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Abstract: A pursuit differential game described by an infinite system of 2-systems is studied in
Hilbert space l2. Geometric constraints are imposed on control parameters of pursuer and evader.
The purpose of pursuer is to bring the state of the system to the origin of the Hilbert space l2 and
the evader tries to prevent this. Differential game is completed if the state of the system reaches the
origin of l2. The problem is to find a guaranteed pursuit and evasion times. We give an equation
for the guaranteed pursuit time and propose an explicit strategy for the pursuer. Additionally, a
guaranteed evasion time is found.

Keywords: pursuer; evader; constraints; strategy

1. Introduction

The notion of differential games was introduced by Isaacs [1]. Differential games were
developed by Bercovitz [2], Elliot and Kalton [3], Fleming [4,5], Friedman [6], Hajek [7],
Ho, Bryson, and Baron [8], Pontryagin [9], Krasovskii [10], Petrosyan [11], Pshenichnyi [12],
Subbotin [13], Chikrii [14], and others.

There are many works which deal with the infinite dimensional spaces, such as [15–19].
Differential games studied in the works [17,19–22] are devoted to constructing of the
optimal strategies of players.

In the paper of Satimov and Tukhtasinov [23], pursuit and evasion differential games
were studied for the parabolic equation. Various cases of control constraints (integral,
geometric) were analyzed. Two sets were specified such that pursuit can be completed if
the initial state belongs to the first set, and evasion is possible if the initial state belongs
to the second set. Note that, the works [24,25] also relates to differential games described
by PDE.

In the game with countably many pursuers studied Ibragimov et al. [17] in the Hilbert
space l2, the duration of the game is prescribed. A formula for the value of the game was
found and optimal strategies of the players were constructed explicitly. In the work by
Salimi and Ferrara [26], an optimal approach of a finite or denumerable pursuers to one
evader is studied. In that paper a formula for the value of the game and optimal strategies
of players are proposed. A time-optimal problem of transition of the state of system into
the origin was studied by Azamov and Ruziboev [27]. The main result of that paper is
estimate of the optimal time from above.

In the present paper, we study differential game problems described by an infinite
system of 2-systems of differential equations. We find a guaranteed pursuit time for the
pursuit differential game and a guaranteed evasion time for the evasion differential game.

2. Motivation

The work [28] the first paper on time-optimal control problem for the parabolic type
partial differential equations. The optimal control problems in systems with distributed
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parameters is widely studied [29]. Interesting results were obtained by Albeverio and
Alimov [30] for a time-optimal control problem for the parabolic differential equation
where the control function is defined on the boundary, and by Chaves-Silva et al. [31]
for the null controllability of evolution equations with memory terms, and by Philippe
Martin et al. [32] for the structurally damped wave equation where the null controllability
holds in some suitable Sobolev space and after a fixed positive time independent of the
initial conditions.

Differential game problems described by partial differential equations are considered
for the first time in the works [33,34]. One of the main tools in studying control or/and
differential game problems for the systems described by partial differential equations is the
method of Fourier. We can use this method to reduce differential game problems described
by partial differential equations to differential game problems described by an infinite
system of differential equations [23–25,27,35–40].

Indeed, let a controlled distributed system be described by the following parabolic
equation

∂z
∂t

+ Az = w, z(x, 0) = z0(x), x ∈ D, z(x, t) = 0, x ∈ ∂D, 0 < t < T, (1)

where z = z(x, t) is the state of the system, z0(x) ∈ L2(D), x = (x1, x2, . . . , xn) ∈ D ⊂ Rn,
n ≥ 1, D is a bounded domain, and it is assumed that the boundary ∂D of D is piecewise
smooth, t ∈ [0, T], and T > 0 is a given number, w = w(x, t), w(x, t) ∈ L2(CT), is the
control function, CT is the following open cylinder

CT = {(x, t)| x ∈ D, 0 < t < T} ⊂ Rn+1,

operator Az is defined by the equation

Az = −
n

∑
i,j=1

∂

∂xi

(
aij(x)

∂z
∂xj

)
, aij(x) = aji(x),

aij(x) are assumed to be bounded measurable functions. Additionally, ∑n
i,j=1 aij(x)ηiηj ≥

k ∑n
i=1 η2

i for all (η1, η2, . . . , ηn) ∈ Rn, x ∈ D, and for some positive number k.
Then, for any w(x, t) ∈ L2(CT) and z0(x) ∈ L2(D), problem (1) has the only general-

ized solution z = z(x, t) in the set W̊1,0
2 (CT) [41]. Moreover, the solution can be represented

in the form ([41], III.3)

z(x, t) =
∞

∑
i=1

zi(t)vi(x), (2)

where zi(t), t ∈ [0, T], i = 1, 2, . . . , are solutions of the following initial value problems

żi = λizi + wi(t), zi(0) = zi0, i = 1, 2, . . . , (3)

the coefficients λ1, λ2, . . . , λi, . . . are positive and they are the generalized eigenvalues of
the operator A [37], and λi → +∞ as i→ ∞, v1(x), v2(x), . . . , vi(x), . . . are the generalized
eigenfunctions of A, which form a complete orthonormal system in L2(D), and wi(t) and
zi0 are the Fourier coefficients of of the functions w(x, t) and z0(x), respectively, relative to
the system {vi(x)},

w(x, t) =
∞

∑
i=1

wi(t)vi(x), z0(x) =
∞

∑
i=1

zi0vi(x).

Additionally, the series (2) uniformly converges in L2(CT), and its sum z(x, t) belongs
to the Sobolev space W̊1

2 (D) for every t, 0 ≤ t ≤ T, and is a continuous in t in W̊1
2 (D) [41].
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For example, in the works [23,24,38,39], a differential game for a PDE of the form

∂z
∂t

= Az + u− v, Az = −
n

∑
i,j=1

∂

∂xi

(
aij(x)

∂z
∂xi

)
,

was studied by reducing to the following infinite system

żk + λkzk = uk − vk, k = 1, 2, ..., (4)

where uk and vk are control parameters of pursuer and evader, respectively, zk, uk, vk ∈ R,
and coefficients λk, k = 1, 2, ..., satisfy the condition 0 < λ1 ≤ λ2 ≤ ...→ ∞.

Thus, differential games for the infinite system of differential Equation (3) are closely
related to those for partial differential Equation (1). Therefore, we study differential games
for the infinite system of differential Equation (3) separately assuming that λ1, λ2, ... are
any numbers. Note that the differential equations we’ll consider in the following section
correspond to complex numbers λi.

3. Statement of Problem

We study a differential game for the following system

ẋi = −αixi − βiyi + ui1 − vi1, xi(0) = xi0,
ẏi = βixi − αiyi + ui2 − vi2, yi(0) = yi0,

(5)

in Hilbert space l2, where αi, βi are real numbers, αi ≥ 0, (x10, x20, . . . ), (y10, y20, . . . ) ∈ l2,
pursuer’s control parameter u = (u1, u2, ...) and evader’s control parameter v = (v1, v2, ...)
consist of 2-vectors ui = (ui1, ui2) and vi = (vi1, vi2), i = 1, 2, ..., respectively. Through-
out the paper we assume that 0 ≤ t ≤ T, where T is a sufficiently large number,
and z0 = (x10, y10, x20, y20, . . . ) 6= 0.

Let ρ and σ be given positive numbers.

Definition 1. An admissible control of pursuer is a function u(t) = (u1(t), u2(t), . . . ), t ∈ [0, T],
whose coordinates ui(t) are measurable and satisfy the condition

∞

∑
i=1

(u2
i1(t) + u2

i2(t)) ≤ ρ2, 0 ≤ t ≤ T. (6)

Definition 2. An admissible control of evader is a function v(t) = (v1(t), v2(t), . . . ), t ∈ [0, T],
whose coordinates vi(t) are measurable and satisfy the condition

∞

∑
i=1

(v2
i1(t) + v2

i2(t)) ≤ σ2, 0 ≤ t ≤ T. (7)

It is assumed that ρ > σ. Let

zi(t) =
[

xi(t)
yi(t)

]
, zi0 =

[
xi0
yi0

]
, Ui =

[
Ui1
Ui2

]
, vi =

[
vi1
vi2

]
,

Definition 3. A strategy of pursuer is a function of the form

U(t, v) = U0(t) + v = (U0
1(t) + v1, U0

2(t) + v2, . . . ), U0
i (t) = (U0

i1(t), U0
i2(t)),

where U0(t) = (U0
1(t), U0

2(t), . . . ) has measurable coordinates U0
i (t), 0 ≤ t ≤ T, that satisfy

the condition
∞

∑
i=1

((
U0

i1(t)
)2

+
(

U0
i2(t)

)2
)
≤ (ρ− σ)2, 0 ≤ t ≤ T.
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We denote

Ai(t) = e−αit[rr cos βit− sin βit sin βit cos βit], i = 1, 2, . . . .

We can easily see that the matrix Ai(t) has the following properties:

Ai(t + h) = Ai(t)Ai(h), A−1
i (t) = Ai(−t) = eαit[rr cos βit sin βit− sin βit cos βit].

Each equation of the system (5) has the unique solution z(t) = (z1(t), z2(t), . . . )
defined by

zi(t) = Ai(t)zi0 +
∫ t

0
Ai(t− s)(ui(s)− vi(s))ds, i = 1, 2, ...,

hence,

zi(t) = Ai(t)
[

zi0 +
∫ t

0
Ai(−s)(ui(s)− vi(s))ds

]
, i = 1, 2, ... (8)

The relations (8) imply that z(t) = 0 is equivalent to η(t) = 0, where

η(t) = (η1(t), η2(t), ...), ηi(t) = zi0 +
∫ t

0
Ai(−s)(ui(s)− vi(s))ds, i = 1, 2, ... (9)

Definition 4. We call the number a guaranteed pursuit time if for some strategy of pursuer U and
for any admissible control of the evader, z(t′) = 0 at some t′, 0 ≤ t′ ≤, where
z(t) = (z1(t), z2(t), . . . ) is the solution of the initial value problem (5).

The pursuer is interested in minimizing the guaranteed pursuit time.

Definition 5. A number τ is called a guaranteed evasion time if for any number τ′, 0 ≤ τ′ < τ,
we can construct an admissible control v0(t) such that, for the evader such that for any admissible
control of the pursuer, we have z(t) 6= 0 for all 0 ≤ t ≤ τ′ and i = 1, 2, . . . .

The evader is interested in minimizing the guaranteed evasion time.

Problem 1. Find an equation for a guaranteed pursuit time θ and a guaranteed evasion time τ in
the game (5).

Note that a differential game with integral constraints described by the system (5) was
studied in [22]. The present paper dealt with the differential game where the controls of
players are subjected to geometric constraints (6) and (7).

4. Results

In this section we find a guaranteed pursuit time θ and construct a strategy for the
pursuer that guarantees the time θ.

Theorem 1. The number θ that satisfy the equation

∑
αi>0

α2
i |zi0|2

sinh2(αiθ)
+

1
θ2 ∑

αi=0
|zi0|2 = (ρ− σ)2 (10)

is a guaranteed pursuit time in the game (5).

It should be noted that the series on the left hand side of Equation (6) is a decreasing
continuous function of on (0, ∞), approaches +∞ as→ 0+, and approaches 0 as→ +∞.
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Proof. Let

Wi(θ) =

θ∫
0

Ai(−s)AT
i (−s)ds.

We have

Wi(θ) =

θ∫
0

e2αis
[

cos βis sin βis
− sin βis cos βis

][
cos βis − sin βis
sin βis cos βis

]
ds

=

θ∫
0

e2αis
[

1 0
0 1

]
ds = ϕi(θ)I,

where

ϕi(θ) =

{
1

2αi
(e2αiθ − 1), αi 6= 0

θ, αi = 0
, I =

[
1 0
0 1

]
.

We define the strategy for the pursuer as follows

Ui(t) =
{
−AT

i (−t)W−1
i (θ)zi0 + vi(t), 0 ≤ t ≤ θ,

vi(t), t > θ
(11)

Note that U0
i (t), i = 1, 2, ..., in Definition 3 are defined by the equations

U0
i (t) =

{
−AT

i (−t)W−1
i (θ)zi0, 0 ≤ t ≤ θ

0, t > θ
, i = 1, 2, ... (12)

To show that the strategy (11) is admissible, we show that

∞

∑
i=1
|U0

i (t)|
2 =

∞

∑
i=1
| − AT

i (−t)W−1
i (θ)zi0|2 ≤ (ρ− σ)2.

Indeed, since

−AT
i (−t)W−1

i (θ)zi0 = − eαit

ϕi(θ)

[
cos βit sin βit
− sin βit cos βit

]
zi0,

we have ∣∣∣AT
i (−t)W−1

i (θ)zi0

∣∣∣ = eαit

ϕi(θ)

∣∣∣∣[ xi0 cos βit + yi0 sin βit
−xi0 sin βit + yi0 cos βit

]∣∣∣∣
=

eαit

ϕi(θ)
·
√

x2
i0 + y2

i0

≤ eαi

ϕi(θ)
· |zi0| =

{
αi |zi0|

sinh(αiθ)
αi > 0,

1 αi = 0.

This implies that

∞

∑
i=1
|U0

i (t)|
2 =

∞

∑
i=1
| − AT

i (−s)W−1
i (θ)zi0|2

≤ ∑
αi>0

α2
i |zi0|2

sinh2(αiθ)
+

1
θ2 ∑

αi=0
|zi0|2.
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We are now in position to prove the admissibility of strategy (11). By the Minkowskii
inequality and the definition of θ we have, for 0 ≤ t ≤ θ,

‖U(t)‖ = ‖U0(t) + v(t)‖ ≤ ‖U0(t)‖+ ‖v(t)‖

=

(
∞

∑
i=1
|U0

i (t)|
2

)1/2

+

(
∞

∑
i=1
|vi(t)|2

)1/2

≤
(

∑
αi>0

α2
i |zi0|2

sinh2(αiθ)
+

1
θ2 ∑

αi=0
|zi0|2

)1/2

+ σ = ρ− σ + σ = ρ.

The proof of admissibility of strategy U(t) is complete.
To show that θ is a guaranteed pursuit time, we show that z(θ) = 0. To this end we

show that
ηi(θ) = 0, i = 1, 2, . . . . (13)

Indeed, by (11)

ηi(θ) = zi0 +

θ∫
0

Ai(−s)(Ui(s)− vi(s))ds

= zi0 +

θ∫
0

Ai(−s)
(
−AT

i (−s)W−1
i (θ)zi0

)
ds

= zi0 − zi0 = 0,

and so zi(θ) = 0, hence, z(θ) = 0. Thus, pursuit is completed at the time θ. This completes
the proof of the theorem.

5. Guaranteed Evasion Time

In this section, we study the evasion differential game and we find a guaranteed
evasion time τ. We prove the following statement.

Theorem 2. For any initial state z0 = (z10, z20, · · · ), the number

τ = sup
i

τi, τi =


1
αi

ln
(

αi |zi0|
ρ−σ + 1

)
, αi > 0

|zi0|
ρ−σ , αi = 0

is a guaranteed evasion time in game (5).

Proof. Let pursuer apply an arbitrary admissible control u = u(t). Let τ′ be an arbitrary
time that satisfies the condition 0 < τ′ < τ. To prove the theorem, we construct an
admissible control for the evader, such that z(t) 6= 0, 0 ≤ t < τ′. Indeed, by definition of τ
there exists j ∈ {1, 2, · · · } such that τ′ < τj. Show that there is a control of the evader such
that z(t) 6= 0, 0 ≤ t < τj. Observe zj0 6= 0 since otherwise τj = 0 contradicting positivity of
τj. Let ej =

zj0
|zj0|

and

vj(t) = −σ

[
cos β jt sin β jt
− sin β jt cos β jt

]
ej, vi(t) = 0, i = 1, 2, · · · , i 6= j, t ∈ [0, τj). (14)
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Then, for any admissible control of the pursuer u(·) and time t ∈ [0, τj), we have

ηj(t) = zj0 +
∫ t

0
Ai(−s)uj(s)ds−

∫ t

0
Ai(−s)vj(s)ds

= zj0 +
∫ t

0
Ai(−s)uj(s)ds + σej

∫ t

0
eαjsds.

From this using the inequality |(Ai(−s)uj(s), ei)| ≤ ρeαjs and the definition of τj
we obtain

ηj(t)ej =|zj0|+
∫ t

0
(Ai(−s)uj(s), ei)ds + σ

∫ t

0
eαjsds

≥|zj0| − ρ
∫ t

0
eαjsds + σ

∫ t

0
eαjsds

>|zj0| − (ρ− σ)
∫ τj

0
eαjsds = 0.

Consequently, ηj(t) 6= 0 and hence zj(t) 6= 0 by (9), therefore, z(t) 6= 0 for t ∈ [0, τj).
In particular, z(t) 6= 0 on the interval [0, τ′]. This completes the proof of Theorem 2.

6. Discussion

We have studied a pursuit and evasion differential games for an infinite system
of differential equations. We have obtained a formula for the guaranteed pursuit time.
Additionally, we have constructed an explicit strategy for the pursuer that ensures the
completion of the game by the guaranteed pursuit time.

We estimate the guaranteed pursuit time θ. Using the Taylor series, for αi 6= 0, we have

αi
sinh αiθ

=
2αi

eαiθ − e−αiθ

=
2αi

1 + αiθ +
α2

i θ2

2! +
α3

i θ3

3! + · · · −
(

1− αiθ +
α2

i θ2

2! −
α3

i θ3

3! + . . .
)

=
2αi

2αiθ(1 +
α2

i θ2

3! +
α4

i θ4

5! + . . . )
≤ 1

θ
.

Therefore, we obtain from (10) that

(ρ− σ)2 = ∑
αi>0

α2
i |zi0|2

sinh2(αiθ)
+ ∑

αi=0

|zi0|2
θ2

≤ ∑
αi>0

|zi0|2
θ2 + ∑

αi=0

|zi0|2
θ2 =

|z0|2
θ2 ,

where

|z0| =
(

∞

∑
i=1
|zi0|2

)1/2

.

Hence,

θ ≤ |z0|
ρ− σ

.

Thus, the guaranteed pursuit time is less than or equal to |z0|/(ρ− σ). Hence, the strat-
egy of pursuer (11) guarantees the completion of the game by the time |z0|/(ρ− σ).

Additionally, we have obtained a formula for the guaranteed evasion time.
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