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1. Introduction and Preliminaries

Let C be a non-empty closed and convex subset of a real Hilbert space H. Symbols
|l - |l and (-, -) denote the norm and inner-product of H, respectively. Symbols — and —
denote the strong and weak convergence in H, respectively.

The classical variational inequality [1] is to find u € C such that forany v € C,

(v—u,Tu) >0, ey

where T : C — H is a nonlinear mapping. We use VI(C, T) to denote the set of solutions of
the variational inequality (1).

The theory of variational inequality draws much attention of mathematicians due to
its wide application in several branches of pure and applied sciences [1]. Until now, it is
still a hot topic (see [2-6] and the references therein).

An operator A : D(A) C H — 2H is called monotone ([7]) if for each x,y € D(A),
there exist u € Ax and v € Ay such that (x —y,u — v) > 0. The monotone operator A is
called maximal monotone if R(I + kA) = H, for any k > 0. In a Hilbert space, a maximal
monotone operator can also be called an m-accretive mapping.

A mapping B : D(B) C H — H is called a 6-inversely strongly monotone operator ([8])
if for each x,y € D(B) and 6 > 0, (x —y, Bx — By) > 0|/ Bx — By||%.

Let U : D(U) C H — H be amapping. If x € D(U) and Ux = 0, then x is called a
zero point of U. The set of zero points of U is denoted by N(U). If x € D(U) satisfies that
Ux = x, then x is called a fixed point of U. The set of fixed points of U is denoted by F(U).

The monotone inclusion problem is to find u € H such that

0 € Au+ Bu, @)

where A : H — 2 is maximal monotone and B : H — H is f-inversely strongly monotone.
The study of monotone inclusions is a hot topic since quite a lot problems appear in mini-
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mization problem, convex programming, split feasibility problems, variational inequalities,
inverse problem, and image processing can be modeled by it. The construction of iterative
algorithms for approximating the solution of (2) has been considered (see [8-14] and the
references therein). The forward-backward splitting iterative method is one of them, which
means an iteration involves only A as the forward step and B as the backward step, not the
sum A + B. The classical forward-backward splitting iterative method is as follows:

x1 € H chosen arbitrarily,
Xpy1 = (I +rnA)~Y(xy —ryBxy), n € N.

Some of the related work can be seen in [9,10] (and the references therein).

Recall that f : H — H is called a contraction with contractive constant k ([15]) if
ke (0,1)is that ||f(x) — f(y)|| <k|x—y| forx,y € H.

A mapping S : H — H is called non-expansive ([15]) if ||Sx — Sy|| < ||x —y||, for
x,y € H.

A mapping F : H — H is called a strongly positive mapping with ¢ ([15])if § > 0
such that (x, Fx) > ¢||x||? for x € H. Furthermore,

|al = bF|| = supy<1/((al — bF)x,x)|,

where [ is the identity mapping, a € [0,1], and b € [-1,1].
In [15], the study of monotone inclusion (2) is extended to the system of monotone
inclusions:
0€ Aju+ Bu, 3)

fori € N, where A; : H — H is maximal monotone and B; : H — H is ;-inversely strongly
monotone, fori € N.

Moreover, the iterative algorithm presented in [15] is proved to be strongly convergent
to not only the solution of monotone inclusions (3) but also the solution of one kind
variational inequality. Specially, the authors constructed the following one by combining
the ideas of the splitting method and the midpoint method:

xp € C C H chosen arbitrarily,

Yn = Pcl(1—an)(xn +e3,)],

Zn = Onyn + B 5oy @i (1 + 7,1 Ar) 1L = 10iBy) (X522 ) + e,
Xpe1 = Yul f(xn) + (I — yuF)zu +e), n €N,

4)

where f is a contraction, F is a strongly positive linear bounded mapping, and Pc is the
metric projection. Under some conditions, x, — po € N2 N(A; + B;) and py solves the
following variational inequality:

(Fpo—1nf(po),po—z), Vz € (| N(A;+ B;). (5)
i=1

Recall that T : D(T) C H — H is called ¢-strongly monotone ([16]) if for each
x,y € D(T),
(Tx = Ty,x —y) > Ox — |,

for some ¢ € (0,+o0). Furthermore, T : D(T) C H — H is called u-strictly pseudo-
contractive ([16]) if for each x,y € D(T),

(Tx =Ty, x—y) < |lx —y|]* — pllx —y — (Tx = Ty)||?,

for some u € (0,1).
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In 2012, Ceng et al. proposed an iterative algorithm with a perturbed operator for
approximating a zero point of the maximal monotone operator A in a Hilbert space ([16]).

x1 € H chosen arbitrarily,
Yn = &nXn + (1 - D‘n)(I + rnA)ilxn/ (6)
X1 = Buf (xn) + (1= B)[(T + 10 A) Yy — Aypn T((I + 1, A) " yy)], n €N,

where T : H — H is a #-strongly monotone and p-strictly pseudo-contractive mapping
withd+u > 1, f : H — H is a contraction, and A : H — H is maximal monotone.
Under some assumptions, {x,} is proved to be convergent strongly to the unique element
po € N(A), which solves the following variational inequality:

(po— f(po),po —u) <0, Vu € N(A). 7)

The mapping T, which is called a perturbed operator, only plays a role in the con-
struction of the iterative algorithm (6) for selecting a particular zero point of A, but it is not
involved in the variational inequality (7).

Later, in 2017, the work in (6) is extended to approximate the solutions of the systems
of monotone inclusions (3). The following is a special case in Hilbert space presented
in [17]:

x1 € C,
Uy = PC(D‘nxn + ,Bnan)r
Up = TplUy + Uy 2;11 wl'(Z)(I + rn,iAi)_l(I - rn,iBi)(W) + Cﬂbn/ (8)

Xni1 = Onf (xXn)
F(1 =8I = a2 @M T £ 0P (147,41 71T = 1,Br) (422, n € N.

In (8), Yi24 wi(l)Ti is called a superposition perturbation, where T; : H — H is
perturbed operator in the sense of (6); thatis, T; : H — H is a ¢;-strongly monotone and
ui-strictly pseudo-contractive mapping, for eachi € N.

The iterative sequence {x, } generated by (8) is proved to be strongly convergent to
po € Ni21 N(A; + B;), which solves the variational inequality:

(po— f(po), po—u) <0, Yu e [ N(A; + By). )
i—1

In 2019, Wei et al., proposed some new iterative algorithms. The inertial forward-
backward iterative algorithm for approximating the solution of monotone inclusions (3)
in [18] is as follows:

xo,x1 € H chosen arbitrarily,ey € H is chosen arbitrarily,

Yn = Xn + kn(xn - xn—l)r

Wy = ApXy + ,Bn Zfil wn,i(l + rn,iAi)_l(I - rn,iBi)]/n + Ynen,

G =H=0Q,

Cur1 = {p € Cu: llwn — plI* < (1 = va)llxn — pII* + Vallen — plI
+ k%szn - xn—lHZ - Zﬁnkn<xn —PrXn-1— xn>}/

Qut1 = {p € Cug1 : lx1 — plI* < llx1 — Pe,,,, (x1) 11> + 0usa ),

Xpt+1 € Quy1, n € N.

(10)

The result that x, — Pn~ ¢, (x1) € N2 N(A; + B;), as n — oo, is proved under
some conditions.
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The mid-point inertial forward-backward iterative algorithm in [18] is presented
as follows:

X0, x1 € H chosen arbitrarily,e; € H chosen arbitrarily,

Z0 = Xo,

zZn = OuAf(xn) + (I — 6, F)xy,

On = Zn + kn(zn — 2u-1),

Wy = ApUpy + ‘Bn Z?il wn,i(l + rn,iAi)_l(I - rn,iBi)(anr%) + Ynén,

11
C=H=Q, 1)
20 +Pn 2y,
Cu1 = {p € Cu: [[wn = plI2 < 2 |120 — p2 + 2 [lew — pl2,
+ BBk llzn — zaoa |2 — 22580k (20 — P21 — 20)},

Qui1 = {p € Cug1 : [lx1 — plI* < |lx1 = Pe,.,, (1) 1> + 0y},
Xp41 € Quy1, nEN,

where f is a contraction and F is a strongly positive linear bounded mapping. The result
that x, — Pne ¢, (x1) = Pre n(a48,)(¥1), as n — oo, is proved under some condi-
tions. Furthermore, under the additional assumptions that X = P N(A+B;) (x1) and
X = Pne, N4+, (x1)[Af(X) — F(X) + X], one has that X solves the variational inequality

(0]
(FX — Af(X),X—z) <0, Vz € [ N(A; +B)).
i=1
The inertial forward-backward iterative algorithm for approximating common solu-
tion of monotone inclusions and one kind variational inequalities, where T : C — H is
maximal monotone and T-Lipschitz continuous, is presented as follows in [18]:

ug, uy € C chosen arbitrarily,ey € H chosen arbitrarily,

Yo = Pc(uo — AoTuo),

Yn = PC(Mn — M Tuy),

Up = Yn + kn(]/n - ]/n—l)/

Wy = ApUy + ,Bn Zfil wn,i(l + rn,iAi)_l(I - rn,iBi)PC(“n - /\nTun) + Ynén,

CG=C=0Q,

Cur1 = {p € Cu : llwn — plI* < anllyn — plI* + Bullun — plI*> + vullen — plI?
+ k%Hyn —Yn—1 12— 2ankn(Yn — P, Yn—1—Yn)},

Qut1 = {p € Cug1 : lur — plI* <y — Pe,,, (u1)1* + 001},

Upt1 € Qn+1r n €N,

(12)

The result that uy — Pne N4+, nvI(c,T)(41), as n — 0o, is proved.

Although two sets C,, and Q, are needed in (10)—(12), infinite choices of iterative
sequences can be made from them whose idea is totally different from that in (4) or (8).

Motivated by the above work, in this paper, we construct some new forward-backward
multi-choice iterative algorithms with superposition perturbations in a Hilbert space. Fur-
thermore, some strong convergence theorems for approximating common solution of
monotone inclusions and variational inequalities are proved under mild conditions.

To begin our study, the following preliminaries are needed.

Definition 1 ([19]). There exists a unique element xo € C such that ||x — xo|| = inf{||x —y|| :
y € C}, for each x € H. Define the metric projection mapping Pc : H — C by Pcx = xo, for any
x € H.
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Lemma 1 ([20]). For a contraction f : H — H, there is a unique element x € H that satisfies

f(x) =x.

Lemma 2 ([19]). For a monotone operator A : H — H and r > 0, one has that (I +rA)~! :
H — H is non-expansive.

Lemma 3 ([21]). If T; : C — C is non-expansive for i € N and Y 7> a; = 1 for {a;} C (0,1),
then Y22 a;T; is non-expansive with F(Y.2°1 a;T;) = (Nioq F(T;) under the assumption that
Nz F(T) # ©.

Lemma 4 ([15]). IfS : C — H is a single-valued mapping and T : H — 2H is maximal
monotone, then
F((I++T)"Y(I1—-7S)) = N(T+5),

for ¥r > 0.

Definition 2 ([22]). Suppose {K, } is a sequence of non-empty closed and convex subsets of H.
One has:

(1) The strong lower limit of {K, }, s — liminfKy, is defined as the set of all x € H such that
there exists x, € Ky, for almost all n and it tends to x as n — oo in the norm.

(2) The weak upper limit of {K,,}, w — limsupK,, is defined as the set of all x € H such
that there exists a subsequence {Ky,, } of {K, } and x,, € Ky, for every n,, and it tends to x as
Ny, — oo in the weak topology;.

(3) The limit of {K, }, limK,, is the common value when s — limin fK,, = w — limsupK,.

Lemma 5 ([22]). Let {Kj} be a decreasing sequence of closed and convex subsets of H, i.e., K, C
Ky if n > m. Then, {K, } converges in H and limK, = (\;;_1 K.

Lemma 6 ([23]). If limK,, exists and is not empty, then Px,x — Pjj,x x for every x € H, as
n — oo,

Lemma 7 ([24]). Let r € (0, +00). Then, there exists a continuous, strictly increasing and convex
function g : [0,2r] — [0, 4oc0) with g(0) = 0 such that |[kx + (1 —k)y||> < k||x|*> + (1 —
Iyl* =k =k)g(llx —yll), for k € [0,1],x,y € Hwith |[x|| < rand ||y|| <r.

Lemma 8 ([25]). Let B : H — H be a 9-strongly monotone and y-strictly pseudo-contractive
mapping with  + u > 1. Then, for any fixed number 6 € (0,1), I — 6B is a contraction with
ﬂ),

contractive constant 1 — (1 — :

Lemma 9 ([15]). Suppose F : H — H is strongly positive bounded mapping with coefficient
E>0and0 < p < ||F||7Y, then ||I — oF|| <1 — pé.

Lemma 10 ([15]). Let f : H — H be a contraction with contractive constant k € (0,1),
F : H — H be strongly positive bounded mapping with coefficient ¢ > Oand U : H — H be
a non-expansive mapping. Suppose 0 < 1 < % and F(U) # @. If for each t € (0,1), define
T,:H—H by

Tix =ty f(x) + (I — tF)Ux,

then T; has a fixed point x;, for each t € (0,||F||~!]. Moreover, x;y — qo, as t — 0, where
qo € F(U) which satisfies the variational inequality:

(Fqo —11f(q0),90 —2) <0, ¥z € F(U).
Lemma 11 ([15]). In a real Hilbert space H, the following inequality holds:

lx + I < 1xl* +2(y, x + ), ¥Yx,y € H.
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Lemma 12 ([26]). Let {x,} and {b,} be two sequences of non-negative real number sequences
satisfying

X1 < (1—ty)x, + by, Vn €N,

where {t,} C (0,1) with Y, 1ty = +o0and t, — 0, as n — oo. Iflimsupnﬁoo;t’—: < 0, then
limy—ooxy = 0.

Lemma 13 ([17]). Let H be a real Hilbert space, A; : H — H be maximal monotone, B; : H - H
be 0;-inversely strongly monotone, and W; : H — H be 0;-strongly monotone and u;-strictly
pseudo-contractive with 9; 4+ p; > 1fori € N. Suppose 0 < r,,; < 26, fori € Nandn € N, k; €
(0,1) fort € (0,1), Ly Cn|[[Wa| < 400, Y521 a; =1=Y2, ¢;and N2 N(A; + B;) # @.1If,
foreacht € (0,1), Z} : H — H is defined by

Ziuw=tf(u)+ (1 —t)(I—ke Y c;Wi) Y ai(I— 1, i A) " (I — 1 iBi)u,
i=1 i=1
then Z}' has a fixed point u}. That is,
uf = tf(u?) +(1-HI—k Z ciW;) Zﬂ,‘([ — Tn,iAi)_l(I — rn,iBi)u?.
i=1 i=1

Moreover, if k—tf — 0, then uj} — po,ast — 0, where pq is the solution of variational inequality:

(po— f(po),po—2) <0, Vz € ﬁ N(A;+ B;).
i=1

2. Strong Convergence Theorems

Our discussion is based on the following assumptions in this section:

(a) H is areal Hilbert space.

(b) A;:H — H is maximal monotone and B; : H — H is f;-inversely strongly monotone,
foreachi € N.

(c) f: H — H is a contraction with contractive constant k € (0,1]. Furthermore,
if (f(x) —x,y—x) =0,thenx =0o0ry = x, forx,y € H.

(d) F:H — H is a strongly positive linear bounded mapping with ¢ > 0 and (F(x) —
nf(x)+f(y) —y,x—y) >0, forx,y € H.

(e) W;:H — H is 9;-strongly monotone and y;-strictly pseudo-contractive, for i € N;.

(f) {en} C Hand {e,} C H are the computational errors.

(g) {a;i} and {c;} are two real number sequences in (0,1) with Y 7°;a; = Y70 ¢; = 1,
forn € N.

(h) A{an}, {Bn} {6n}, {Cn}, {wn} and {A,} are real number sequencesin (0,1), forn € N.

(i) {ou} and {r,;} are real number sequences in (0, +o0), for n,i € N.
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Theorem 1. Let {x,} be generated by the following iterative algorithm:

x1,Yy1 € H chosen arbitrarily, ej,e1 € H chosen arbitrarily,
Ci=H=0Q,
Up = WnXy + €p,
On = Buttn + (1= Bu) T2 ai(1 + 7, A;) 11 — 1,iB;)on,
zZn = Onf (xn) + (1= 62) (I = Cn 520 iWi) 2y ai (1 + 1 Ai) 1T = 1,iB;) 0,
Wy = 0y + (1= an) S50 ai(1+ 1y i A7) 7 (I = 70Bi) 2z, (13)
Xpt1 = At f(xn) + (I = ApF)wy + eq,
Cor1=1{p € Cu: 2{anxy + (1 — ay)zy — wy, p)
< anlxn]® + (1= )|z l* = [lwn||*}
Qui1 =A{p € Cup1 : |1 — pl* < |IPc,,, (x1) = x1[|* + 0441}, n €N,
Yn+1 € Que1, n EN,

Under the assumptions that:
(i) 0Ny N(A; +By).
(ii) pi+0; >1,u; € (0,1)and 9; € (0,1), fori € N.
(ifi) 0 < ry; < 26;, fori,n € N.
(iv) 0y — 0,0y — 0,6y — 0,8, — 0,and {, — 0, as n — oco.
(v) 0<ny<£.
(01) T clIWil < oo £ llel < +o0, £ llenll < 00, and £, (1 = wy) < +oo,
(vif) ;’T’; —>O,”i—’;” %O,% %O,% —>O,% —0,as 1 — oo.

(viit) Y 5l 1 Ay = +ooand Ay — 0,
one has x, — qo € N2y N(A; + B;), as n — oo, where q satisfies the following variational
inequalities:

(Fgo —1f(q0),90 —y) <0, ¥y € (| N(A; + By), (14)
i=1

and

(90— f(90),90 —y) <0, Yy € [ N(A; + B;). (15)
i=1

Moreover, yu — P ¢, (x1) € N2y N(A; + B;), as n — oo, which means

{<qu —1£(q0),90 — Pn_ ¢, (1)) <0,
(90 = £(q0), 90 — Prye_, ¢, (x1)) < 0.

Proof. We split the proof into eleven steps.

Step 1. {v, } is well-defined.
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Fors € (0,1), define U : H — H by
Usx :=su+ (1—s)Tx, (16)

for any x € H and for fixed element u € H, where T : H — H is any fixed non-
expansive mapping.

It is easy to check that ||Usx — Usy|| = (1 —5)||Tx — Ty|| < (1 —s)||x — y||. Thus, Us
is a contraction, which ensures from Lemma 1 that there exists x; € H such that Usxs = xs.
Thatis, xs = su+ (1 —s) Txs.

Since 0 < ry,; < 26;, fori,n € N, forany x,y € H,

(I = 73,iBi)x = (I = 1Byl = || (x —y) — ri(Bix — Biy)||?
= |lx =yl = 2r,,i(x — y, Bix — Biy) + 12 .||Bix — Bjy||?
< [l =yl + (i — 265) | Bix = Biyl> < [lx =y
This ensures that (I —r,, ;B;) : H — H isnon-expansive, for i,n € N.Since} ;*; a; =1,
from Lemmas 24, one has Y.%° a;(I +1,;A;)"'(I —r,;B;) : H — H is non-expansive,
for n € N. Moreover, F(Y° a;(I+7,,;A;) (I —r,,;B;)) = N1 N(A; + B;).

Considering T in (16) as Y32 a;(I +r,,;A;) "*(I — r,,;B;), one can see that {v,} is
well-defined.

Step 2. C; is non-empty closed and convex subset of H, for any n € N.

We can easily know from the construction of C, that C, is closed and convex subset
of H, for any n € N. We are left to show that C, # @. For this, it suffices to show that
N2y N(A;+B;) C Cy, forn > 2.

In fact, for any p € N2, N(A; + B;), one has

l[wn = plI* < anllxn = plI* + (1= an) T2y ail|(T+ 1,0 A0) (1 = 1,iBi)za — pl1?
< anllxn — P”z + (1 —an)lzn — PHZ'

2(anxn + (1= an)zn — wn, p) < anl|xn]|* + (1 = an) | 2al|* — [[wn]?,

which implies that p € Cy, for n > 2. Therefore, N2y N(A; + B;) C Cy, foralln € N, and
then C,, # @, foralln € N.

Step 3. Qy is a non-empty subset of H, for each n € N, which ensures that {y,} is
well-defined.

It follows from Step 2 and Definition 1 that, for 0;,; 1, there exists b, 1 € C,41 such that
[x1 = by |I* < (infeec, , |¥1 —2l)* + 0us1 = IPc,., (x1) — x1]|* 4+ i1 Thus, Qi1 # @,
for n € N. Then, {y,} is well-defined.

Step 4. P, (x1) = P ¢, (x1), a8 n = co.

It follows from Lemma 5 that limC,, exists and limC,, = (_; C; # @. Then, Lemma
6 implies that Pc, (x1) = Pn=_ ¢, (x1), as 1 — oo.

Step 5. yn — P ¢, (x1), a8 n — oo.

m
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Since 11 € Quy1 C Cuy1 and Cy is a convex subset of H, for Vt € (0,1), tPc, ., (x1) +
(1 —t)yy41 € Cyy1, which implies that

IPc,,, (x1) — x1|| < [[tPc,., (x1) + (1 = H)yni1 — x1]|- (17)

Using Lemma 7, one has:

1tPc, ., (x1) + (1 = O)yni1 — x1|)* = [[H(Pc, ., (x1) — x1) + (1= £) (Y1 — x1) |12

) ) (18)
< P,y (x1) = 21"+ (1 = B)lyns1 — 22ll” — (1 = £)g(|IPc,  (x1) = yuralD)-

From (17) and (18), we have tg(HPCn+1 (x1) = Yuiall) < lyns1 — x1l? — HPCn+1 (x1) —
x1||? < 0341 Letting t — 1 first and then n — oo, one has Pc,, (x1) = Ynt1 — 0,as n — co.
Combining with Step 4, yu — Py~ ¢, (x1),asn — 0.

Step 6. {un},{vn}, {zn}, {wn} and {x,} are all bounded.
For p € N721 N(A; + B;), one has forany n € N,
[tn = pll < wnllxn = pll + (1= wn) [ pll + [lenll. (19)
Furthermore, ||v, — p|| < Bullttn — pl| + (1 — Bn)||vn — p|| implies that for any n € N,
lon = pll < {lun = pll. (20)
In view of Lemma 8 and (20), one has
[z = pll < Sullf (xn) = fF(P)II +ull f(p) — Pl
(1= 8l (1= G Yo W) Yo (T4 g A) ™0 = 1 B —

i=1 i=1
< Oukl|xn — pll + dull f(p) — pll

F (=8I =2n Y ciWi) Y- ai(T+ 1y i A) "1 (I = 1,iBi) (00 — p) |
i=1 i=1
00 00 (21)
+ (=0T =Cn Y W) Y ai(I+ 1y A)) (T — 1iBi)p — p|
i=1 i=1
ad 1-9;
< Sukllxn — pll + 6l f(p) — Pl + (1 = 60)[1 = Cu(1 = ) ci m Mlun —pll
i=1 1
+ (1 =62)Zn Y cilWillllpll
i=1
Note that, for any n € N,
lwn = pll < anllxn —pll + (1 —an)|lzn — pl- (22)
Now, in view of Lemma 9, one has
[Xn+1 = pll < Anllnf(xn) — Fpll + [|(I = AnF) (wn — p)[| + llen| 23)

< Atkl|xn = pll + Anllnf(p) = Fpll + (1 = Ang)[|wn — pll + [lenll

Combing with inequalities (19)—(23), by induction, one has
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[xn41 =Pl
<Ak + (1 = Aud)ay + (1 — A08) (1 — an)dy k

F(1 = An8) (1= an) (1= 6n)[1 = Cn(1 = K25 iy 1;;9i)]wn}||xn -l

+An H’7f( ) = E(p)|| + [lenl|
+(1 = A8) (1 = an)éullf(p) = Pl + (1 = An) (1 = an) (1 — 6n)Cn X224 cil[Will[[ P
)

|

)
(1—AnC)(1—“n)(1—wn)(1—5n 1-C(1-% ?0161‘\/1_191')]”}7”
+(1 = An) (1= @) (1= 8)[1 = Gu(1 = T2 i/ 525) ][l

< {Aniyk—i—(l—)\né)zxn—i—(l—)t gf)(l—ocn) on k
( n8) (1= an) (1= 8n)[1 = Zu(1 = X2y ciy/ 52} lxn = p
An(E = k) HWf(g) ilﬂ I + llenll

(1—7\716 (1—ay)0a(1— )Hf( p)—pll
(1= M) (L= ) (L= 60)En (1 = Ty /1) EEoldeL

[1-0
1= ¢ i

~— ~—

A= wnllpll+leall = clWillel
— — i= Ci f
|, L F @ Ll SLEUELY o flenll + (1= wn) Il + [leal

< max{||x, — p
=1\ T

I lnf(p)—Ep)ll Hf(P)*PH L2 cilWilllpll }
/ g—nk 71—k 1-6;
1 21 16i 7

Yty lleill + X (1 = wi) [ pll + X il

< max{||lxy —p

Based on the assumptions, one has {x, } is bounded. Following (19)—(22), it is easy to
see that {u, },{v,},{z,} and {w,} are all bounded.

Note that, for p € N2 N(A; + B;), || 2524 a; (I 4 7, A;) Y (I —1,Bi)on — pl| < |lon —
pll- Then, {32 a;(I +7,,;A;) "1 (I — r,,;B;)vy } is bounded. Similarly, {}5° a;(I +7,,;A;)
(I —ry,iBi)zy} is bounded.

Since H Zz 16iWi Zz (I+ n,iA ) 1(1 — p,iB )Un” < Efil Ci”WiH Zfil ”ai(l + rn,iAi)_l
(I —ry,iBi)vy]|, then {Zl LW 2 ai(I+7,,;A;) " (I — r,,;B;)vs } is bounded.

Step 7. There exists qp € (7~ N(A; + B;), which is the solution of variational inclusion (14).

It follows from Lemma 10 that there exists z; such that

ze = tf(ze) + (I—tF) Y a;(I+7,;A;) (I — 1,iB)z:
i=

and z; — qo, as t — 0, where g is the solution of (14).

Step 8. limsupn—co(nf(90) — Fqo, Xn+1 — qo) < 0, where g is the same as that in Step 7.
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Note that
llwn — za|
= llwn — Y ai(I+74;A;) " (I — 1,,iB;)zn
i=1
[ee]
+ Zﬂi(l + T’n,l‘Ai)il(I — rn,iBl-)(zn — Z)n)
i=1
o
=+ Zai(l + rn,iAi)il(I - rn,iBi>Un — Uy +Up — ZnH
i=1
- -1
= |lay|xn — I+4r,;A; I—r,;B;)z
Jealn = (1 1)1 =B on
[ee]
+ Y ai(I+ 71, A) NI = 1,B:) (20 — vn)
i=1
+ Bn [Z (I‘I'rnzA ) 1(1—1’,1,{31‘)?),1 - ”n] + vy —Zn”
i=1
< an[xn — Za (I+7,,A (I = ,iBi)zu | +2[|zn — 0u|
+ Ball Z;ﬂi(l + 70 A;) " (I = 1,iB;) 0w — |
Furthermore,
|21 — vl
< ‘San(xn)H +Cn(1—6,)|| chw Z (I+ i )~ 1(1 - rn,iBi)vnH
i=1 i=1
_ (25)
+ Bnllun — Zﬂi(1+rn,iz‘1i) NI —1,,B;)vn||

i=1

+ 0n ”Z I+rnz 1 1(1_7n,iBi)Un||

Since {xn }, {tn}{vn} {20} {20 ai(T 470 A0) 7 (1= 1iBi)on}, {2 ai(1+7,,A;) 7"
(I—7,;Bi)zn}and {¥52, cW; Y2 a; (1 +7,,,,A;) "1 (I — 1,,,;B;) vy } are bounded, then, based
on the assumptions and (24) and (25), w, —z;, — 0, as n — .

Let z¢ be the same as that in Step 7, then ||z¢|| < ||zt — qo|| + ||q0]|, which implies that
{z:} is bounded.
Note that

o)

z (I 474, A 1(I — 1,iBi)wy — wy|

8

<\ Y ai(I+7,A) NI = 1,,By) (wn — za) |
i=1

Mg

+H a;(1+1,;A;) NI = 1,iBi)zn — W] (26)

< lwn =zl + 11 Y a1+ 1,iAd) = (I = 1,iBi) 2w — wy|
i=1

= |lwy — zn|| + anl|xn — Zai(1+rn,iAi)_1(I — 73,iBi)zn |
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Since &y, — 0 and wy, — z, — 0,as n — oo, then Y% a; (I + 1, ;A;) (1 — 1y, Bj)wy —
wy, — 0,as n — co. In view of Lemma 11,

[zt —wnHZ

= ||Zt - Zfil ui(I + rn,iAi)_l(I - rn,zB )wn +Zz 14 (I+rn1A1) 1(I - rn,iBi)wn - wnH2

< lze — Y a;(I+ rn,iAi)il(I — In,iBi )wnH

+2(zt — wp, T2 ai(1473,iA;) " (I = 1 iBj)wn — wy)

< ||zt — walf?

+2(ze — 22 ai (14 1,; A1) "I — 1y iBi)wn, ty f(z¢) — tF (2524 ai (I + 1, A;) 1 — 1,;Bi)zt))
2|1zt — wa ||| £ a;i(I+7,iA;) " (I — 14,B;)wy — wy|

Therefore,

Hze — Yo q ai(I+ rnlAl)’l(I tniBi)wn, F(Lieq ai(I + rn,iAl-)’l(I — 1niBi)zt) — 1f(zt))
< ”Zt wn“” Ez 14 (I+7’n1Az) 1(1 - rn,iBi)wn - wnH/

which implies that

limy_olimsupy—eo(z¢ —

e

ai(I+ 1y, A) " (I = 7B wn, F(Y_ ai (I + 1y A) " (I = 1iBi)ze) — 11f (z1)) < 0.
iz

i=1

Since z; — go as t — 0, then
limsupy—oo(qo — Yjoq ai(I + rn,iAi)’l(I — 1,iBi)wn, Fg0 — 11f(q0)) < 0

Since Y521 a;(I + 7,,,;A;) " (I — riBi)wy — wy — 0, wy — 2y — 0 and x,1 — wy, =
A(nf(xy) — Fwy) + e, — 0, then lzmsupn%oowo — Xn41, Fq0 — n1f(q0)) <O.

Step 9. x, — qo, as 1 — oo, where g is the same as that in Steps 7 and 8.
In fact, using Lemma 11 again, one has

[t — gol|* = llwn(xn — q0) + (wn — 1)g0 + €n]|*
< wllxn — qolI* + 2(en, ttn — qo) + 2(1 — wn) (g0, G0 — tn) (27)
< wyllxn — qolI* + 2llenlll|ttn — qoll +2(1 — wn)|q0]ll|tn — g0l

Furthermore, ||v, — qo||? < Bulltn — qol|*> + (1 — Bn)||vn — qo/|* ensures that

lon = qoll* < [lun — qoll*. (28)

In view of Lemma 11 again, one has

llzn = golI?
(o) (o]

= 116n(f (xn) = 0) + (1= 8u) [(1 = Zu 3 ciWi) Y ai(1 + 13,1 Ai) ™ (I = 1,iBi)on — o] |

-1 iz
< (1=6n)lvn — ‘70”2 + 264 (zn — qo, f (xn) — q0)
-2(1- 5n)€n<icivvi ifli(l + 1, A7) T (I = 7,iBi)0n, 20 — qo)
= =
< (1= 6)llon — goll* + 264 (zn — q0, f (xn) — £(40)) + 264 (20 — q0, f(q0) — q0)
#2080 e s+ )™ (0= rgBijoullzn — ol
= =
< (1= 8n)lon = qoll* + 28ukl|zn — xnlll 20 — qoll + 264k|[xn — qol|* + 264 (zn — g0, f(90) — q0)

[ee) [ee)
+20ul Yo Wi Y ai(I+ 1, A) "1 (I = 1B;)oull |20 — g0l
iz iz

(29)
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Note that

lewn — qoll* < anlln — qoll* + (1 — an) [z — qol|*. (30)

Now, in view of Lemma 9 and using (27)-(30), one has

21— qoll> = 1A f (xn) + (I = AuF)wy + en — go|?

= | Au(f (xn) = F(q0)) + (I = AuF) (wn — qo) + ea1?

< (1= Ang) l[wn = gol* +2(en, Xus1 — qo) + 2Au (7 f (xn) = Ffo, Xns1 — qo)
< (1= Au)[lwn — gol1® + 2llenlll|xns1 = goll + 2077 (f (x1) = f(40), *ut1 — q0)
+2Au (1 f(90) — Fqo, Xn+1 — qo)

< (1= 2Au)[lwn — qol* + 2llenlll|xn11 — goll +2Aunkl1%n — qolll|xn11 — goll
+2Au(nf(q0) — F(q0), Xn+1 — q0)

< {1 = And)an + Annk +2(1 = An8) (1 — ay)onk

+ (1 - /\né)(l - "‘n)(l - (5n)wn}||xn - qOHZ

+2[lenlllxn+1 — goll +2(1 = Aug) (1 — @) (1 — ) llen ||t — g0

+2(1 = A8) (1 — ) (1 = 62) (1 = win) [qolll|utn — qol|

+ 265k (1 = An) (1 — an) X0 — qoll 10 — zn||

+2(1 = An&) (1 — &n)dnllzn — qollll f(90) — 4ol

"‘2(1_)‘11‘:)(1_0‘7!)@””271_‘70”||ZCW Z (I+r,;A i) 1(1_7’n,iBi)UnH

(31)

+ Antik|| %41 — qoll* + 2740 (1 £ (q0) — (‘70)1xn+1 — qo)-

Let My = supn{2|xp11 — qoll, 2llun — qoll, 2kllxn — qollllxn — zull, 2/[un — qollllq0ll,
2(1£(90) — qollllzn — qoll, 2l1zn — qoll[| T2 ¢iW; X2g ai(I+71,iA;) " (I —7,iBi)vn|| : n € N}.
Then, from Step 6, one has M; < +oo0.

Therefore, it follows from (31) that

(1= Aurgk) [ %41 = gol®

< {1 = An)an + Aurgk 4+ 2(1 = An) (1 = n)Suk + (1 = An&) (1 — @) (1 = 82) }Hlxn — gol>
+ [llenll + llenll + (1 = wn) + 205 + Zn] My

+2Mn(11f (90) — F(q0), X1 — q0)

(32)

1 n k
If we set by = AE20 B — M fe | 4 flen]] + (1 - wn) + 26, + Cal+
% (nf(q0) — Fq0, Xn41 — go), then (32) can be reduced as follows:

%1 — ol < (1= BS)[|xw — gol|? + b2

Based on the assumptions and Step 8, we know that b(l -0, b,(ll) = 400 and

@
lzmsup,Hoob < 0. Then, from Lemma 12, x,, — g9, as 1 — oo.

n

Step 10. There exists pg € ;> N(A; + B;), which is the solution of the variational inclusion

(po— f(po),po—y) <0, Yy € [ N(A;+B)). (33)
i1
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In fact, it follows from Lemma 13 that there exists u} such that

uf =tf(uf)+ 1 —t)(I—ke Y cWi) Y ai(T+1,,A) NI — 1, B;)uff
= =

and uy’ — po, ast — 0, where py is the solution of (33).
Step 11. x,, — po, as n — oo, where py is the same as that in Step 10.
It suffices to show that py = qo.
Since po € Ni21 N(A; + B)),
{Fqo0 = 1f(q0), 90 — po) < 0.
Since F is strongly positive linear bounded, f is a contraction, and 0 < 1 < 2%'

((Fqo —1£(q0)) — (Fpo —nf(po)),q0 — po)
= (F(90 — po), 90 — po) +1(f(po) — f(90),90 — po)
> &llgo — poll* — nkligo — poll* > 0.

Therefore, (34) ensures that

(Fpo —1£(po),q0 — po) < (Fq0 —1f(q0),90 — po) < 0.

On the other hand, it follows from (33) that

(f(po) — po,q0 — po) < 0.

(34)

(35)

(36)

(37)

Combining with (34), one has (Fqo — 11f(q0) + f(po) — po,q0 — po) < 0. Following
Condition (d), we know that (Fgqo — 17f(q0) + f(po) — po, g0 — po) = 0. Then, (34) and (37)

ensure that (Fqo — 17f(q0),90 — po) = (f(po) — Po,q0 — po) = 0.

Since 0 € N2, N(A; + B;), from Condition (c), we know that pg = 0 or pg = qo.
If po = qo, then the result follows. If py = 0, then (Fgo — 11f(90), 90 — po) = 0 implies

that (Fqo — 17f(q0), q0) = 0. Therefore, £||90[|* < (Fqo,40) = 11(f(q0), q0) < 17k(|q0||*. Since
¢ > 21k, then qp = 0, which means that py = g9 = 0. Therefore, x, — py = go, as n — oo.

This completes the proof. [
Theorem 2. Let {x,} be generated by the following iterative algorithm:

X1,Y1 € H chosen arbitrarily, €1,eq € H chosen arbitrarily,
Ci=H=0Q,
Up = WnXy + €p,
O = Bty + (1= Bn) T2y ai (1 + 1 i A7) (I — 1 1B) (H2522),
2p = O f (xn) + (1= 0p) (1 — Gn 52y 6iWi) 52 (1 + 10,1 A7) (T — 1 By) (H2322),
Wy = anxn + (1 — ) 252 ai(I+7,;A) I — rn/iBi)(W),
Xp+1 = Ant1 f(xn) + (I — AnF)wy + ey,
Coi1={p € Cu: 2{anxy + (1 — an)zn — Wy, p)
< anlxnll® + (1= an)l|zal|* = llwn||*}
Quir ={p€Cup1: 11 —pl* < ||PCn+1(x1) —x1|*+0u1}, nEN,
Yn+1 € Quyr, n € N.

Under the assumptions of Theorem 1, one has

(38)
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Xn — qo € Niey N(A; + B;), as n — oo, where qq is the unique solution of the system
of variational inclusions (14) and (15). Moreover, yn — Pre ¢, (x1) € N2y N(A; + By),
asn — oo,

Proof. The proof is split into eleven steps. Copy Steps 2-5, 7, 10 and 11 in Theorem 1.
Furthermore, modify the other steps in Theorem 1 as follows

Step 1. {v, } is well-defined.

For s € (0,1), define Us : H — H by Usx := su + (1 —s)T(*4*), for any x € H and
for fixed u € H, where T : H — H is any fixed non-expansive mapping.

It is easy to check that ||[Usx — Usy| = (1 —s)||T(“E) — T(“5E)| < FEx —y|.
Thus, U is a contraction, which ensures from Lemma 1 that there exists x; € H such that
Usxs = x,. Thatis, x; = su + (1 —s)T(%5%).

Considering T here as } 7 a;(I +1,;A;)~ 1 (I —r,,B;), similar to Step 1 of Theorem 1,
one can see that {v, } is well-defined.

Step 6. {un},{vn}, {zn}, {wn}, and {x,} are all bounded.

For p € N2y N(A; + B;), one has

lon — pll < Bullun — pll + (1 — ﬁn)M +(1- ,B,JM This implies that (20) is
still true.

In view of Lemma 8 and (20), one has

llzn — pll < onllf(xn) — F(P)Il + Sullf(p) — Pl

+ (1= 6) (I = Tn T2q ciW;) E2q ai(1 4+ 1,0 Ai) 1T — 1 iBi) (“2522) — p|

< Onkllxn — pll +ull f(p) — Pl

(1—5n)||< gnz;”lcl 1) Y52 ai(1+ 1, Ai) "1 — 1 iBy) (M52 — p) |

(1 =81 (I = Tn T2 ciWi) 220 ai (I + 14, A7) ~H(I = 14,iBi)p — p||
SénkIIxn—pIIHnllf() pll+ (1 =6)[1—Cn(1 - X2 ci 1})]”%“"%’”
+(1=6n)0n 2 i [ Willllpl

< Sukl| 2t — pll + 0all f(p) =PIl + (1= 8)[1 = Cu(1 — 52y 51/ 2% o %)\l — pl|
+(1=6n)Cn X2 cilWillll pll,

which ensures that (21) is still true.
Note that

u zZ
Jan = pll < wllzn =l + (1 = ) L2 2P 0 B L )

Combining with inequalities (19)—-(21) and (39), one has



Mathematics 2021, 9, 1504

16 of 21

lXp41 = pll
S {/\n?]k‘f' (1 _ )\ng)“n _|_ (1_/\n§)(21_“n)‘5nk
(1=An8) (1=an) (1=0) (1= (1T ¢34/ 5220w
I 2 1 Mi + (1— )\ng)(zl Ay wn}Hx o ||

() — Fp + o]+ S=beblizmlizony (ot

2
) (1=ay) s 1-2An8) (1—an) (1=60)Cn X524 Cil| Wi
L a /\g)él )6 IIf(P)—P||+( &) (1—an)( 2)(- el Willllpl

(1=Au8) (A=an) (1=wn) (1=8,) (1= (1-12 ciy | 1,%.01')} Il
2
(1=An8) (=) (1=0,) [1=Cn (1-132, ciy / 1%)] llenl|

+ 2
< {Auk+ (1= Mgy + Ut 0] | (A-AnE)(1-an)onk

(H@)(Hn)(k%)[k@(l—zzz ciy) S0]
+ L
+An(6 — vk)%we ||

(1 M) U585, (1 — gy L)l

(1= AyE) U5 ”‘" (1= 00)n(1 — X2 /o0 ) ZEalWilllplL

Hi 1-8;
-T2 ey

=l

+2(1 = wn)lIpll + 2/enl

_ _ W
< max{Hxn _ PH; H’?fg(i)?kPH, Hf(lpszH, Y Il |H|PH }+ ||€n|| +2( wn)”P” "’ZHEHH

1- 21 151\/ y

— | lnf(p)—pll Hf(P)—PH ?31’31\|WHHPH}
Pl =y 1k 1-6;
1-X2 ¢ 7

+ X el + 25 (1= wi)llpll + 22 &l

< max{|x

Therefore, {xn} is bounded. Similar to Step 6 in Theorem 1, {uy, },{v.},{zn}, {wn},

{Zz 14 I+rn1A1) rnz (u,,Jrvn } {Zl 14i I+rn1Az) 1(1_rn,iBi

{2 ch Yioqai(l + "niAi)” (I 71,iBi) (12522)} are all bounded.
Step 8. limsupy—oo (1 f(90) — Fg0, Xn+1 — qo) < 0, where g is the same
Note that

|wn — z||

o0
< lwn — Y ai(I+7,;A;) " (I = 1,,B;)
i=1

20
2

3

Uy +2n Uy + 0y

I+71,;A - _
a4 i) (=B (M o)

g i

_ Uy +0
LS a0+ g AT (1= B) T2 v 4 o — 2
i=1

¥ 2y
2

a;(I+1,;A;) " (I —1,,B;)

e

I
—

< ||1Xn[xn -

Up + Uy

3
+:87’l||z I"”'nz z 1(1_771,1‘31') _un||+§||7]n_zn||

= aﬂ”xﬂ - Zai(l + Vn,iAi)il(I - rn,iBl)
i=1

+ IBWH zai(I + 7’n,iAi)71(I - rn,iBi)

Un +Zn

I+ *Ilzn — 0n|

W*”—uu
2 n

)(%3)}, and

as that in Step 7.

(40)
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Furthermore,
llzn — ol
(o) (o) . Uy +Un
< Sullf(xn) || 4+ Cn(L = 6a) || Y ciWi Y ai(T 41, A;) (I —14,iBi)( )
i=1 i=1
© N U, + v (41)
+ Bullun — Y ai(I+7,;A;) "1 (I —1,B;) (= 5 D
i=1

ad _ U, +v
+0ull Y ai(I+7,0A:) 1T = 1,,iB;)( n2 )l
i1

Based on the assumptions, (40) and (41), and Step 6, one has w, —z, — 0, as
n — oo. Copying the corresponding part of Step 8 in Theorem 1, one can see that
limsupn—eo(11f(q0) — Fqo, Xpr1 —go) < 0.

Step 9. x;, — qo, as 1 — oo, where g is the same as that in Steps 7 and 8.

Similar to Step 9 in Theorem 1, we can easily see that both (27) and (28) are still true.
In view of Lemma 11 and (28), one has

llzn = qolI?

ﬂwum»ww+uﬂmW—aiqmuym+w@rmeu@ﬂ””"

—qoII?
i=1 2

i=

Uy + 0
<1 *511)”% - quz +26u(zn — g0, f (xn) — q0)

00 00 = Uy + Up
—2(1—5n)§;1<2 Ciwixﬂi(1+rn,iAi) (I_rn,iBi) ,Zn —q0>

i=1 i=1 2 (42)
Uy + Un 2
< (=)= — qoll” +20u(zn — qo, f (xu) = f(40)) +20n{zu — 40, f(q0) = q0)
> > _ Uy + 0
+2(1=62)Cnll Y- ciW; Y- ai(I 47, A7) (I — 1,iB;) = > =1z = qoll
= ia
< (1= dn)llun — ‘70“2 +26nkl|zn — xn| |20 — ol + 20uk]|2, — ’70H2 + 264 (zn — g0, f(40) — 90)
ad > _ Uy 40
+ 2001 Y Wi Y ai(I+ 7 i Af) NI = 1y iBi) = 5 = llzn = g0l
P B |
Note that
2 2
Uy — 4go Zn —4qo
00— qoll® < e — ol + (1 - ) LB (g g [En— ol gy

Now, in view of Lemma 9 and using (27), (28), (42), and (43), one has

[lxp41 — ‘70”2 = [[An(nf(xn) — Fqo) + (I — AuF) (wy — qo) + En”z

< (1= And)llwn — qol1* + 2llenll[|xns1 — qoll + 2Au (£ (xn) = f(q0), Xn+1 — 40)
+2An(nf(90) — Fq0, Xn+1 — G0)

< {(1 — M)y + Auttk + (1 =28 (1 —an)duk+ (1 —Au8) (1 —an)(1— %)wn}Hxn - quz
+2llenllxn1 —qoll + (1 = A28) (1 — @) (2 = 6n) l[enl[ttn — qoll “
(1= M) (= )2 = 82)(1 — i)l qolll1n — o] (44
+ umk(1 = M) (1 — an) [0 — qoll[|xn — 2|

+ (1= An8) (1 — n)dn |z — qol| ||f(‘10) — 4o

) ) _ U, + v
+ (1= 2u8) (1 = an)ullzn — qollll Y ciWi Y ai(I+ 1y i A) (I — 1y iBi) (= 5 %) —qoll
P |

+ Akl %051 = qoll* + 240 (£ (90) — F(q0), Xn41 — 40)
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Therefore,

(1= Auk) || xp 1 — g0l
<H{A = And)an + Ak + (1= An) (1 — an)dnk + (1 = And) (1 — ap) (1 — %n)}”xn —q0]1? (45)
+ [llenll + llenl] + (1 — wn) + 285 + §n] M2 + 2An (1 £ (q0) — F(q0), Xut1 — q0),

where My = supu{2|xp+1 = qoll, [Ixn = qolllzn — xnll, 122 = qollll f(90) — qoll, llzn — qoll
1252 €W 52 a1+ 1 iAr) (T = 7,iBy) (*5) = goll, [[un — qoll, 2/ 90l lun — g0 = €
N} < +oo.

If we set b}(f’) — bﬁll), b,(14) — [HenH*an‘|+(1*“’n)+25n+§1ﬂ]/\\/£'2};(2/\n<'lf(ﬂi0)*F(‘70)zxn+1*LIO> , then

¥ — qoll> < (1= 5)|x — qoll + 5.

Similar to Step 9 in Theorem 1, in view of Lemma 12, we have x;,, — go, as n — co.
This completes the proof. [

Remark 1. The restrictions imposed on the mappings f(x) and F(x) are available. For example,
take F(x) = 3xand f(x) = %, for x € (—co,+o0). Take y = %,k = ,& = 3. Then, we can
easily see that F is a strongly positive linear bounded mapping with ¢, f is a contraction, and
& > 2nk. Moreover, (F(x) —nf(x)+ f(y) —y,x —y) = [|x —y[|> > 0, for x,y € (—c0, +00).
Furthermore, if (f(x) —x,y —x) = 0, then 5(y — x) = 0, which implies that x = 0 or y = x.

Remark 2. In both (13) and (38), the idea of forward—backward splitting method is embodied,
the superposition perturbation is considered and multi-choice sets are constructed, which extends
and complements the corresponding studies.

Remark 3. From Theorems 1 and 2, we may find that the limit qq of the iterative sequence {x, } is
not only the solution of the system of monotone inclusions (3) but also the solution of variational
inequalities (14) and (15). That is, the study on iterative construction of the solution of (14) in [18]
and the solution of (15) in [17] are unified in our paper.

Remark 4. From Theorems 1 and 2, we may find that the relationship between the metric projection
Pr=_ ¢, (x1) and the common solution of variational inequalities and monotone inclusions qq is
set up in our paper.

3. Applications

In this section, one kind capillarity system discussed in [18] is employed again to
demonstrate the application of Theorems 1 and 2.
The discussion begins under the following assumptions:

(1) Qisabounded conical domain in R” (n € N) with its boundary I’ € C!.
(2) 9 is the exterior normal derivative of T
(3) Ajisa positive number, for i € N.
(4) pi € (%, +o0), for i € N. Moreover, if p; > n, then suppose 1 < g;,1; < +oo,
fori € N. If p; < n, then suppose 1 < g;,1; < n"_p;i, fori € N.
(5) |- | denotes the norm in R"” and < -, - > the inner-product.
Now, examine the capillarity systems:
—di |Vu )i (@) |pi—2x74,(0)
div[(1 + \/WNVL{ |Pi2Vull]
+Ai(|u(i)’q172u(i) + ‘u(i)|r172u(i)) —|—u(i)(x) :fi(X), xe (46)
C <t (14 Oy gy p2yy() =0, xeT, icN.

V14 Vul) 2Pi



Mathematics 2021, 9, 1504

19 of 21

Lemma 14. (see [18]) Fori € N, define A; : L>(Q) — L?>(Q) by
(1) D(A;) = {u € L2(Q)| I f € L2(Q) such that f € Au}, where A; : WWPi(Q) —
(WLPi(Q))* is defined by

— Pi —
(w, Aju) = [ < (1+ \/%)IVMW 2Vu, Vo > dx

i o 0G0 2000 + Ay oy () 2o ),
for any u,w € WYPi(Q);

(2) Am={feLl*(Q)|fe Au}.
Then, A; : L>(Q) — L?(Q) is maximal monotone, for each i € N.

Lemma 15. (see [18]) Define B; : L*(Q) — L2(Q) by

(Bju)(x) = u(x) — fi(x), forallu(x) € D(B;),

and then B; is 0;-inversely strongly accretive, for 0; € (0,1] and i € N.

Lemma 16. (see [18]) If, in (46), fi(x) = Ai([k|9%=Y 4 |k|i~Y)sgnk + k, where k is a con-
stant, then {u') = k : i € N} is the solution of capillarity system (46). Furthermore, {k} =
N2y N(A; + B)).

Theorem 3. Suppose f;(x) = A;j(|k|%~1 + |k|"i~1)sgnk + k, A; and B; are the same as those
in Lemmas 14 and 15, F : L*(Q) — L2(Q) is a strongly positive linear bounded operator
with coefficient & > 0, f : L2(Q) — L2(Q) is a contraction with coefficient k € (0,1) and
W; @ L2(Q) — L?(Q) is 0;-strongly monotone and w;-strictly pseudo-contractive mapping,
forie N.

Two iterative algorithms are constructed as follows:

x1,y1 € L2(Q) chosen arbitrarily, ey, e € L2(Q) chosen arbitrarily,
C1=L*Q) =Qy,
Up = WypXp + €n,
On = Buttn + (1= Bn) 52 ai(1 4 7iA;) 7 (I = 1,,iB;)0n,
zZn = O f (xn) + (1= 6n) (I = G 52y iWi) T2 @i (1 +1,iA1) 7 (I = 70iB;)On,
Wy = anXy + (1 —an) 22 ai(I 47, A) "I = 7,,B)zn, (47)
X1 = Aaif (x0) + (I — AyF)wy, + ey,
Chi1={p € Cun:2{anxy+ (1 —an)zn — wy, p)
< | 2n][* 4 (1 — an) |20 [|> = [Jwal*}
Qut1 = {p € Cug1 : lx1 — plI* < IIPc,,, (x1) — x1[* + 0y}, nEN,
Yn+1 € Qu1, n €N,

and
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x1,y1 € L?(Q) chosen arbitrarily, e1,e; € L?(Q) chosen arbitrarily,
C1=L*Q) = Qi
Uy = WXy + &,
On = Bty + (1= Bu) Lo ai(I+ 1 A) (I — ”n,iBi)(%)r
zn = O f (xn) + (1= 8n) (I — Cn 52y W) 52y i (1410, A7) "1 (I — 1 iBy) (H2522),
Wy = KpXy + (1 - ‘xn) Zfi] ui(l + Tn,iAi)il(I - rn,iBi)(W)/ (48)
Xp+1 = Al f(xn) + (I — AnF)wy + ep,
Coi1={p € Cun: 2{anxy + (1 —an)zn — Wy, p)
< |2 ]|* + (1 — ) | zal|* — [l0n]|?}
Qui1 ={p € Cpp1 : 11 — pl* < ||Pc,,, (x1) = x1||* + 0411}, nEN,
Yn+1 € Quy1, 1 € N.

Under the assumptions of Theorems 1 and 2, one has x, — qo(x) € N2 N(A; + B;), where

qgo(x) is common solution of the capillarity system (46) and the system of variational inclusions
(14) and (15).

4. Conclusions

Some new forward-backward multi-choice iterative algorithm with superposition
perturbations are presented in a real Hilbert space. The iterative sequences are proved
to be strongly convergent to not only the solution of monotone inclusions but also the
solution of variational inequalities. In the near future, more work can be done to weaken
the restrictions imposed on the contraction f and the strongly positive linear bounded
mapping F.
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