and Rogerio P. Cardoso [34,35], where general fractional integrals and derivatives are
considered to be of the Marchaud type and the Liouville type.

For example, the solution of relaxation equations

Dt,∗
(K)[τ] X(τ) = λX(t), (21)

where relaxation means that λ < 0, was derived by Anatoly N. Kochubei in [20,22]. The
solution of the growth equation that is described by (21) with λ > 0 was derived by Anatoly
N. Kochubei and Yuri Kondratiev [23] in 2019. Operational calculus for equations with
general fractional derivatives with kernels from the Sonin set is proposed in [29].

(2) General fractional dynamics with discrete time could be described by a discrete
analog of general fractional calculus. However, such a discrete general fractional calculus
has not yet been created.

(3) Another way of describing general fractional dynamics with discrete time can
be based on the use of discrete mappings obtained from exact solutions of general frac-
tional differential and integral equations with periodic kicks. For the first time discrete
mappings with nonlocality in time were derived from fractional differential equations
in [43–45], in which the Riemann–Liouville and Caputo fractional derivatives were used
(see also [2,46–49]). The proposed approach allows us to derive discrete time mappings
with nonlocality in time from integro-differential equations of non-integer orders with-
out approximation. This approach is a generalization of methods that is well-known
in nonlinear dynamics and the theory of chaos (Section 5 in [40], Sections 5.2 and 5.3
in [1] (pp. 60–68), Chapter 18 in [41] (pp. 432–482), Chapter 18 in [2] (pp. 409–453), and
Section 1.2 in [42] (pp. 16–17),), where the discrete time dynamical mappings are derived
from ordinary differential equations of integer order with kicks.

Let us consider Equations (1)–(3) with GFD and GFI and periodic kicks by using

FI(t, X(t)) = FD(t, X(t)) = FD∗(t, X(t)) = λ G(t, X(t))∑ ∞
k=1δ((t + ε)/T − k), (22)

where T is the period of the periodic sequence of kicks, λ is the amplitude of these kicks,
and G(t, X) is the real-valued function.

Expression (22) contains delta functions that are distributions (generalized functions).
Therefore, this expression and Equations (1)–(3) with function (22) are treated as continuous
functionals in a space of test functions (see Section 8 [5] (pp. 145–160) and [70,71]).

We also use t− ε where 0 < ε� T instead of t in the argument of the delta functions
to make sense of the product of G(t, X(t)) and the delta function for the timepoints where
X(t− 0) 6= X(t + 0) [59].

We also assume that the function G(t, X(t)) is such that the product of the delta
function is defined in the neighborhood of the points t = Tk− ε where k ∈ N and ε→ 0 .

We start first by considering the integro-differential Equation (3) with the GFD Dt,∗
(K)

with the kernel K(t) ∈ C−1,0(0, ∞) and periodic kicks (22).

Theorem 1. Let K(t) ∈ C−1,0(0, ∞) and X(t) ∈ C1
−1(0, ∞). Then, the integro-differential equation

Dt,∗
(K)[τ]X(τ) = λ G(t, X(t))∑ ∞

k=1δ((t + ε)/T − k) (23)
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has the solution

X(t) = X(0) + λT ∑ n
k=1M(t− (Tk− ε))G(Tk− ε, X(Tk− ε)), (24)

if Tn < t < T(n + 1), where M(t) ∈ C−1,0(0, ∞) is a function that is a kernel associated with
the kernel K(t), i.e., the functions K(t) and M(t) form a pair of mutually associated kernels from
the Sonin set S−1.

Proof. Let us use the general fractional integral

Is
(M)[τ]X(τ) = (M ∗ X)(t) =

∫ t

0
dτ M(t− τ)X(τ) (25)

with the kernel M(t) ∈ C−1,0(0, ∞) that is associated with the kernel K(t), so that K(t), M(t)
are a pair of mutually associated kernels from the Sonin set. Applying the integral operator
(25) to Equation (23), we obtain

Is
(M)[t]D

t,∗
(K)[τ]X(τ) = λ Is

(M)[t]G(t, X(t))∑ ∞
k=1δ((t + ε)/T − k), (26)

where s > t > τ > 0. Using the second fundamental theorem of general fractional
operators in the form of equation

Is
(M)[t]D

t,∗
(K)[τ] X(τ) = X(s)− X(0) (27)

that holds for X(t) ∈ C1
−1(0, ∞) (see Equation (60) of Theorem 4 in [27] (p. 11) and

Equation (33) of Theorem 2 in [28] (p. 7)), we derive

X(s)− X(0) = λ Is
(M)[t]G(t, X(t))∑ ∞

k=1δ((t + ε)/T − k). (28)

Using (25), Equation (28) is written as

X(s)− X(0) = λ
∫ s

0
dt M(s− t)G(t, X(t))∑ ∞

k=1δ((t + ε)/T − k). (29)

For Tn < s < T(n + 1), Equation (29) is

X(s)− X(0) = λ ∑ n
k=1

∫ s

0
dtM(s− t)G(t, X(t))δ((t + ε)/T − k). (30)

Using the equation ∫ s

0
dt f (t)δ(t− a) = f (a), (31)

which holds for 0 < a < s and f (t) ∈ C∞(Ωa) where Ωa is the neighborhood of point t = a,
Equation (30) gives

X(s)− X(0) = λ T ∑ n
k=1M(s− (kT − ε))G(kT − ε, X((kT − ε))). (32)

Equation (32) leads to solution (24). �

Let us consider the solution for the discrete time points t = Tk with k ∈ N.

Theorem 2. Let K(t) ∈ C−1,0(0, ∞) and X(t) ∈ C1
−1(0, ∞). The solution of the equation

Dt,∗
(K)[τ]X(τ) = λ G(t, X(t))∑ ∞

k=1δ((t + ε)/T − k) (33)
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for the time points s = Tk− ε at ε→ 0+ and the variables

Xk = lim
ε→0+

X(Tk− ε), (k = 1, . . . , n + 1) (34)

is the non-local mapping

Xn+1 = Xn + λ TM(T)G(Tn, Xn) + λ T ∑ n−1
k=1 (M(T(n + 1− k))−M(T(n− k)))G(Tk, Xk) (35)

where M(t) ∈ C−1,0(0, ∞) is a function that is a kernel to the kernel K(t), i.e., the functions K(t),
and M(t) form a pair of mutually associated kernels from the Sonin set S−1.

Proof. Solution (24), which is derived in Theorem 1, for t = T(n + 1)− ε and t = Tn− ε
with 0 < ε� T is given by the equations

X(T(n + 1)− ε) = X(0) + λ ∑ n
k=1M(T(n + 1)− Tk)G(Tk− ε, X(Tk− ε)), (36)

X(Tn− ε) = X(0) + λ T ∑ n−1
k=1 M(Tn− Tk)G(Tk− ε, X(Tk− ε)). (37)

Using the variables

Xk = lim
ε→0+

X(Tk− ε), (k = 1, . . . , n + 1), (38)

solutions (36) and (37) at the limit ε→ 0+ give

Xn+1 = X(0) + λ T ∑ n
k=1M(T(n + 1− k))G(Tk, Xk), (39)

Xn = X(0) + λ T ∑ n−1
k=1 M(T(n− k))G(Tk, Xk). (40)

Subtracting Equation (40) from Equation (39) gives

Xn+1 − Xn = λ T M(T)G(Tn, Xn) + λ T ∑ n−1
k=1 (M(T(n + 1− k))−M(T(n− k)))G(Tk, Xk). (41)

Equation (41) leads to (35). �

Let us consider equation with GFD of the Riemann–Liouville type.

Theorem 3. Let K(t) ∈ C−1,0(0, ∞) and X(t) ∈ C1
−1(0, ∞). The equation

Dt
(K)[τ]X(τ) = λ G(t, X(t))∑ ∞

k=1δ((t + ε)/T − k) (42)

has the solution

X(t) = λ T ∑ n
k=1M(t− (Tk− ε))G(Tk− ε, X(Tk− ε)) (43)

if Tn < t < T(n + 1). For the time points s = Tk− ε at ε→ 0+ and the variables

Xk = lim
ε→0+

X(Tk− ε), (k = 1, . . . , n + 1), (44)

solution (43) is represented by the nonlocal mapping

Xn+1 = Xn + λ T M(T) G(T(n + 1), Xn)+λ T ∑ n−1
k=1 (M(T(n + 1− k))−M(T(n− k))) G(kT, Xk), (45)

where M(t) ∈ C−1,0(0, ∞) is a function that is a kernel associated with the kernel K(t), i.e., the
functions K(t) and M(t) form a pair of mutually associated kernels that belong to the set S−1.
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Proof. The proof of this theorem is similar to the proofs of Theorems 1 and 2. In this
proof, we use the second fundamental theorem of general fractional operators in the form
of equation

Is
(M)[t]D

t
(K)[τ] X(τ) = X(s) (46)

that holds for X(t) ∈ C1
−1(0, ∞) (see Equation (61) of Theorem 4 in [27] (p. 11), Equation (34)

of Theorem 2 in [28] (p. 7)).
Applying the GFI Is

(M)[t] with the kernel M(t) which is associated with the kernel

G(t) of the GFD Dt
(K), to Equation (42), and using (46), we derive

X(s) = λ Is
(M)[t]G(t, X(t))∑ ∞

k=1δ((t + ε)/T − k). (47)

Using (25), Equation (47) is written as

X(s) = λ
∫ s

0
dt M(s− t)G(t, X(t))∑ ∞

k=1δ((t + ε)/T − k). (48)

For Tn < s < T(n + 1), Equation (48) is

X(s) = λ ∑ n
k=1

∫ s

0
dt M(s− t)G(t, X(t))δ((t + ε)/T − k). (49)

Using Equation (31), Equation (49) gives

X(s) = λ T ∑ n
k=1M(s− (kT − ε))G(kT − ε, X(kT − ε)). (50)

Using (50) for s = T(n + 1)− ε and s = Tn− ε, we obtain

X(T(n + 1)− ε) = λ T ∑ n
k=1M(T(n + 1)− Tk)G(Tk− ε, X(Tk− ε)), (51)

X(Tn− ε) = λ T ∑ n−1
k=1 M(Tn− Tk)G(Tk− ε, X(Tk− ε)). (52)

Using variables (44), solutions (51) and (52) at the limit ε→ 0+ give

Xn+1 = λ T ∑ n
k=1M(T(n + 1− k))G(Tk, Xk), (53)

Xn = λ T ∑ n−1
k=1 M(T(n− k))G(Tk, Xk). (54)

Subtracting Equation (54) from (53), we obtain (45). �

Let us consider equation with general fractional integral operator and kicks.

Theorem 4. Let M(t) ∈ C−1,0(0, ∞) and X(t) ∈ C−1(0, ∞). Then, the integral equation

It
(M)[τ]X(τ) = λ G(t, X(t))∑ ∞

k=1δ((t + ε)/T − k) (55)

has the solution

X(t) = λ T ∑ n
k=1K(1)(t− (Tk− ε))G(Tk− ε, X(Tk− ε)) (56)

for Tn < t < T(n + 1), where K(1)(z) = (dK(t)/dt)t=z and K(t) ∈ C1
−1,0(0, ∞) is a kernel

associated with the kernel M(t), i.e., the functions K(t) and M(t) form a pair of mutually associated
kernels that belong to the Sonin set S−1.

Proof. Let us use the general fractional derivative of the Riemann–Liouville type

Ds
(K)[t]X(t) =

d
ds

(K ∗ X)(s) =
d
ds

∫ s

0
dt K(s− t)X(t) (57)
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with the kernel K(t) ∈ C−1,0(0, ∞) that is a kernel associated with the kernel M(t) of GFI
so that the pair of functions K(t), M(t) belongs to the Sonin set S−1. Applying operator
(57) to Equation (55), we obtain

Ds
(K)[t]I

t
(M)[τ]X(τ) = λ Ds

(K)[t]G(t, X(t))∑ ∞
k=1δ((t + ε)/T − k), (58)

where s > t > τ > 0. Using the first fundamental theorem of general fractional operators
in the form of equation

Ds
(M)[t]I

t
(K)[τ] X(τ) = X(s) (59)

that holds for X(t) ∈ C1
−1(0, ∞) (see Equation (51) of Theorem 3 in [27] (p. 9) and

Equation (31) of Theorem 1 in [28] (p. 6)), Equation (58) takes the form

X(s) = λ Ds
(K)[t]G(t, X(t))∑ ∞

k=1δ((t + ε)/T − k). (60)

Then, using expression (57), we derive

X(s) = λ
d
ds

∫ s

0
dt K(s− t)G(t, X(t))∑ ∞

k=1δ((t + ε)/T − k). (61)

For Tn < s < T(n + 1), Equation (61) is

X(s) = λ ∑ n
k=1

d
ds

∫ s

0
dt K(s− t)G(t, X(t))δ((t + ε)/T − k). (62)

Using Equation (31), Equation (62) gives

X(s) = λ T
d
ds ∑ n

k=1K(s− (kT − ε))G(kT − ε, X(kT − ε)). (63)

For Tn < t < T(n + 1), we obtain

X(s) = λ T ∑ n
k=1K(1)(s− (kT − ε))G(kT − ε, X(kT − ε)). (64)

Equation (63) leads to solution (56). �

Theorem 5. Let M(t) ∈ C−1,0(0, ∞) and X(t) ∈ C−1(0, ∞). The solution of the equation

It
(M)[τ]X(τ) = λ G(t, X(t))∑ ∞

k=1δ((t + ε)/T − k) (65)

for the timepoints s = Tk− ε at ε→ 0+ and the variables

Xk = lim
ε→0+

X(Tk− ε), (k = 1, . . . , n + 1) (66)

is represented as the nonlocal mapping

Xn+1 = Xn + λ T K(1)(T) G(Tn, Xn)+λ T ∑ n
k=1

(
K(1)(T(n + 1− k))− K(1)(T(n− k))

)
G(Tk, Xk), (67)

where K(1)(z) = (dK(t)/dt)t=z and K(t) ∈ C1
−1,0(0, ∞) is a function that is a kernel associated

with the kernel M(t), i.e., the functions K(t) and M(t) are a pair of mutually associated kernels
that belong to the Sonin set S−1.

Proof. Solution (56) which is derived in Theorem 4 for t = T(n + 1)− ε and t = Tn− ε
with 0 < ε� T is given by the equations

X(T(n + 1)− ε) = λ T ∑ n
k=1K(1)(T(n + 1)− Tk)G(Tk− ε, X(Tk− ε)), (68)

X(Tn− ε) = λ T ∑ n−1
k=1 K(1)(Tn− Tk)G(Tk− ε, X(Tk− ε)). (69)
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Using variables (66), Equations (68) and (69) at the limit ε→ 0+ give

Xn+1 = λ T ∑ n
k=1K(1)(T(n + 1− k))G(Tk, Xk), (70)

Xn = λ T ∑ n−1
k=1 K(1)(T(n− k))G(Tk, Xk). (71)

Subtraction of Equation (71) from Equation (70) gives

Xn+1 − Xn = λ T K(1)(T) G(Tn, Xn)+λ T ∑ n
k=1

(
K(1)(T(n + 1− k))− K(1)(T(n− k))

)
G(Tk, Xk). (72)

Equation (72) gives (67). �

4. Examples of Nonlocality in the Form of Kernels from the Sonin Set

In this section, examples of the Sonin pairs of kernels are presented.
Note that if the kernel M(t) is associated with the kernel K(t), then the kernel K(t) is

associated with M(t). Therefore, if we have the operators

It
(M)[τ]X(τ) = (M ∗ X)(t), Dt,∗

(K)[τ]X(τ) =
(

K ∗ X(1)
)
(t), (73)

where M(t), K(t) ∈ S−1, then we can use the operators

It
(K)[τ]X(τ) = (K ∗ X)(t), Dt,∗

(M)
[τ]X(τ) =

(
M ∗ X(1)

)
(t). (74)

Let us give examples of the kernels that satisfy the Sonin condition

(M ∗ K)(t) =
∫ t

0
M(t− τ)K(τ)dτ = 1. (75)

Example 3. The following kernels,

M(t) = hα(t) =
tα−1

Γ(α)
, (76)

K(t) = h1−α(t) =
t−α

Γ(1− α)
, (77)

where 0 < α < 1, are a pair of mutually associated kernels that belong to the Sonin set S−1. For
these kernels, GFI and GFD are well-known Riemann–Liouville and Caputo fractional operators [8].

Example 4. The Sonin pair of kernels [34] (p. 3628),

M(t) = hα,λ(t) =
tα−1

Γ(α)
e−λ t, (78)

K(t) = h1−α,λ(t) +
λα

Γ(1− α)
γ(1− α, λt), (79)

and vice versa, where 0 < α < 1 and λ ≥ 0, t > 0, and γ(β, t), is the incomplete gamma function

γ(β, t) =
∫ t

0
τβ−1e−τ dτ, (80)

where t > 0.

Example 5. The following pair of kernels,

M(t) = (
√

t)
α−1

Jα−1

(
2
√

t
)

, (81)
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K(t) = (
√

t)
−α

I−α

(
2
√

t
)

, (82)

and vice versa are kernels from the Sonin set (see [25,26], [34] (p. 3627)) if 0 < α < 1, where

Jν(t) = ∑ ∞
k=0

(−1)k(t/2)2k+ν

k!Γ(k + ν + 1)
, Iν(t) = ∑ ∞

k=0
(t/2)2k+ν

k!Γ(k + ν + 1)
(83)

are the Bessel and the modified Bessel functions, respectively.

Example 6. As a special case of kernels (81) and (82), we can consider the pair

M(t) =
cos
(

2
√

t
)

√
π t

, (84)

K(t) =
cosh

(
2
√

t
)

√
π t

, (85)

and vice versa.

Example 7. The example of the Sonin pair is the kernel pair [38]

M(t) = h1−β+α(t) + h1−β(t), (86)

K(t) = tβ−1 Eα,β[−tα], (87)

where 0 < α < β < 1 and Eα,β[z] is the two-parameter Mittag–Leffler function

Eα,β[z] = ∑ ∞
k=0

zk

Γ(α k + β)
, (88)

where α > 0 and β, z ∈ C.

Example 8. The following Sonin pair is described by the kernels (see Equation (7.15) in [34]
(p. 3629))

M(t) = tα−1Φ(β, α;−λ t), (89)

K(t) =
sin(πα)

π
t−α Φ(−β, 1− α;−λ t) (90)

or vice versa, where 0 < α < 1 and Φ(β, α; z) is Kummer’s function

Φ(β, α; z) = ∑ ∞
k=0

(β)k
(α)k

zk

k!
. (91)

Example 9. The following pair of kernels belongs to the Sonin set S−1 (see Equations (7.16) and (7.18)
in [34] (p. 3629)),

M(t) = 1 +
λ

Γ(α)
√

t
, (92)

K(t) =
1√
πt
− λ eλ2 t er f c

(
λ
√
(t
)
), (93)

or vice versa, where λ > 0 and er f c(z) is the complementary error function

er f c(z) = 1− erf(z) = 1− 2√
π

∫ t

0
e−z2

dz. (94)
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Example 10. The following Sonin pair of kernels (see Equations (7.17) and (7.19) in [34]
(pp. 3629–3630)),

M(t) = 1− λ

Γ(α)
tα−1, (95)

K(t) = λ t−α E1−α,1−α

[
λ t1−α

]
, (96)

or vice versa, where λ > 0.

Example 11. As a Sonin pair of kernels, we can use some functions with power-logarithmic singu-
larities at the origin [34] (pp. 3627–3630). The following pair of kernels (see Equations (7.22)–(7.24)
in [34] (p. 3630)) with power-logarithmic singularities,

M(t) =
A− ln(t)

Γ(α)
tα−1, (97)

K(t) = µα,h(t) =
∫ ∞

0

tz−α eh z

Γ(z + 1− α)
dz, (98)

or vice versa, where µα,h(t) is Volterra’s function with

h =
Γ′(α)
Γ(α)

− A.

We assume that nonlocal discrete mappings which are derived from equations with
GFD and GFI for these kernels are described by the same equations as for the kernels that
belong to C−1(0, ∞).

The discrete mappings with an arbitrary function N = G(t, X(t)) are called universal
in nonlinear dynamics. We can also call the proposed mappings of the GFDynamics
universal general mappings with nonlocality in time. The universality of the mappings is
due to the use of an arbitrary nonlinear function N = G(t, X(t)), and the generality is due
to the use of almost arbitrary kernels of operators M(t) and K(t) that belong to the Sonin
set S−1.

5. General Fractional Dynamics of Arbitrary Order

In this section, general fractional dynamics is described by the equations with GFI
and GFD of arbitrary order proposed by Yu. Luchko [28].

5.1. General Fractional Calculus of Arbitrary Order

In [28], the Sonin set of kernel pairs is defined as follows:

Definition 4. Let the functions µ(t), ν(t) belong to the function space

C−1,0(0, ∞) := {X : X(t) = tpY(t), t ∈ (0, ∞), −1 < p < 0, Y(t) ∈ C[0, ∞)}, (99)

and the Sonin condition
(µ ∗ ν)(t) = {1} (100)

hold for t ∈ (0, ∞). The set of such kernel pairs is called the Sonin set S−1. For the kernel µ(t), the
kernel ν(t) is called its associated kernel.

In [28], generalization of Definition 4 was proposed.

Definition 5. Let the function M(t), K(t) belong to the function spaces

M(t) ∈ C−1(0, ∞), K(t) ∈ C−1,0(0, ∞), (101)
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where C−1,0(0, ∞) is defined by (99),

C−1(0, ∞) := {X : X(t) = tpY(t), t ∈ (0, ∞), p > −1, Y(t) ∈ C[0, ∞)}, (102)

and the Luchko condition

(M ∗ K)(t) = {1}n = hn(t) =
tn−1

(n− 1)!
(103)

holds for t ∈ (0, ∞). The set of such kernel pairs is called the Luchko set Ln,0.

In [28], an approach to constructing a pair M(t), K(t) of the kernels from the Luchko
set Ln,0 by using the kernels µ(t), ν(t) from the Sonin set S−1 was proposed. This approach
is formulated by the following theorem that was proved in [28].

Theorem 6. Let µ(t), ν(t) be a Sonin pair of kernels from S−1. Then, the pair M(t), K(t) of
the kernels

M(t) = ({1}n−1 ∗ µ)(t), K(t) = ν(t) (104)

belongs to the set Ln,0.

Theorem 6 was proved by Yu. Luchko in [28].
Using Definition 5 and Theorem 6, GFI and GFD of arbitrary order are defined in [28].

Definition 6. Let M(t), K(t) be a pair of kernels (104) from the Luchko set Ln,0. GFI with the
kernel M(t) is

It,n
(M)

[τ]X(τ) :=
∫ t

0
dτ M(t− τ)X(τ) =

∫ t

0
dτ
(
{1}n−1 ∗ µ

)
(t− τ)X(τ), (105)

where t > 0. GFD with the kernel K(t) are

Dt,n
(K)[τ]X(τ) :=

dn

dtn

∫ t

0
dτ K(t− τ)X(τ) =

dn

dtn

∫ t

0
dτ ν(t− τ)X(τ), (106)

Dt,n,∗
(K) [τ]X(τ) :=

∫ t

0
dτ K(t− τ)X(n)(τ) =

∫ t

0
dτ ν(t− τ)X(n)(τ), (107)

where t > 0 and X(n)(τ) = dnX(τ)/dτn.

In [28], the following fundamental theorems of GFC for GFI (105) and GFD (106) and
(107) are proved:

Theorem 7. (The first fundamental theorem for GFC of arbitrary order.)
Let M(t), K(t) be a kernel pair from the Luchko set Ln,0.
If X(t) ∈ C−1(0, ∞), then

Dt,n
(K)[τ] Iτ,n

(M)
[s] X(s) = X(t). (108)

If X(t) ∈ C−1,(K)(0, ∞), then

Dt,n,∗
(K) [τ]I

τ,n
(M)

[s]X(s) = X(t). (109)

The function X(t) belongs to C−1,(K)(0, ∞) if it can be represented as X(t) = It,n
(K)[τ] Y(τ)

where Y(t) ∈ C−1(0, ∞).

Theorem 8. (The second fundamental theorem for GFC of arbitrary order.)
Let M(t), K(t) be a kernel pair from the Luchko set Ln,0.
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If X(t) ∈ Cn
−1(0, ∞), then

It,n
(M)

[τ]Dτ,n,∗
(K) [s]X(s) = X(t)−∑ n−1

k=0 X(k)(0)hk+1(t). (110)

If X(t) ∈ Cn
−1,(M)(0, ∞), then

It,n
(M)

[τ]Dτ,n
(K)[s]X(s) = X(t). (111)

The function X(t) belongs to Cn
−1,M(0, ∞) if it can be represented in the form X(t) =

It,n
(M)

[τ] Y(τ) ∈ C−1(0, ∞) where Y(t) ∈ C−1(0, ∞).

Theorem 7 and 8 were proved by Yu. Luchko in [28] (pp. 11–12).

5.2. General Momenta of Arbitrary Order

In fractional dynamics, to describe nonlocal mappings of arbitrary order, we should
define generalized momenta [2]. For generalized fractional dynamics, we should also use
the generalized momenta. We used the following definitions.

Definition 7. Let M(t), K(t) be a pair of kernels from the Luchko set Ln,0 in the form

M(t) = ({1}n−1 ∗ µ)(t), K(t) = ν(t). (112)

Then, the generalized momentum Vk(t) is defined as

Vk(t) := It,k
(h)[τ]X(τ) =

∫ t

0
dτ hk(t− τ)X(τ), (113)

where X(t) ∈ C−1(0, ∞). The generalized momenta Pk(t), P∗k (t) are defined by the equations

Pk(t) := Dt,k
(K)[τ]X(τ) =

dk

dtk

∫ t

0
dτ K(t− τ)X(τ), (114)

P∗k (t) :=
dk

dtk X(t), (115)

where k = 1, . . . , n− 1, t > 0, and

hn(t) =
tn−1

(n− 1)!
. (116)

To simplify, we can define

V0(t) := X(t), P0(t) := X(t), P∗0 (t) := X(t), (117)

where X(t) ∈ Ck
−1(0, ∞).

Let us prove the properties of the generalized momenta that describe connections of
GFI and GFD of the variable X(t) with the momenta Vk(t), Pk(t), and P∗k (t).

Theorem 9. Let Vk(t) be defined by (113). Then, the equation

It,n
(M)

[τ] X(τ) = It,n−k
(M)

[τ] Vk(τ) (118)

holds if X(t) ∈ C−1(0, ∞) and Vk(t) ∈ C−1(0, ∞).
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Let Pk(t) and P∗k (t) be defined by (114) and (115), respectively. Then, the equations

Dt,n
(K)[τ]X(τ) =

dn−k

dtn−k Pk(t), (119)

Dt,n,∗
(K) [τ]X(τ) = Dt,n−k,∗

(K) [τ]P∗k (τ), (120)

are satisfied if X(t) ∈ C−1(0, ∞) and Pk(t), P∗k (t) ∈ Ck
−1(0, ∞).

Proof. (A) Let us first prove Equation (118) for GFI. We can use the fact that the standard
integration of order n ∈ N (n-fold integral) has the form [5] (p. 33)∫ t

0
dτ1

∫ τ1

0
dτ2 . . .

∫ τn−1

0
dτn X(τn) =

∫ t

0
dτ hn(t− τ)X(τ) = It,n

(h)[τ]X(τ), (121)

where

hn(t− τ) =
(t− τ)n−1

(n− 1)!
. (122)

Therefore, the GFI that is given by (105) with n > 1 is

It,n
(M)

[τ]X(τ) =
∫ t

0 dτ (hn−1 ∗ µ)(t− τ)X(τ) =((hn−1 ∗ µ) ∗ X)(t) = (hn−1 ∗ (µ ∗ X))(t) =
∫ t

0 dτ hn−1(t− τ)(µ ∗ X)(τ) = It,n
(h)[τ](µ ∗ X)(τ). (123)

Using
It,n
(h)[τ]X(τ) = It,n−k

(h) [τ] Iτ,k
h [s]X(s), (124)

we get
It,n−k
(M)

[τ]Vk(τ) = It,n−k
(M)

[τ]Iτ,k
(h)[s]X(s) = It,n

(M)
[τ]X(τ). (125)

(B) Let us prove Equation (119) by using definitions (114) and (106). Equation (119) is
proved by the following transformations:

dn−k

dtn−k Pk(t) =
dn−k

dtn−k Dt,k
(K)[τ]X(τ) =

dn−k

dtn−k
dk

dtk

∫ t

0
dτ K(t− τ)X(τ) =

dn

dtn

∫ t

0
dτ K(t− τ)X(τ) = Dt,n

(K)[τ]X(τ). (126)

Let us prove Equation (120) by using definitions (115) and (107). Equation (120) is
proved by the following transformations:

Dt,n−k,∗
(K) [τ]P∗k (t) =

∫ t
0 dτ K(t− τ)

(
P∗k
)(n−k)

(τ) =
∫ t

0 dτ K(t− τ)
(

X(k)
)(n−k)

(τ) =
∫ t

0 dτ K(t− τ)X(n)(τ) = Dt,n
(K)[τ]X(τ). (127)

�

Theorem 9 allows us to derive exact solutions of equations with GFI and GFD of
arbitrary order and periodic kicks for Vk(t), Pk(t), and P∗k (t) with k = 1, . . . , n− 1 and the
variable X(t).

Theorem 10. Let the functions K(t) and M(t) be a Luchko pair of kernels from Ln,0 and X(t) ∈
C−1(0, ∞). Then, the equations

It,n
(M)

[τ]X(τ) = λ G(t, X(t))∑ ∞
j=1δ((t + ε)/T − j), (128)

It,n−k
(M)

[τ]Vk(τ) = λ G(t, X(t))∑ ∞
j=1δ((t + ε)/T − j), (129)

where k = 1, . . . , n− 1, have the solutions

X(t) = λ T ∑ m
j=1K(n) (t− (Tj + ε)) G(Tj− ε, X(Tj− ε)), (130)

Vk (t) = λ T ∑ m
j=1K(n−k) (t− (Tj + ε)) G(Tj− ε, X(Tj− ε)) (131)
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if Tm < t < T(m + 1). For the time points s = Tj− ε at ε→ 0+ and the variables

Xj = lim
ε→0+

X(Tj− ε), Vk,j = lim
ε→0+

Vk(Tj− ε), (j = 1, . . . , m + 1), (132)

solutions (130) and (131) are represented by the general nonlocal mappings

Xm+1 = Xm + λ T K(n)(T)G(Tm, Xm) + λ T ∑ m−1
j=1 Ω(n)

(K)(T, m− j)G
(

jT, Xj
)
, (133)

Vk,m+1 = Vk,m + λ T K(n−k)(T)G(Tm, Xm) + λ T ∑ m−1
j=1 Ω(n−k)

(K) (T, m− j)G
(

jT, Xj
)
, (134)

where function K(t) ∈ C−1,0(0, ∞) is a kernel associated with the kernel M(t) and

Ω(K)(T, z) := K(T(z + 1))− K(Tz), Ω(k)
(K)(T, z) :=

1
Tk

dk

dzk Ω(K)(T, z). (135)

Proof. In this proof, we use the first fundamental theorem for GFC of arbitrary order that
was proved in [28], which states that if M(t), K(t) is a kernel pair from the Luchko set Ln,0
and X(t) ∈ C−1(0, ∞), then

Dt,n
(K)[τ]I

τ,n
(M)

[s]X(s) = X(t) (136)

holds for t > 0.
Applying GFD Ds,n−k

(K) [t] with the kernel K(t), which is associated with the kernel M(t)

of GFI It,n
(M)

, to Equations (128) and (129), we derive

Ds,n−k
(K) [t]It,n−k

(M)
[τ]Vk(τ) = λ Ds,n−k

(K) [t]G(t, X(t))∑ ∞
j=1δ((t + ε)/T − j), (137)

where k = 1, . . . , n − 1 and Vk(τ) := X(τ) for k = 0. Using (136), Equation (137) is
written as

Vk(s) = λ Ds,n−k
(K) [t]G(t, X(t))∑ ∞

j=1δ((t + ε)/T − j). (138)

Using the definition of Ds,n−k
(K) [t], we get

Vk(s) = λ
dn−k

dsn−k

∫ s

0
dt K(s− t)G(t, X(t))∑ ∞

j=1δ((t + ε)/T − j). (139)

For Tm < s < T(m + 1), Equation (139) is

Vk(s) = λ ∑ m
j=1

dn−k

dsn−k

∫ s

0
dt K(s− t)G(t, X(t))δ((t + ε)/T − j). (140)

Using Equation (31), Equation (140) gives

Vk(s) = λ T ∑ m
j=1

dn−k

dsn−k K(s− (Tj− ε))G(Tj− ε, X(Tj− ε)) (141)

that can be written as

Vk(s) = λ T ∑ m
j=1K(n−k)(s− (Tj− ε))G(Tj− ε, X(Tj− ε)), (142)

where K(k)(z) = d(k)K(z)/dzk. Equation (142) gives solutions (130) and (131).
Using (142) for s = T(m + 1)− ε and s = Tm− ε, we obtain

Vk(T(m + 1)− ε) = λ T ∑ m
j=1K(n−k)(T(m + 1)− Tj)G(Tj− ε, X(Tj− ε)), (143)
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Vk(Tm− ε) = λ T ∑ m
j=1K(n−k)(Tm− Tj)G(Tj− ε, X(Tj− ε)). (144)

Using variables (132), solutions (143) and (144) at the limit ε→ 0+ give

Vk,m+1 = λ T ∑ m
j=1K(n−k)(T(m + 1− j))G

(
Tj, Xj

)
, (145)

Vk,m = λ T ∑ m−1
j=1 K(n−k)(T(m− j))G

(
Tj, Xj

)
. (146)

Subtracting Equation (146) from Equation (145), we obtain

Vk,m+1 −Vk,m = λ T K(n−k)(T)G(Tm, Xm)+λ T ∑ m−1
j=1

(
K(n−k)(T(m + 1− j))− K(n−k)(T(m− j))

)
G
(
Tj, Xj

)
. (147)

where k = 0, 1, . . . , n− 1. Then, using (135), Equation (147) takes form (133), (134). �

Let us derive general nonlocal mappings from the equations with GFD Dt,n
(K) of arbi-

trary order and periodic kicks.

Theorem 11. Let K(t) and M(t) be a pair of kernels from the Luchko set Ln,0 and X(t) ∈
Cm
−1(0, ∞). Then, the equations

Dt,n
(K)[τ]X(τ) = λ G(t, X(t))∑ ∞

j=1δ((t + ε)/T − j), (148)

dn−k

dtn−k Pk(τ) = λ G(t, X(t))∑ ∞
j=1δ((t + ε)/T − j), (149)

where k = 1, . . . , n− 1, have the solutions

X(t) = λ T ∑ m
j=1M(t− Tj + ε)G(Tj− ε, X(Tj− ε)), (150)

Pk(t) = ∑ n−k−1
j=0 P(j)

k (0)hj+1(t) + λ T ∑ m
j=1hn−k(t− Tj + ε)G(Tj− ε, X(Tj− ε)) (151)

if Tm < t < T(m + 1). For the time points s = Tj− ε at ε→ 0+ and the variables

Xj = lim
ε→0+

X(Tj− ε), Pk,j = lim
ε→0+

Pk(Tj− ε), (j = 1, . . . , m + 1), (152)

solutions of Equations (148) and (149) are represented by the general nonlocal mappings

Xm+1 = Xm + λ T M(T)G(Tm, Xm) + λ T ∑ m−1
j=1 Ω(M)(T, m− j)G

(
jT, Xj

)
, (153)

Pk,m+1 = Pk,m + ∑ n−k−1
j=0 P(j)

k (0)Ω(hj+1)
(T, m) + λ T hn−k(T)G(Tm, Xm)+λ T ∑ m−1

j=1 Ω(hn−k)
(T, m− j)G

(
jT, Xj

)
, (154)

where M(t) ∈ C−1(0, ∞) is a function that is a kernel associated with the kernel K(t), the function
Ω(M)(T, z) is defined by (135), and hα(t) = tα−1/Γ(α) with α > 0.

Proof. In the proof, we use the second fundamental theorem for GFC of arbitrary order
that was proved in [28]. This theorem states that if M(t), K(t) is a kernel pair from the
Luchko set Ln,0 and X(t) ∈ Cn

−1,(M)(0, ∞), then

It,n
(M)

[τ]Dτ,n
(K)[s]X(s) = X(t). (155)

The function X(t) belongs to Cn
−1,(M)(0, ∞) if it can be represented in the form X(t) =

It,n
(M)

[τ]Y(τ) ∈ C−1(0, ∞) where Y(t) ∈ C−1(0, ∞).
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The action of the integral operator Is,n
(M)

[t] on Equation (148) and of the operator

It,n−k
(h) [t] on (149) give

Is,n
(M)

[t]Dt,n
(K)[τ]X(τ) = λ Is,n

(M)
[t]G(t, X(t))∑ ∞

j=1δ((t + ε)/T − j), (156)

Is,n−k
(h) [t]

dn−k

dtn−k Pk(τ) = λ Is,n−k
(h) [t]G(t, X(t))∑ ∞

j=1δ((t + ε)/T − j), (157)

where k = 1, . . . , n− 1, and

Is,n−k
(h) [t]X(t) =

∫ s

0
dt hn−k(s− t)X(t).

Using the second fundamental theorems for Dt,n
(K) in form (155) and dn−k/dtn−k,

Equations (156) and (157) give

X(s) = λ Is,n
(M)

[t]G(t, X(t))∑ ∞
j=1δ((t + ε)/T − j), (158)

Pk(s)−∑ n−k−1
j=0 P(j)

k (0)hj+1(s) = λ Is,n−k
(h) [t]G(t, X(t))∑ ∞

j=1δ((t + ε)/T − j). (159)

Using the definition of Is,n−k
(M)

and Is,n−k
(h) , Equations (158) and (159) are written as

X(s) = λ
∫ s

0
dt Mn(s− t)G(t, X(t))∑ ∞

j=1δ((t + ε)/T − j), (160)

Pk(s)−∑ n−k−1
j=0 P(j)

k (0)hj+1(s) = λ
∫ s

0
dt hn−k(s− t)G(t, X(t))∑ ∞

j=1δ((t + ε)/T − j),

(161)
where

Mn(t) = (hn−1 ∗ µ)(t).

For Tm < s < T(m + 1), Equations (160) and (161) are

X(s) = λ ∑ m
j=1

∫ s

0
dt Mn(s− t)G(t, X(t))δ((t + ε)/T − j), (162)

Pk(s)−∑ n−k−1
j=0 P(j)

k (0)hj+1(s) = λ ∑ m
j=1

∫ s

0
dt hn−k(s− t)G(t, X(t))δ((t + ε)/T − j).

(163)
Using Equation (31), Equations (162) and (163) give

X(s) = λ T ∑ m
j=1Mn(s− (Tj− ε))G(Tj− ε, X(Tj− ε)), (164)

Pk(s)−∑ n−k−1
j=0 P(j)

k (0)hj+1(s) = λ T ∑ m
j=1hn−k(s− (Tj− ε))G(Tj− ε, X(Tj− ε)).

(165)
Equations (164) and (165) give solutions (150) and (151).
Using (164) and (165) for s = T(m + 1)− ε and s = Tm− ε, we obtain

X(T(m + 1)− ε) = λ T ∑ m
j=1Mn(T(m + 1)− Tj)G(Tj− ε, X(Tj− ε)), (166)

Pk(T(m + 1)− ε)−∑ n−k−1
j=0 P(j)

k (0)hj+1(T(m + 1)− ε) =λ T ∑ m
j=1hn−k(T(m + 1)− Tj)G(Tj− ε, X(Tj− ε)), (167)

and
X(Tm− ε) = λ T ∑ m−1

j=1 Mn(Tm− Tj)G(Tj− ε, X(Tj− ε)), (168)

Pk(Tm− ε)−∑ n−k−1
j=0 P(j)

k (0)hj+1(Tm− ε) = λ T ∑ m−1
j=1 hn−k(Tm− Tj)G(Tj− ε, X(Tj− ε)). (169)
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Using variables (152), solutions (166), (167), (168) and (169) at the limit ε→ 0+ give

Xm+1 = λ T ∑ m
j=1Mn(T(m− j + 1))G

(
Tj, Xj

)
, (170)

Pk,m+1 −∑ n−k−1
j=0 P(j)

k (0)hj+1(T(m + 1)− ε) = λ T ∑ m
j=1 hn−k(T(m− j + 1))G

(
Tj, Xj

)
, (171)

and
Xm = λ T ∑ m−1

j=1 Mn(T(m− j))G
(
Tj, Xj

)
, (172)

Pk,m −∑ n−k−1
j=0 P(j)

k (0)hj+1(Tm) = λ T ∑ m−1
j=1 hn−k(T(m− j))G

(
Tj, Xj

)
. (173)

Subtracting Equations (172) and (173) from Equations (170) and (171), we obtain

Xm+1 − Xm = λ T Mn(T)G(Tm, Xm)+λ T ∑ m−1
j=1 (Mn(T(m− j + 1))−Mn(T(m− j)))G

(
Tj, Xj

)
, (174)

Pk,m+1 − Pk,m = ∑ n−k−1
j=0 P(j)

k (0)
(
hj+1(T(m + 1))− hj+1(Tm)

)
+λ T hn−k(T)G(Tm, Xm) + λ T ∑ m−1

j=1 (hn−k(T(m− j + 1))− hn−k(T(m− j)))G
(
Tj, Xj

)
, (175)

where k = 1, . . . , n− 1. Then, using (135), Equations (174) and (175) take form (153), (154).
�

Let us derive general nonlocal mappings from the equations with GFD Dt,∗,n
(K) of

arbitrary order and periodic kicks.

Theorem 12. Let functions K(t) and M(t) be a pair of kernels from the Luchko set Ln,0 and
X(t) ∈ Cm

−1(0, ∞). Then, the equations

Dt,∗,n
(K) [τ]X(τ) = λ G(t, X(t))∑ ∞

j=1δ((t + ε)/T − j), (176)

Dt,∗,n−k
(K) [τ]P∗k (τ) = λ G(t, X(t))∑ ∞

j=1δ((t + ε)/T − j), (177)

where k = 1, . . . , n− 1, have the solutions

X(t) = ∑ n−1
j=0 X(j)(0)hj+1(t) + λ T ∑ m

j=1M(t− Tj + ε)G(Tj− ε, X(Tj− ε)), (178)

P∗k (t) = ∑ n−k−1
j=0 P(j)(0)hj+1(t) + λ T ∑ m

j=1Mn−k(t− Tj + ε)G(Tj− ε, X(Tj− ε)) (179)

if Tm < t < T(m + 1), where

Mn−k(t) := (hn−k−1 ∗ µ)(t), M0(t) := µ(t). (180)

For the time points s = Tj− ε at ε→ 0+ and the variables

Xj = lim
ε→0+

X(Tj− ε), P∗k,j = lim
ε→0+

P∗k (Tj− ε), (j = 1, . . . , m + 1), (181)

solutions (178) and (179) are represented by the general nonlocal mappings

Xm+1 = Xm + ∑ n−1
j=0 X(j)(0)Ω(hj+1)

(T, m)+λ T Mn(T)G(T(m + 1), Xm) + λ T ∑ n−1
j=1 Ω(Mn−k)

(T, m− j)G
(

jT, Xj
)
, (182)

P∗k,m+1 = P∗k,m + ∑ n−k−1
j=0 P∗,(j)

k (0)Ω(hj+1)
(T, m) + λ T Mn−k(T)G(Tm, Xm)+λ T ∑ m−1

j=1 Ω(Mn−k)
(T, m− j)G

(
jT, Xj

)
, (183)

where M(t) ∈ C−1(0, ∞) is a function that is a kernel associated with the kernel K(t).

Proof. In the proof, we use the second fundamental theorem for GFC of arbitrary order
that was proved in [28]. This theorem states that if M(t), K(t) is a kernel pair from the
Luchko set Ln,0 and X(t) ∈ Cn

−1(0, ∞), then

Is,n
(M)

[t]Dt,∗,n
(K) [τ]X(τ) = X(s)−∑ n−1

j=0 X(j)(0)hj+1(s). (184)
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Let us consider Equations (176) and (177) in the form

Dt,∗,n−k
(K) [τ]P∗k (τ) = λ G(t, X(t))∑ ∞

j=1δ((t + ε)/T − j), (185)

where k = 1, . . . , n− 1 and P∗k (τ) = X(t) for k = 0. The action of the integral operator
Is,n−k
(M)

[t] on Equation (185) gives

Is,n−k
(M)

[t]Dt,∗,n−k
(K) [τ]P∗k (τ) = λ Is,n−k

(M)
[t]G(t, X(t))∑ ∞

j=1δ((t + ε)/T − j). (186)

Using second fundamental theorems (184) for Dt,∗,n
(K) , we get

P∗k (s)−∑ n−k−1
j=0 P∗,(j)

k (0)hj+1(s) = λ Is,n−k
(M)

[t]G(t, X(t))∑ ∞
j=1δ((t + ε)/T − j). (187)

Using the definition of Is,n−k
(M)

, we write Equation (187) as

P∗k (s)−∑ n−k−1
j=0 P∗,(j)

k (0)hj+1(s) = λ
∫ s

0 dt Mn−k(s− t)G(t, X(t))∑ ∞
j=1δ((t + ε)/T − j), (188)

where Mn−k(t) is defined by (180). For Tm < s < T(m + 1), Equation (188) is

P∗k (s)−∑ n−k−1
j=0 P∗,(j)

k (0)hj+1(s) = λ ∑ m
j=1

∫ s

0
dt Mn−k(s− t)G(t, X(t))δ((t + ε)/T − j). (189)

Using Equation (31), Equation (189) gives

P∗k (s)−∑ n−k−1
j=0 P∗,(j)

k (0)hj+1(s) = λ T ∑ m
j=1Mn−k(s− Tj + ε)G(Tj− ε, X(Tj− ε)). (190)

Equation (190) gives solutions (178) and (179).
Using (190) for s = T(m + 1)− ε and s = Tm− ε, we obtain

P∗k (T(m + 1)− ε)−∑ n−k−1
j=0 P∗,(j)

k (0)hj+1(T(m + 1)− ε) =λ T ∑ m
j=1Mn−k(T(m + 1)− Tj)G(Tj− ε, X(Tj− ε)), (191)

P∗k (Tm− ε)−∑ n−k−1
j=0 P∗,(j)

k (0)hj+1(Tm− ε) =λ T ∑ m−1
j=1 Mn−k(Tm− Tj)G(Tj− ε, X(Tj− ε)). (192)

Using variables (181), solutions (191) and (192) at the limit ε→ 0+ give

P∗(k,m+1) −∑ n−k−1
j=0 P∗,(j)

k (0) hj+1 (T(m + 1)) = λ T ∑ m
j=1Mn−k (T(m− j + 1)) G

(
Tj, Xj

)
), (193)

P∗k,m −∑ n−k−1
j=0 P∗,(j)

k (0)hj+1(Tm) = λ T ∑ m−1
j=1 Mn−k(T(m− j))G

(
Tj, Xj

)
. (194)

Subtracting Equation (194) from Equation (193), we obtain

P∗k,m+1 − P∗k,m = ∑ n−k−1
j=0 P∗,(j)

k (0)
(
hj+1(T(m + 1))− hj+1(Tm)

)
+λ T Mn−k(T) G(Tm, Xm))+λ T ∑ m−1

j=1 (Mn−k (T(m− j + 1))−Mn−k (T(m− j))) G
(
Tj, Xj

)
), (195)

where k = 0, 1, . . . , n− 1 with P0(t) = X(t). Then, using function (135), Equation (195)
takes form (182) and (183). �

6. Conclusions

This paper proposes a new direction of research that can be called general fractional
dynamics (GFDynamics). It can be considered an interdisciplinary science, in which the
nonlocal properties of linear and nonlinear dynamical systems are studied in the most
general form. Therefore, it is important to have general fractional calculus that allows
us to describe nonlocality in the most general form. The mathematical tools are general
fractional calculus, equations with general fractional integrals (GFI) and derivatives (GFD),
or general nonlocal mappings with discrete time. The most general form means that
the operator kernels should belong to the most general set of kernels, for which general
fractional calculus exists. At present, such a set is the Luchko set of kernel pairs that is used
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in the proposed work. The distinction of Luchko’s approach in comparison with other
approaches is the construction of general fractional calculus of arbitrary order for kernels
from the Luchko set. In GFDynamics, the results should be derived for the general form
of nonlocality that is described by general-form operator kernels. This involves obtaining
general results which are independent of the particular representations of the kernel.

In this paper, the concept of “general nonlocal mappings” that are the exact solutions
of equations with GFI and GFD at discrete points is also proposed. In these mappings, the
nonlocality is described by the kernels of GFD and GFI from the Luchko set.

We considered fractional dynamical systems with general nonlocality in time which
are described by equations with GFI, GFD and periodic kicks. The exact solutions for
these equations were obtained. These exact solutions with discrete timepoints were used
to derive general nonlocal mappings without approximations. Equations with GFI and
GFD of arbitrary order were also used to derive general nonlocal mappings. It should be
emphasized that all the results were derived for the general form of kernels M(t), K(t) that
belong to the Luchko set.

In this work, we derived general fractional dynamics with discrete time from general
fractional dynamics with continuous time. Starting from equations with general fractional
integrals and derivatives with kernels belonging to the Sonin set, we derived the exact
solutions of these equations. Then, using these solutions for discrete timepoints, we
obtained general universal mappings with nonlocality in time without approximations.
The universality of the mappings is due to the use of an arbitrary nonlinear function
N = G(t, X(t)), and the generality is due to the general operators, kernels M(t) and K(t)
of GFC from the Luchko set Ln,0.

We assume that the proposed general nonlocal mappings can be studied by the
methods and equations proposed in [67]. This possibility is due to the following. Note
that the proposed general nonlocal mappings, which are derived from general fractional
differential and integral equations, can be represented by Equations (40), (54) and (71),
which have the form

Xn = X(0) + λ T ∑ n−1
k=1 M(T(n− k))G(Tk, Xk), (196)

Xn = λ T ∑ n−1
k=1 M(T(n− k))G(Tk, Xk), (197)

Xn = λ T ∑ n−1
k=1 K(1)(T(n− k))G(Tk, Xk). (198)

We see that all the proposed general universal mappings (196), (197) and (198) with
nonlocality in time and G(t, X) = G(X), which are derived from equations with GFD and
GFI, can be represented as

Xn = X0 −∑ n−1
k=1 U(n− k)G0(Xk) (199)

with the function
G0(Xk) = −λ T G(Xk), (200)

and the kernel
U(n− k) = M(T(n− k)), (201)

U(n− k) = K(1)(T(n− k)), (202)

where M(t) and K(t) are the Sonin pair of kernels of general fractional integral It
(M)

and

general fractional derivatives Dt
(K), Dt,∗

(K).
We see that general nonlocal mappings (196), (197) and (198) are described by discrete

convolution. Equations of type (199) are important to study the chaotic and regular
behavior of fractional systems that are nonlocal in time.

Equation (199) coincides with Equation (6) in [67], which is the starting point for the
study of fractional mappings with nonlocality in time in the framework of the approach
proposed by Mark Edelman in [67].
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The general nonlocal mappings of arbitrary order, which are derived from equations
with GFI and GFD of arbitrary order and described by Theorems (10)–(12), can also be
represented by equations with discrete convolution. These mappings can be given by
Equations (146), (172), (173) and (194) in the form

Vk,m = λ T ∑ m−1
j=1 K(n−k)(T(m− j))G

(
Tj, Xj

)
, (203)

where k = 0, 1, . . . , n− 1 and V0,m = Xm:

Xm = λ T ∑ m−1
j=1 Mn(T(m− j))G

(
Tj, Xj

)
, (204)

Pk,m −∑ n−k−1
j=0 P(j)

k (0) hj+1(Tm) = λ T ∑ m−1
j=1 hn−k(T(m− j))G

(
Tj, Xj

)
, (205)

where k = 1, . . . , n− 1, and

P∗k,m −∑ n−k−1
j=0 P∗,(j)

k (0) hj+1(Tm) = λ T ∑ m−1
j=1 Mn−k(T(m− j))G

(
Tj, Xj

)
, (206)

where k = 0, 1, . . . , n− 1 and P∗0,m = Xm.
The chaotic and regular behavior of the systems described by such general nonlocal

mappings of arbitrary order can be investigated by generalizing the Edelman method [67]
to nonlocal mappings of arbitrary order.

The behavior of fractional dynamical systems with nonlocality in time can be very
different from the behavior of dynamical systems with locality in time. To study and
describe the chaotic and regular behavior of dynamical systems, it is important to know
periodic points. Fractional dynamical systems have only fixed points, but these systems can
have asymptotically periodic points (sinks) [67]. For the first time, a method and equations
which allow one to find asymptotically periodic points for nonlinear fractional systems
with nonlocality in time were proposed in [67]. In [67], the equations which can be used to
calculate coordinates of the asymptotically periodic sinks were derived.

Note that the proposed equations and mappings can be used to describe economic
processes with memory [17,47], for non-Markovian quantum processes [48], processes in
the dynamics of populations [49], and many other processes.
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