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1. Introduction

The role of special functions in applied mathematics and especially in differential equa-
tions and mathematical physics can hardly be overestimated. In classical theory, mainly
the hypergeometric functions pFq, the Meijer G-function, and their numerous particular
cases have been employed until recently ([1,2]). The situation changed dramatically with
the development of Fractional Calculus or FC (theory of the integrals and derivatives of the
non-integer order) and its applications ([3–7]). It turned out that the solutions to fractional
differential equations cannot, in general, be expressed in terms of hypergeometric functions
or even in terms of the Meijer G-function, and thus, more general types of special functions
came into operation.

In contrast to conventional ODEs and PDEs, different classes of special functions
proved to be useful for fractional ODEs and for fractional PDEs, namely Mittag–Leffler-type
functions for fractional ODEs ([8–10]) and Wright-type functions for fractional PDEs ([11–13]).
Even though the properties and applications of the conventional Mittag–Leffler function
and the Wright function are very different, they both are particular cases of the Fox–Wright
function, which is a generalization of the hypergeometric function. In more complicated
cases, an even more general function, the Fox H-function [4,14], appeared to be useful
while dealing with fractional differential equations. The Fox H-function is probably one
of the most general special functions that are nowadays in use in mathematics and its
applications. It can be interpreted as a generalization of the Meijer G-function.

In this paper, we discuss some new applications of the Fox–Wright function pΨq(z)
and the Fox H-function Hm,n

p,q (z) in the theory of fractional differential equations with
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the fractional Bessel operator, which is defined as a power of the conventional Bessel
differential operator (Bγ)t =

∂2

∂t2 +
γ
t

∂
∂t . The methods and techniques that we employ in

this paper are close to those suggested in [10], where a general schema for the development
of the operational calculi for fractional derivatives was presented and applied for the
derivation of analytical solutions to some classes of fractional ODEs.

The rest of the paper is organized as follows. In Section 2, we provide the definitions of
the special functions that are employed for the derivation of our main results. In Section 3,
we discuss some integral transforms with the special functions in the kernels. They are our
main tools for solving fractional differential equations with the fractional powers of the
Bessel operator. Special attention is given to a modification of the Meijer integral transform,
which acts on the fractional Bessel operator in the same way as the Laplace transform
does with respect to the derivatives of the integer and fractional order. Moreover, we
present a convenient formula for recovering a function from its known Meijer transform
(inverse Meijer integral transform). In Section 4, some explicit formulas for the fractional
powers of the Bessel operator acting on the functions defined on the positive real semi-
axes are presented in terms of the Gauss hypergeometric function. Analytical treatment of
fractional ODEs with the fractional Bessel derivative is the subject of Section 5. In particular,
in Section 5, a fundamental system of solutions to fractional ODEs with the fractional
Bessel operator is derived in terms of the Fox–Wright function. It turns out that for these
equations, the Fox–Wright function plays the same role as the Mittag–Leffler function for
fractional ODEs with conventional fractional derivatives (the Riemann–Liouville or the
Djerbashian–Caputo derivatives). In Section 6, we derive an explicit solution formula for
the Cauchy problem for a one-dimensional fractional Euler–Poisson–Darboux equation
that contains a fractional power of the Bessel operator with respect to the time variable and
the conventional Bessel operator with respect to the spatial variable. The main tool for our
derivations in Section 6 is an explicit formula for the Hankel transform of the Fox–Wright
function that is also presented in this section.

2. Special Functions Connected to the Fractional Bessel Operator

In this section, we remind the readers of the definitions and basic properties of the
special functions that play the main role in the derivation of our main results in the
subsequent sections.

The modified Bessel functions of the first and the second kind, Iα and Kα, respectively,
are defined as follows ([15]):

Iν(x) = i−ν Jα(ix) =
∞

∑
m=0

1
m! Γ(m + ν + 1)

( x
2

)2m+ν
, (1)

Kν(x) =
π

2
I−ν(x)− Iα(x)

sin(νπ)
, (2)

where the index ν in (2) is a non-integer number. For integer values of ν, Kν is interpreted as
the limit value of the expression on the right-hand side of (2). The formula Kν(x) = K−ν(x)
easily follows from the definition of Kν. For the small values of the argument x (0 < |x| �√

ν + 1), the asymptotic behavior of Kν is well known:

Kν(x) ∼

− ln
( x

2

)
− ϑ if ν = 0,

Γ(ν)
21−ν x−ν if ν > 0,

(3)

where

ϑ = lim
n→∞

(
− ln n +

n

∑
k=1

1
k

)
=

∞∫
1

(
− 1

x
+

1
bxc

)
dx

is the Euler–Mascheroni constant [16].
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The asymptotic behavior of Kν for the large values of the argument z (in the general
complex) is given by the formula

Kν(z) =
√

π

2
e−z
√

z

(
1 + O

(
1
z

))
, |z| → ∞. (4)

Setting ν = 1
2 in Formula (2), we get an important particular case of the modified

Bessel functions of the second kind:

K 1
2
(x) =

√
π

2x
e−x. (5)

The normalized Bessel function of the first kind, jν, is defined by the formula

jν(x) =
2νΓ(ν + 1)

xν
Jν(x), (6)

where Jν is Bessel function of the first kind [17].
The functions introduced above are particular cases of the hypergeometric Gauss

function that is defined as the following series ([16], p. 373, Formula 15.3.1)

2F1(a, b; c; z) = F(a, b, c; z) =
∞

∑
k=0

(a)k(b)k
(c)k

zk

k!
(7)

in the case this series converges, i.e., under the condition |z| < 1. For |z| ≥ 1, 2F1 is
interpreted as an analytic continuation of this series. In (7), both the parameters a, b, c and
the variable z are complex numbers (c 6= 0,−1,−2, . . .). By (a)k, the Pohgammer symbol is
denoted ((z)n = z(z + 1)...(z + n− 1), n = 1, 2, ..., (z)0 ≡ 1).

In FC, the Mittag–Leffler function Eα,β plays a very important role. It is an entire
function defined by the following convergent series

Eα,β(z) =
∞

∑
n=0

zn

Γ(αn + β)
, z ∈ C, α, β ∈ C, Re α > 0, Re β > 0. (8)

Another important FC function, the Fox–Wright function pΨq, is defined by the series
(see [18,19])

pΨq(z) = pΨq

[
(al , αl)1,p
(bj, β j)1,q

∣∣∣∣z] = ∞
∑

k=0

p
∏

l=1
Γ(al+αlk)

q
∏
j=1

Γ(bj+β jk)

zk

k! , z ∈ C, al , bj ∈ C, αl , β j ∈ R, l = 1, ..., p, j = 1, ..., q (9)

in the case this series converges. When the condition

q

∑
j=1

β j −
p

∑
l=1

αl > −1 (10)

is satisfied, the series at the right-hand side of (9) is convergent for any z ∈ C. In the case

q

∑
j=1

β j −
p

∑
l=1

αl = −1,

the series in (9) is absolutely convergent for |z| < δ and for |z| = δ and Re µ > 1
2 , where

δ =
p

∏
l=1
|αl |−αl

q

∏
j=1
|β j|β j ,
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µ =
q

∑
j=1

bj −
p

∑
l=1

al +
p− q

2
.

For the fractional powers of the Bessel operator, the Fox–Wright function plays the
same role as the Mittag–Leffler function for the conventional fractional derivatives.

Moreover, the Mittag–Leffler function is a particular case of the Fox–Wright func-
tion (9):

Eα,β(z) = 1Ψ1

[
(1, 1)
(β, α)

∣∣∣∣z]. (11)

Now we introduce the Fox H-function. Let m, n, p, q be the integers such that
0 ≤ m ≤ q and 0 ≤ n ≤ p. For the parameters ai, bj ∈ C and αi, β j ∈ R+ (i = 1, 2, ..., p; j =
1, 2, ..., q), the H-function Hm,n

p,q is defined via a Mellin–Barnes-type integral ([20])

Hm,n
p,q (z) = Hm,n

p,q

[
z
∣∣∣∣ (ai, αi)1,p
(bj, β j)1,q

]
=

1
2πi

∫
L

Hm,n
p,q (s)z

−sds, (12)

where

Hm,n
p,q (s) =

m
∏
j=1

Γ(bj + β js)
n
∏
i=1

Γ(1− ai − αis)

p
∏

i=n+1
Γ(ai + αis)

q
∏

j=m+1
Γ(1− bj − β js)

.

Let

a∗ =
n

∑
i=1

αi −
p

∑
i=n+1

αi +
m

∑
j=1

β j −
q

∑
j=m+1

β j,

∆ =
q

∑
j=1

β j −
p

∑
i=1

αi,

µ =
q

∑
j=1

bj −
p

∑
i=1

ai +
p− q

2
.

The integral at the right-hand side of (12) is well defined in particular under the
following conditions: ∆ > 0, z 6= 0. L = L−∞ is a left loop that starts at the point−∞+ iϕ1,
terminates at the point −∞ + iϕ2 with −∞ < ϕ1 < ϕ2 < +∞, encircles all poles of the
Gamma functions Γ(bj + β js), j = 1, . . . , m, and is located in a bounded horizontal strip.
Other existence conditions for the Mellin–Barnes-type integral from the definition of Hm,n

p,q
are listed in [20] (p. 4, Theorem 1.1).

3. Integral Transforms, the Poisson Operator, and a Generalized Convolution

In this section, the Meijer integral transform and its modification, as well as their
connection to the integral Laplace transform via the transmutation Poisson operator, are
presented. We also provide definitions and properties of the Hankel integral transform
and of a generalized convolution that is employed for the equations containing the Bessel
differential operator. For the known properties of the Fourier and the Laplace transforms,
we refer to [21].

To be able to use the operational method presented in [10], an integral transform
suitable for dealing with the fractional Bessel differential operator is needed. It turns out
that this integral transform is the one with the modified Bessel function of the second
kind (2) in the kernel.
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For the functions f : R+ → C, an integral transform of the Mellin convolution type
with the modified Bessel function Kν, ν ≥ 0 in the kernel is called the Meijer integral
transform. It is defined by the formula ([21], p. 93)

Kν[ f ](ξ) =
∞∫

0

√
xξKν(xξ) f (x) dx. (13)

In (13), the condition ν ≥ 0 can be assumed without any loss of generality because of
the relation Kν(x) = K−ν(x).

For our aims, it is convenient to use the following modification of the Meijer integral
transform:

Kγ[ f ](ξ) =
∞∫

0

x
γ+1

2 K γ−1
2
(xξ) f (x) dx. (14)

In particular, for γ = 0 and γ = 2, Formula (5) leads to the following well-known
particular cases of the modified Meijer integral transform:

K0[ f ](ξ) =
√

π

2ξ

∞∫
0

e−xξ f (x) dx =

√
π

2ξ
L[ f (x)](ξ),

K2[ f ](ξ) =
√

π

2ξ

∞∫
0

xe−xξ f (x) dx =

√
π

2ξ
L[x f (x)](ξ),

where L[ f (x)](ξ) is the conventional Laplace integral transform.
Let f ∈ Lloc

1 (R+) and f (t) = o
(

tβ− γ
2

)
as t → +0, where β > γ

2 − 2 if γ > 1 and

β > −1 if γ = 1. Furthermore, let f (t) = 0(eat) as t → +∞. Then, the Meijer integral
transform of f exists a.e. for Re ξ > a ([21], p. 94). The class of the functions that satisfy the
conditions mentioned above will be denoted by Kγ.

If the condition 0 < γ < 2 holds true, the function F(ξ) is analytic on the half-plane
Ha = {p ∈ C : Re p ≥ a}, a ≤ 0, and s

γ
2−1F(ξ)→ 0, |ξ| → +∞, uniformly with respect to

arg s, then the inverse Meijer integral transform

K−1
γ [ f̂ ](x) = f (x) =

1
πi

c+i∞∫
c−i∞

f̂ (ξ)i γ−1
2
(xξ)ξγdξ (15)

is well defined for any c ∈ R, c > a ([21], p. 94).
The inversion formula (15) is difficult to apply and not convenient for our aims. More-

over, it contains a restrictive condition 0 < γ < 2. Thus, we introduce another inversion
formula in terms of the transmutation Poisson operator that is defined as follows ([22]):

Pγ
x f (x) = (Pγ

t f (t))(x) =
2C(γ)
xγ−1

x∫
0

(
x2 − t2

) γ
2−1

f (t) dt, C(γ) =
Γ
(

γ+1
2

)
√

π Γ
( γ

2
) . (16)

For any summable function H(x), the left inverse transform for the Poisson opera-
tor (16) with γ > 0 is given by the formula ([7])

(Pγ
x )
−1H(x) =

2
√

πx

Γ
(

γ+1
2

)
Γ
(
n− γ

2
)( d

2xdx

)n x∫
0

H(z)(x2 − z2)n− γ
2−1zγdz, (17)

where n =
[ γ

2
]
+ 1.
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We start with the known representation of the modified Bessel function of the second
kind ([15], p. 190)

Kν(xξ) =

√
π

Γ
(

ν + 1
2

)( ξ

2x

)ν ∞∫
x

e−ξz(z2 − x2)ν− 1
2 dz,

and arrive at the formula

x
γ+1

2 K γ−1
2
(xξ) =

√
π xξ

γ−1
2

2
γ−1

2 Γ
( γ

2
) ∞∫

x

e−ξz(z2 − x2)
γ
2−1dz

for the kernel of the modified Meijer integral transform. Substituting this formula into (14),
we obtain the following convenient factorization of the modified Meijer integral transform:

Kγ[ f ](ξ) =
π ξ

γ−1
2

2
γ+1

2 Γ
(

γ+1
2

) (Lzγ−1Pγ
z z f (z))(ξ), (18)

where L stands for the Laplace integral transform. Representation (18) will be employed in
the subsequent section.

Another integral transform that we need for the derivation of our results is the Hankel
integral transform. For a function f∈Lγ

1 (R
1
+), it is defined as follows ([17]):

Fγ[ f ](ξ) = Fγ[ f (x)](ξ) = f (ξ) =
∞∫

0

f (x) j γ−1
2
(xξ)xγdx, (19)

where γ > 0 and jν is the normalized Bessel function of the first kind (6).
In the rest of this section, we introduce a generalized translation operator and a gen-

eralized convolution that we employ for analytical treatment of the fractional differential
equations with the fractional Bessel derivative.

Let f = f (x), x ∈ R, γ > 0. The generalized translation is defined by the formula ([22])

( γTy
x f )(x)= γTy

x f=C(γ)
π∫

0

f (
√

x2 + y2 − 2xy cos ϕ) sinγ−1 ϕ dϕ, (20)

where C(γ) =
Γ
(

γ+1
2

)
√

πΓ( γ
2 )

. For γ = 0, the generalized translation γTy
x is reduced to the central

difference operator:
0Ty

x = Ty
x f (x) =

f (x + y)− f (x− y)
2

.

The generalized convolution generated by the generalized translation γTy
x is defined

as follows:

( f ∗ g)γ(x) =
∞∫

0

f (y) γTy
x g(x)yγ dy. (21)

It turns out that the generalized convolution (21) is a convolution for Hankel integral
transform and the convolution property

Fγ[( f ∗ g)γ(x)](ξ) = Fγ[ f (x)](ξ)Fγ[g(x)](ξ) (22)

holds true. For the proofs of these and other results regarding the generalized translation
operators, we refer to [22,23].
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4. Fractional Bessel Integral and Derivative

In this section, we shortly present the definitions and the main properties of the
fractional Bessel integral and derivative.

A representation of the fractional Bessel integral that was interpreted as a negative
power of the Bessel operator (Bγ)t = ∂2

∂t2 + γ
t

∂
∂t was first presented in [24] in terms of

an integral operator with the Gauss hypergeometric function in the kernel. In [25], the
fractional Bessel derivative in the form of the positive powers of the Bessel and the hyper-
Bessel differential operators were suggested and studied in detail. The operators we deal
with in this paper follow the constructions presented in [25]. In [4,26,27], a more general
class of the hyper-Bessel differential operators along with the associated Obrechkoff integral
transform was introduced, and the analytical solutions to some linear differential equations
with the hyper-Bessel differential operators were deduced. In what follows, we introduce
the fractional Bessel integrals and derivatives and provide some of their properties we
need in the further discussions.

Let α > 0 and γ > 0. The left-sided Bessel fractional integral B−α
γ,0+ of a function

f∈L[0, ∞) defined on the half-axis is given by the formula

(B−α
γ,0+ f )(x) = (IBα

γ,0+ f )(x) =

=
1

Γ(2α)

x∫
0

( y
x

)γ
(

x2−y2

2x

)2α−1

2F1

(
α+

γ−1
2

, α; 2α; 1− y2

x2

)
f (y)dy. (23)

For the properties of the operator (23), we refer to [28].
Let n = [α] + 1, f∈L[0, ∞), IBn−α

γ,b− f , IBn−α
γ,b− f∈C2n(0, ∞). The left-sided Bessel frac-

tional derivative is defined as a composition of the left-sided Bessel fractional integral and
the Bessel differential operator as follows:

(Bα
γ,0+ f )(x) = (IBn−α

γ,0+Bn
γ f )(x). (24)

In [25], the spaces of functions suitable for analysis of the Bessel fractional operators
Bα

γ,0+, α ∈ R were introduced:

Fp =

{
ϕ ∈ C∞(0, ∞) : xk dk ϕ

dxk ∈ Lp(0, ∞) for k = 0, 1, 2, ...

}
, 1 ≤ p < ∞,

F∞ =

{
ϕ ∈ C∞(0, ∞) : xk dk ϕ

dxk → 0 as x → 0 + and as x → ∞ for k = 0, 1, 2, ...

}
and

Fp,µ =
{

ϕ : x−µ ϕ(x) ∈ Fp
}

, 1 ≤ p ≤ ∞, µ ∈ C.

For our aims, we need the following result that is a special case of the results presented
in [25].

Theorem 1. Let α ∈ R. For all p, µ and γ > 0 such that µ 6= 1
p−2m, γ 6= 1

p−µ−2m+1, m=1, 2...,
the operator Bα

γ,0+ is a continuous linear mapping from Fp, µ into Fp,µ−2α. If the conditions
2α 6= µ− 1

p + 2m and γ− 2α 6= 1
p − µ− 2m + 1, m = 1, 2... also hold true, then Bα

γ,0+ is a
homeomorphism from Fp, µ onto Fp,µ−2α with the inverse operator B−α

γ,0+.

Even though the operators (23) and (24) were intensively studied in the literature,
until recently, no convenient methods for solving the fractional differential equations
with the fractional powers of the Bessel operator were suggested. The situation changed
with the publication of the paper [29], where the modified Meijer integral transform (14)
was employed for analytical treatment of some fractional differential equations with the
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fractional Bessel derivatives. In the rest of this section, we present some results from [29]
that are needed for our analysis in the next section. To shorten the formulations of the
results, each time the Meijer integral transform is applied to a function, we suppose that
this function is from the space Kγ introduced in the previous section.

Theorem 2. Let α > 0, f ∈ Kγ. The modified Meijer integral transform (14) of the Bessel
fractional integral B−α

γ,0+ is given by the formula

Kγ[(IBα
γ,0+ f )(x)](ξ) = ξ−2αKγ f (ξ). (25)

Theorem 3. Let n ∈ N, f ∈ Kγ, d
dx [B

n−k
γ f (x)] be bounded, the modified Meijer integral trans-

form of Bn
γ f exist, and γ 6= 1. Then, the formula

Kγ[Bn
γ f ](ξ) = ξ2nKγ[ f ](ξ)−

(
2
ξ

) γ−1
2

Γ
(

γ + 1
2

) n

∑
k=1

ξ2k−2Bn−k
γ f (0+) (26)

holds true. Moreover, when d
dx [B

n−k
γ f (x)] ∼ xβ, β > 0 as x → 0+, then Formula (26) remains

valid for γ = 1.

To formulate the next result, we introduce the space Cm
ev = Cm

ev(R) that consists of all

functions from Cm(R) such that ∂2k+1 f
∂x2k+1

i

∣∣∣∣
x=0

= 0 for all non-negative integers k ≤ m−1
2 ([17],

p. 21).

Remark 1. If γ = 0 and f ∈ C2n
ev , we get the formulas

K0[ f (x)](ξ) =
√

π

2ξ

∞∫
0

e−xξ f (x) dx =

√
π

2ξ
L[ f (x)](ξ)

and

L
[

d2n

dx2n f (x)
]
(ξ) = ξ2nL[ f ](ξ)−

2n−1

∑
k=0

ξk f (2n−k−1)(0+) =

= ξ2nL[ f ](ξ)− f (2n−1)(0+)− s f (2n−2)(0+)− s2 f (2n−3)(0+)− ...

...− s3 f (2n−4)(0+)− s4 f (2n−5)(0+)− s5 f (2n−6)(0+)− ...− ξ2n−2 f ′(0+)− ξ2n−1 f (0+).

Because f ∈ C2n
ev , the conditions f ′(0+) = f ′′′(0+) = ... = f (2n−5)(0+) = f (2n−3)(0+) =

f (2n−1)(0+) = 0 are fulfilled, and we arrive at the formula

L
[

d2n

dx2n f (x)
]
(ξ) = ξ2nL[ f ](ξ)− s f (2n−2)(0+)− ...

...− s3 f (2n−4)(0+)− s5 f (2n−6)(0+)− ...− ξ2n−1 f (0+) =

= ξ2nL[ f ](ξ)−
n

∑
k=1

s2k−1 f (2n−2k)(0+) = {m = n− k} =

= ξ2nL[ f ](ξ)−
n−1

∑
m=0

s2(n−m)−1 f (2m)(0+).

Thus, the relation

L
[

d2n

dx2n f (x)
]
(ξ) = ξ2nL[ f ](ξ)−

n−1

∑
m=0

s2(n−m)−1 f (2m)(0+)
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holds true.
From the other side, the formula√

2ξ

π
K0[Bn

0 f ](ξ) =

√
2ξ

π

(
ξ2nK0[ f ](ξ)−

√
πξ

2

n−1

∑
m=0

ξ2(n−m)−2Bm
0 f (0+)

)
=

=

√
2ξ

π

(
ξ2n
√

π

2ξ
L[ f (x)](ξ)−

√
πξ

2

n−1

∑
m=0

ξ2(n−m)−2Bm
0 f (0+)

)
=

= ξ2n L[ f (x)](ξ)−
n−1

∑
m=0

ξ2(n−m)−1 f (2m)(0+).

confirms that the modified Meijer integral transform generalizes the Laplace integral transform.

Theorem 4. Let n = [α] + 1 for non-integer values of α and n = α for α ∈ N, k ∈ N, f ∈ Kγ,
d

dx [B
k
γ f (x)] be bounded, the modified Meijer integral transform of Bα

γ,0+ f exist, and γ 6= 1. Then,
the formula

Kγ[Bα
γ,0+ f ](ξ) = ξ2αKγ[ f ](ξ)−

(
2
ξ

) γ−1
2

Γ
(

γ + 1
2

) n−1

∑
m=0

ξ2(α−m)−2Bm
γ f (0+) (27)

holds true. Moreover, if d
dx [B

k
γ f (x)] ∼ xβ, β > 0 as x → 0+, then Formula (27) remains valid for

γ = 1.

The results formulated in this section allow an analytical treatment of the fractional
ODEs with the fractional Bessel derivative and of the fractional Euler–Poisson–Darboux
equation. These results are presented in the next two sections.

5. Fractional ODEs with the Fractional Bessel Derivative

In this section, we consider a fractional ODE with the fractional Bessel derivative in
the form

(Bα
γ,0+ f )(x) = λ f (x), α > 0, λ ∈ R. (28)

Let n = [α] + 1 for non-integer values of α and n = α for α ∈ N. We look for solutions of
Equation (28) that belong to the space C2n

ev . Thus, the conditions

d2m+1 f
dx2m+1

∣∣∣∣
x=0

= 0, m = 0, 1, ..., n− 1 (29)

have to be satisfied. Adding the conditions

Bm
γ f (0+) = am, m = 0, 1, ..., n− 1, (30)

we arrive at an initial-value problem for Equation (28) with a total of 2n initial conditions
((29) and (30)).

The main result of this section is formulated in the following theorem:

Theorem 5. Let n = [α] + 1 for the non-integer values of α and n = α for α ∈ N, λ ∈ R.
The fundamental system of solutions to Equation (28) is built by the following n functions

ym = x2m
2Ψ2

[ (
m + γ

2 + 1, α
)
, (1, 1)

(m + 1, α), (2m + γ + 1, 2α)

∣∣∣∣λx2α

]
, m = 0, ..., n− 1.
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These functions satisfy the initial conditions in the form

d2m+1ym

dx2m+1

∣∣∣∣
x=0

= 0, Bm
γ ym(0+) = 1, m = 0, 1, ..., n− 1.

The unique solution to the initial-value problem (28)–(30) is given by the formula

f (x) =
2γΓ

(
γ+1

2

)
√

π

n−1

∑
m=0

amx2m
2Ψ2

[ (
m + γ

2 + 1, α
)
, (1, 1)

(m + 1, α), (2m + γ + 1, 2α)

∣∣∣∣λx2α

]
.

Proof. Applying the modified Meijer integral transform Kγ to Equation (28) and taking
into account the initial conditions (29) and (30), we get the following chain of relations:

ξ2αKγ[ f ](ξ)−
(

2
ξ

) γ−1
2

Γ
(

γ + 1
2

) n−1

∑
m=0

amξ2(α−m)−2 = λKγ[ f ](ξ),

(ξ2α − λ)Kγ[ f ](ξ) =
(

2
ξ

) γ−1
2

Γ
(

γ + 1
2

) n−1

∑
m=0

amξ2(α−m)−2

Kγ[ f ](ξ) = 2
γ−1

2 Γ
(

γ + 1
2

) n−1

∑
m=0

am
ξ2(α−m)−2+ 1−γ

2

ξ2α − λ
.

Taking into account the factorization formula (18), we first obtain the formula

π ξ
γ−1

2

2
γ+1

2 Γ
(

γ+1
2

) (Lzγ−1Pγ
z z f (z))(ξ) = 2

γ−1
2 Γ
(

γ + 1
2

) n−1

∑
m=0

am
ξ2(α−m)−2+ 1−γ

2

ξ2α − λ

and then arrive at the relation

(Lxγ−1Pγ
x x f (x))(ξ) =

2γ

π
Γ2
(

γ + 1
2

) n−1

∑
m=0

am
ξ2(α−m)−γ−1

ξ2α − λ
.

To get a solution formula, we first apply the inverse Laplace integral transform to both
sides of the last formula. Taking into account the formula ([3], p. 50, Formula 1.10.9)

L−1

[
ξ2(α−m)−1−γ

ξ2α − λ

]
(x) = x2m+γE2α,2m+γ+1(λx2α),

we immediately obtain the representation

Pγ
x x f (x) =

2γ

π
Γ2
(

γ + 1
2

) n−1

∑
m=0

amx2m+1E2α,2m+γ+1(λx2α).

Now we apply the inverse Poisson integral transform to the last equation and obtain
the solution in the form

x f (x) =
2γ

π
Γ2
(

γ + 1
2

) n−1

∑
m=0

am(Pγ
x )
−1x2m+1E2α,2m+γ+1(λx2α).

Finally, taking into account Representation (17), we can represent the solution as fol-
lows:

f (x) =
2γ+1Γ

(
γ+1

2

)
√

πΓ
(

p− γ
2
)( d

2xdx

)p n−1

∑
m=0

am

x∫
0

z2m+γ+1E2α,2m+γ+1(λz2α)(x2 − z2)p− γ
2−1dz,
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where p =
[ γ

2
]
+ 1.

Let us now derive an explicit formula for the integral

I =
x∫

0

z2m+γ+1E2α,2m+γ+1(λz2α)(x2 − z2)p− γ
2−1dz.

First of all, we mention that this integral converges for all values of its parameters
because of the known estimate |Eα,β(z)| ≤ C eσ|z|1/α

for the Mittag–Leffler function that is
valid for any σ > 1 ([8], p. 71). By using Definition (8) of the Mittag–Leffler function, we
have the formula

E2α,β(λz2α) =
∞

∑
k=0

λkz2kα

Γ(2αk + β)
.

Substituting this representation into the integral I, we get the following chain of relations:

I =
∞

∑
k=0

λk

Γ(2αk + 2m + γ + 1)

x∫
0

z2m+2kα+γ+1(x2 − z2)p− γ
2−1dz =

=
∞

∑
k=0

λk

Γ(2αk + 2m + γ + 1)
Γ
(

p− γ
2
)
Γ
(
m + γ

2 + 1 + kα
)

2Γ(m + p + 1 + kα)
x2αk+2m+2p =

=
1
2

x2m+2pΓ
(

p− γ

2

) ∞

∑
k=0

Γ(1 + k)
Γ(2αk + 2m + γ + 1)

Γ
(
m + γ

2 + 1 + kα
)

Γ(m + p + 1 + kα)

(λx2α)k

k!
=

=
1
2

x2m+2pΓ
(

p− γ

2

)
2Ψ2

[ (
m + γ

2 + 1, α
)
, (1, 1)

(m + p + 1, α), (2m + γ + 1, 2α)

∣∣∣∣λx2α

]
,

where pΨq(z) stands for the Fox–Wright function (9).
Thus, we obtain the solution formula

f (x) =
2γΓ

(
γ+1

2

)
√

π

(
d

2xdx

)p n−1

∑
m=0

amx2m+2p
2Ψ2

[ (
m + γ

2 + 1, α
)
, (1, 1)

(m + p + 1, α), (2m + γ + 1, 2α)

∣∣∣∣λx2α

]
.

Applying the formula(
d

2xdx

)p
x2µ+2p =

Γ(µ + p + 1)
Γ(µ + 1)

x2µ,

we can rewrite the solution in the final form:

f (x) =
2γΓ

(
γ+1

2

)
√

π

n−1

∑
m=0

amx2m
2Ψ2

[ (
m + γ

2 + 1, α
)
, (1, 1)

(m + 1, α), (2m + γ + 1, 2α)

∣∣∣∣λx2α

]
.

To determine the convergence conditions for the Fox–Wright functions from the last
formula, we substitute their parameters values

q = p = 2, α1 = α, α2 = 1, β1 = α, β2 = 2α

into Condition (10) that in our case takes the form

(α + 2α)− (α + 1) = 2α− 1 > −1⇒ α > 0.

This means that the series for the Fox–Wright functions in the solution formula are
convergent for any z ∈ C.
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Moreover, the series representation (9) of the Fox–Wright functions in the solution
formula ensures that the functions

ym = x2m
2Ψ2

[ (
m + γ

2 + 1, α
)
, (1, 1)

(m + 1, α), (2m + γ + 1, 2α)

∣∣∣∣λx2α

]
, m = 0, ..., n− 1

satisfy the initial conditions (29) and (30).

As an example, consider the initial-value problem (28)–(30) in the integer-order case
α = 1:

Bγ f (x) = λ f (x), λ ∈ R, (31)

f (0) = 1. (32)

According to Theorem 5, the unique solution to the initial-value problem (31) and (32)
is given by the formula

f (x) =
2γΓ

(
γ+1

2

)
√

π
2Ψ2

[ ( γ
2 + 1, 1

)
, (1, 1)

(1, 1), (γ + 1, 2)

∣∣∣∣λx2
]
=

2γΓ
(

γ+1
2

)
√

π
1Ψ1

[ (
1 + γ

2 , 1
)

(γ + 1, 2)

∣∣∣∣λx2
]
=

=
2γΓ

(
γ+1

2

)
√

π

∞

∑
m=0

λmΓ
(
1 + γ

2 + m
)

Γ(γ + 1 + 2m)

x2m

m!
.

Let us represent this solution in terms of some simpler special functions. Using the
Legendre duplication formula ([16]) for the Euler gamma function

Γ(2z) =
22z−1
√

π
Γ(z)Γ

(
z +

1
2

)
,

we obtain the following chain of equations

f (x) = 2γΓ
(

γ + 1
2

) ∞

∑
m=0

λmΓ
(
1 + γ

2 + m
)

2γ+2mΓ
(
1 + γ

2 + m
)
Γ
(

γ+1
2 + m

) x2m

m!
=

=
2

γ−1
2 Γ
(

γ+1
2

)
x

γ−1
2

∞

∑
m=0

λm

Γ
(

γ+1
2 + m

) 1
m!

( x
2

)2m+ γ−1
2 .

For λ = −τ2, the last formula can be rewritten in terms of the normalized Bessel
function j γ−1

2
:

2
γ−1

2 Γ
(

γ+1
2

)
x

γ−1
2

∞

∑
m=0

(−1)m

Γ
(

γ+1
2 + m

) 1
m!

(τx
2

)2m+ γ−1
2

= j γ−1
2
(τx).

Thus, we obtain the solution to the initial-value problem (31) and (32) in the classical
form. Because of the relation

Bγ j γ−1
2
(τx) = −τ2 j γ−1

2
(τx)

and taking into account the result formulated in Theorem 5, the function

2Ψ2

[ (
1 + γ

2 , α
)
, (1, 1)

(1, α), (γ + 1, 2α)

∣∣∣∣λx2α

]
can be considered as a generalization of the normalized Bessel function j γ−1

2
.
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Let us consider another example of the initial-value problem (28)–(30). It is well-
known ([3,30]) that the functions

yj(x) = xjEα,j+1(λxα), j = 0, ..., l − 1

build the fundamental system of solutions to the fractional differential equation

(Dα
0+y)(x) = λy(x), x > 0, l − 1 < α ≤ l, l ∈ N, λ ∈ R

with the Djerbashian–Caputo fractional derivative

(Dα
0+y)(x) =

1
Γ(n− α)

x∫
0

y(n)(t)dt
(x− t)α−n+1 , α /∈ N, n = [α] + 1.

Theorem 5 provides the fundamental system of solutions to the equation

(Bα
γ,0+ f )(x) = λ f (x), α > 0, λ ∈ R

in the form

ym(x) = x2m
2Ψ2

[ (
m + γ

2 + 1, α
)
, (1, 1)

(m + 1, α), (2m + γ + 1, 2α)

∣∣∣∣λx2α

]
, m = 0, ..., n− 1,

where n = [α] + 1 for the non-integer values of α and n = α for α ∈ N. Because of the
relation (Bα

0,0+ f )(x)=(D2α
0+ f )(x), the Fox–Wright function 2Ψ2 can be considered as a

generalization of the Mittag–Leffler function from the viewpoint of the eigenfunctions of
the fractional differential operators.

Our last example in this section is the initial-value problem (28)–(30) with 0 < α ≤ 1
(n = 1):

(Bα
γ,0+ f )(x) = λ f (x), α > 0, λ ∈ R,

f (0) = a, f ′(0) = 0.

According to Theorem 5, its unique solution has the form

f (x) =
a2γΓ

(
γ+1

2

)
√

π
2Ψ2

[ ( γ
2 + 1, α

)
, (1, 1)

(1, α), (γ + 1, 2α)

∣∣∣∣λx2α

]
.

6. The Euler–Poisson–Darboux Equation with the Fractional Bessel Derivative

In this section, we apply a method similar to the one employed in the previous section
for analytical treatment of a one-dimensional fractional PDE.

Let u = u(x, t), t ≥ 0, x ≥ 0 be a function of two variables. In this section, we deal
with the fractional PDE in the form

(Bα
γ,0+)tu(x, t) = (Bγ)xu(x, t) (33)

equipped with the Cauchy initial conditions

u(x, 0) = f (x), ut(x, 0) = 0. (34)

Equation (33) is a fractional generalization of the well-known Euler–Poisson–Darboux
equation (see, for example, [31] and the references therein).

We start with some auxiliary statements that are employed for analytical treatment
of the initial-value problem (33) and (34). In particular, we will need an explicit formula
for the inverse Hankel transform of the Fox–Wright function. It can be derived using the
following known result ([20], p. 50, Corollary 2.5.1):
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Lemma 1. Let a∗ > 0 or a∗ = ∆ = 0 and Re µ < −1. Let η, ω ∈ C, τ > 0 and σ > 0 be
such that

σRe η + Re ω + τ min
1≤j≤m

(
Re bj

β j

)
> −1,

τ min
1≤i≤m

(
1− Re ai

αi

)
> Re ω− σ

2
+ 1

and
Re η > −1

2
.

Then, for a > 0, b > 0, x > 0, the formula

∞∫
0

(xξ)ω Jη(a(xξ)σ)Hm,n
p,q

[
bξτ

∣∣∣∣ (ai, αi)1,p
(bj, β j)1,q

]
dξ =

=
1

2σx

(
2
a

) ω+1
σ

Hm,n+1
p+2,q

[
b
(

2
a

) τ
σ 1

xτ

∣∣∣∣∣
(

1− ω+1
2σ −

η
2 , τ

2σ

)
, (ai, αi)1,p,

(
1− ω+1

2σ + η
2 , τ

2σ

)
(bj, β j)1,q

]
.

holds valid.

Using Lemma 1, we then derive an explicit formula for the inverse Hankel transform
of the Fox–Wright function.

Lemma 2. For 1 < γ < 2, γ
γ+1 < α < 1, the inverse Hankel transform of the Fox–Wright

function is given by the formula

F−1
γ

[
2Ψ2

[ ( γ
2 + 1, α

)
, (1, 1)

(1, α), (γ + 1, 2α)

∣∣∣∣− ξ2t2α

]]
(x) =

=
2

xγ+1Γ
(

γ+1
2

)H1,2
3,2

[
4t2α

x2

∣∣∣∣∣
(

1−γ
2 , 1

)
,
(
− γ

2 , α
)
, (0, 1)

(0, α), (−γ, 2α)

]
.

Proof. Because of the representation jν(x) = 2νΓ(ν+1)
xν Jν(x), the formula j γ−1

2
(xξ) =

2
γ−1

2 Γ
(

γ+1
2

)
(xξ)

1−γ
2 J γ−1

2
(xξ) holds true. Then, the inverse Hankel transform can be repre-

sented as follows:

F−1
γ [ f̂ (ξ)](x) = f (x) = 21−γ

Γ2
(

γ+1
2

) ∞∫
0

j γ−1
2
(xξ) f̂ (ξ)ξγ dξ = 2

1−γ
2

xγΓ
(

γ+1
2

) ∞∫
0
(xξ)

γ+1
2 J γ−1

2
(xξ) f̂ (ξ) dξ.

Now we apply this formula to the Fox–Wright function represented in the form of a
particular case of the Fox H-function:

F−1
γ

[
2Ψ2

[ ( γ
2 + 1, α

)
, (1, 1)

(1, α), (γ + 1, 2α)

∣∣∣∣− ξ2t2α

]]
(x) = F−1

γ

[
H1,2

2,3

[
ξ2t2α

∣∣∣∣ (
− γ

2 , α
)
, (0, 1)

(0, 1), (0, α), (−γ, 2α)

]]
(x) =

= 2
1−γ

2

xγΓ
(

γ+1
2

) ∞∫
0
(xξ)

γ+1
2 J γ−1

2
(xξ)H1,2

2,3

[
ξ2t2α

∣∣∣∣ (
− γ

2 , α
)
, (0, 1)

(0, 1), (0, α), (−γ, 2α)

]
dξ.

To apply Lemma 1 to the last formula, we first check the conditions formulated in
Lemma 1. In the case under consideration, we have the following parameter values:

ω =
γ + 1

2
, η =

γ− 1
2

, a = 1, σ = 1, m = 1, n = 2, p = 2, q = 3, b = t2α, τ = 2,

a1 = −γ

2
, a2 = 0, α1 = α, α2 = 1, b1 = 0, b2 = 0, b3 = −γ, β1 = 1, β2 = α, β3 = 2α.
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Then, the values mentioned in Lemma 1 are as follows:

a∗ =
n

∑
i=1

αi −
p

∑
i=n+1

αi +
m

∑
j=1

β j −
q

∑
j=m+1

β j = α1 + α2 + β1 − β2 − β3 =

= α + 1 + 1− α− 2α = 2− 2α > 0⇔ α < 1,

µ =
q

∑
j=1

bj −
p

∑
i=1

ai +
p− q

2
= b1 + b2 + b3 − a1 − a2 +

p− q
2

=

= 0 + 0− γ +
γ

2
− 0− 1

2
= −γ + 1

2
< −1⇔ γ > 1,

η =
γ− 1

2
> −1

2
⇔ γ > 0, τ = 2 > 0, σ = 1 > 0,

σ · η + ω + τ min
1≤j≤m

(
bj

β j

)
=

γ− 1
2

+
γ + 1

2
+ 2 min

{
0
1

,
0
α

,− γ

2α

}
=

= γ− γ

α
= γ

(
1− 1

α

)
> −1⇒ γ

γ + 1
< α,

τ min
1≤i≤m

(
1− ai

αi

)
−ω +

σ

2
= 2 min

{
1 + γ

2
α

,
1− 0

1

}
− γ + 1

2
+

1
2
= 2− γ

2
> 1⇒ γ < 2.

As a result, we are allowed to apply Lemma 1 to get an explicit formula for the inverse
Hankel transform of the Fox–Wright function:

F−1
γ

[
2Ψ2

[ ( γ
2 + 1, α

)
, (1, 1)

(1, α), (γ + 1, 2α)

∣∣∣∣− ξ2t2α

]]
(x) =

=
2

1−γ
2

xγΓ
(

γ+1
2

) ∞∫
0

(xξ)
γ+1

2 J γ−1
2
(xξ)H1,2

2,3

[
ξ2t2α

∣∣∣∣ (
− γ

2 , α
)
, (0, 1)

(0, 1), (0, α), (−γ, 2α)

]
dξ =

=
2

1−γ
2

xγΓ
(

γ+1
2

) 1
2x

2
γ+3

2 H1,3
4,3

[
4t2α

x2

∣∣∣∣∣
(

1−γ
2 , 1

)
,
(
− γ

2 , α
)
, (0, 1), (0, 1)

(0, 1), (0, α), (−γ, 2α)

]
=

=
2

xγ+1Γ
(

γ+1
2

)H1,2
3,2

[
4t2α

x2

∣∣∣∣∣
(

1−γ
2 , 1

)
,
(
− γ

2 , α
)
, (0, 1)

(0, α), (−γ, 2α)

]
.

In the rest of this section, we derive an explicit form of the solution to the initial-value
problem (33) and (34) for the fractional Euler–Poisson–Darboux equation. The main result
is given in the following theorem.

Theorem 6. Let 1 < γ < 2 and γ
γ+1 < α ≤ 1 and f ∈ C2

ev be an exponentially bounded function.
Then, the initial-value problem (33) and (34) for the fractional Euler–Poisson–Darboux

equation possesses an unique solution u = u(x, t) in the form

u(x, t) =
∞∫

0

1
y

H1,2
3,2

[
4t2α

y2

∣∣∣∣∣
(

1−γ
2 , 1

)
,
(
− γ

2 , α
)
, (0, 1)

(0, α), (−γ, 2α)

]
γTy

x f (x) dy

provided that the integral at the right-hand side of this formula is convergent.

Proof. Applying the Hankel transform (19) to the initial-value problem (33) and (34) for
the fractional Euler–Poisson–Darboux equation with respect to the spatial variable x and
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using the formula (1.95) from [23] (p. 41), we get the following initial-value problem for
the fractional Bessel derivative:

(Bα
γ,0+)tû(ξ, t) = −ξ2û(ξ, t), (35)

û(ξ, 0) = f̂ (ξ), ût(ξ, 0) = 0. (36)

The unique solution to the initial-value problem (35) and (36) is provided by Theorem 5
in the form

û(ξ, t) =
2γΓ

(
γ+1

2

)
√

π
f̂ (ξ) 2Ψ2

[ ( γ
2 + 1, α

)
, (1, 1)

(1, α), (γ + 1, 2α)

∣∣∣∣− ξ2t2α

]
.

Then, we employ the convolution property (22) for the Hankel integral transform
and the generalized convolution (21) and arrive at the following solution representation in
terms of the generalized convolution

u(x, t) =
2γΓ

(
γ+1

2

)
√

π

(
f (x) ∗ (F−1

γ )ξ

[
2Ψ2

[ ( γ
2 + 1, α

)
, (1, 1)

(1, α), (γ + 1, 2α)

∣∣∣∣− ξ2t2α

]]
(x)
)

γ

.

Finally, the result formulated in Lemma 2 directly leads to the desired solution formula

u(x, t) =
2γΓ

(
γ+1

2

)
√

π

 f (x) ∗ 2

xγ+1Γ
(

γ+1
2

)H1,2
3,2

[
4t2α

x2

∣∣∣∣∣
(

1−γ
2 , 1

)
,
(
− γ

2 , α
)
, (0, 1)

(0, α), (−γ, 2α)

]
γ

in terms of the generalized convolution (21).

7. Conclusions

The role of the higher transcendental functions both in mathematical treatises and
in numerous applications permanently increases. Even more general special functions
are introduced and employed in the framework of mathematical theories and application
domains. One of the prime examples of this sort is the theory of the integrals and derivatives
of the non-integer order (Fractional Calculus) and its applications. In the framework
of this theory, and especially for analytical treatment of the fractional ODEs and PDEs,
some particular types of the higher transcendental functions became extremely important,
including the Mittag–Leffler function and its generalizations, the Fox–Wright function, and
the Fox H-function.

In this paper, we focused on some new applications of the Fox–Wright function
and the Fox H-function in the theory of the fractional differential equations with the
fractional Bessel operator. We started with a discussion of the integral transforms with the
special functions in the kernels, whicht were then employed for analytical treatment of
the fractional differential equations with the fractional powers of the Bessel operator. In
particular, a suitable modification of the Meijer integral transform and its inversion formula
was introduced and studied in detail.

One of the main results presented in the paper is the derivation of the fundamental
system of solutions to the fractional ODEs with the fractional Bessel operator in terms of
the Fox–Wright function. It turns out that for these equations, the Fox–Wright function
plays the same role that the Mittag–Leffler function does for the fractional ODEs with
the conventional fractional derivatives. Another important result is an explicit solution
formula for the Cauchy problem for a one-dimensional fractional Euler–Poisson–Darboux
equation that contains a fractional power of the Bessel operator with respect to the time
variable and the conventional Bessel operator with respect to the spatial variable. The
solution is described in terms of the generalized convolutions introduced in this paper, the
Fox–Wright function, the Fox H-function, and their particular cases.
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Because the Bessel-type ODEs and the Euler–Poisson–Darboux PDEs are extremely
important for different applications, their fractional generalizations considered in this
paper are not just interesting objects for mathematical treatment, but they are also for sure
potentially useful for applications. These matters are worth further investigating. Of course,
for applications, not only analytical formulas but mainly numerical results are needed.
Thus, numerical schemata for the initial and boundary value problems for the fractional
Bessel ODEs and the fractional Euler–Poisson–Darboux PDEs should be developed. It is
another direction for further research worth considering by the FC community.
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