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Abstract: In our paper, we propose two new iterative algorithms with Meir–Keeler contractions that
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The strong convergence of the proposed iterative algorithms is proven. Using our results, we can
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1. Introduction
1.1. Variational Inclusion Problem

In a real Hilbert space H with inner product 〈·, ·〉 and induced norm ‖ · ‖, we assume
that G : H → 2H is a set-valued mapping while F : H → H is a single-valued mapping.

We consider the following variational inclusion problem: find an element x∗ ∈ H
such that

0 ∈ Fx∗ + Gx∗. (1)

This problem has been studied by many scholars [1–9].
A classical algorithm to solve the problem (1) is the forward–backward splitting

algorithm put forward by Passty [2] and by Lions and Mercier [3]. In 2000, Tseng [4]
proposed a modified forward–backward splitting algorithm (Algorithm 1) about null
points of maximal monotone mappings. This algorithm is weakly convergent under
some conditions.

Algorithm 1: Modified forward–backward splitting algorithm.

yn = (I + γnG)−1(xn − γnFxn),
xn+1 = yn − γn(Fyn − Fxn).

In 2015, an algorithm named inertial forward–backward algorithm (Algorithm 2) was
proposed by Lorenz and Pock [5]. We notice that the algorithm is also weakly convergent.

Algorithm 2: Inertial forward–backward algorithm.

yn = xn + αn(xn − xn−1),
xn+1 = (I + γnG)−1(yn − γnFyn).
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In 2020, Tan et al. [6] introduced the inertial hybrid projection algorithm (Algorithm 3)
and inertial shrinking projection method (Algorithm 4) by combining the two algorithms
(Algorithms 1 and 2) with two classes of hybrid projection methods to solve the variational
inclusion problem in Hilbert spaces, as follows:

Algorithm 3: Inertial hybrid projection algorithm.

wn = xn + αn(xn − xn−1),
yn = (I + γnG)−1(I − γnF)wn,
zn = yn − γn(Fyn − Fwn),

Cn =

{
u ∈ H : ‖zn − u‖2 ≤ ‖wn − u‖2 −

(
1− µ2 γ2

n
γ2

n+1

)
‖wn − yn‖2

}
,

Qn = {u ∈ H : 〈xn − u, xn − x0〉 ≤ 0},
xn+1 = PCn∩Qn x0.

Algorithm 4: Inertial shrinking projection algorithm.

wn = xn + αn(xn − xn−1),
yn = (I + γnG)−1(I − γnF)wn,
zn = yn − γn(Fyn − Fwn),

Cn+1 =

{
u ∈ Cn : ‖zn − u‖2 ≤ ‖wn − u‖2 −

(
1− µ2 γ2

n
γ2

n+1

)
‖wn − yn‖2

}
,

xn+1 = PCn+1 x0.

They proved these two algorithms are strongly convergent under certain conditions.

1.2. Fixed Point Problem

Assume that D is a nonempty closed convex subset of H and that T : D → D is a
mapping. Let us recall that the fixed point problem is finding a point x̄ ∈ D such that
Tx̄ = x̄. We denote the set of fixed points of T by Fix(T).

In the field of fixed point problems, many fruitful achievements were introduced by
scholars [10–22]. One of the classic algorithms is the Krasnosel’skiı̌–Mann algorithm [10,11],
which is defined as follows:

xn+1 = (1− λn)xn + λnTxn.

Under some certain conditions, the sequence {xn} converges weakly to a fixed point of
T. In 2019, Dong et al. [20] presented a multi-step inertial Krasnosel’skiı̌–Mann algorithm,
which is defined as Algorithm 5.

Algorithm 5: Multi-step inertial Krasnosel’skiı̌–Mann algorithm.

yn = xn + ∑k∈Sn ak,n(xn−k − xn−k−1),
zn = xn + ∑k∈Sn bk,n(xn−k − xn−k−1),
xn+1 = (1− λn)yn + λnTzn.

Under suitable conditions, the sequence {xn} converges weakly to a point in Fix(T).
In addition, Yao et al. [21] proposed a projected fixed point algorithm in real Hilbert spaces
in 2017, which is defined as Algorithm 6. The sequence {xn} converges strongly to the
unique fixed point of PFix(T) f under some conditions.
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Algorithm 6: Projected fixed point algorithm.

yn = (1− λn)xn + λnTxn,
Cn+1 = {u ∈ Cn : ‖(1− αn)xn + αnTyn − u‖ ≤ ‖xn − u‖},
xn+1 = PCn+1 f (xn).

Motivated by the results of [6,20,21], we construct two new algorithms to solve vari-
ational inclusion problems and obtain two strong convergence theorems. By using our
results, we can solve convex minimization problems in Hilbert spaces as applications.

2. Preliminaries

Now, we present some necessary definitions and lemmas in the following for our
convergence analysis.

Definition 1 ([23–27]). Let S : H → H be a nonlinear mapping.

(i) S is nonexpansive if
‖Sx− Sy‖ ≤ ‖x− y‖, ∀x, y ∈ H.

(ii) S is firmly nonexpansive if

〈Sx− Sy, x− y〉 ≥ ‖Sx− Sy‖2, ∀x, y ∈ H.

It is obvious to see that a firmly nonexpansive mapping is nonexpansive.
(iii) S is contractive if

‖Sx− Sy‖ ≤ ρ‖x− y‖, ∀x, y ∈ H,

where ρ ∈ [0, 1) is a real number.
(iv) S is Meir–Keeler contractive if, for any ε > 0, there exists δ > 0 such that

‖x− y‖ < ε + δ implies ‖Sx− Sy‖ < ε, ∀x, y ∈ H.

It it obvious to see that a contractive mapping is Meir–Keeler contractive.
(v) S is L-Lipschitz continuous (L > 0) if

‖Sx− Sy‖ ≤ L‖x− y‖, ∀x, y ∈ H.

(vi) S is monotone if
〈Sx− Sy, x− y〉 ≥ 0, ∀x, y ∈ H.

Lemma 1 ([23,28–30]). A Meir–Keeler contractive mapping has a unique fixed point on a complete
metric space.

Lemma 2 ([31]). Let D be a convex subset of a Banach space E and S be a Meir–Keeler contractive
mapping on D. Then, there exists ρ ∈ (0, 1) for each ε > 0, such that

‖x− y‖ ≥ ε implies ‖Sx− Sy‖ ≤ ρ‖x− y‖, ∀x, y ∈ D.

Recall the metric projection operator PD, defined as follows:

PDx = arg min
y∈D
‖x− y‖, x ∈ H.

Lemma 3 ([32,33]). Given x ∈ H and q ∈ D, we have

(i) q = PDx if and only if
〈x− q, q− y〉 ≥ 0, ∀y ∈ D;
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(ii) PD is firmly nonexpansive, i.e.,

〈PDu− PDv, u− v〉 ≥ ‖PDu− PDv‖2, ∀u, v ∈ H;

(iii) ‖x− PDx‖2 ≤ ‖x− y‖2 − ‖y− PDx‖2, ∀y ∈ D.

Definition 2 ([34]). Let A : H → 2H be a set-valued mapping. Dom(A) = {x ∈ H : Ax 6= ∅}
is the effective domain of A. The graph of A is denoted by Gra(A), i.e., Gra(A) = {(x, u) ∈
H × H : u ∈ Ax}. A set-valued mapping A : H → 2H is called monotone if

〈x− y, u− v〉 ≥ 0, ∀(x, u), (y, v) ∈ Gra(A).

A monotone set-valued mapping A is called maximal monotone if, for each (x, u) ∈ H × H,
(x, u) ∈ Gra(A) if and only if

〈x− y, u− v〉 ≥ 0, ∀(y, v) ∈ Gra(A).

For a maximal monotone set-valued mapping A : H → 2H and r > 0, we can define a
mapping as

Jr = (I + rA)−1.

It is worth noticing that Jr is single-valued and firmly nonexpansive. The mapping Jr
is called the resolvent of A for r.

Lemma 4 ([35]). Let A be a maximal monotone mapping on H into 2H and B : H → H be a
mapping. Then, for any r > 0, (A + B)−1(0) = Fix(Jr(I − rB)), where Jr is the resolvent of A
for r.

Lemma 5 ([35,36]). Let A : H → 2H be a maximal monotone mapping. For r, s > 0,

‖Jrx− Jsx‖ ≤ |r− s|
r
‖x− Jrx‖, ∀x ∈ H,

where Jr is the resolvent of A for r and Js is the resolvent of A for s.

Let {xn} ⊂ H be a sequence. We use xn → x and xn ⇀ x to indicate that {xn}
converges strongly and weakly to x, respectively.

Definition 3 ([21,37]). Let Dn ⊂ H be a nonempty closed convex subsets, n = 1, 2, · · · . We
define s-Lin Dn and w-Lsn Dn as follows:

s- Lin Dn = {x ∈ H : xn ∈ Dn, xn → x},

w- Lsn Dn = {x ∈ H : {Dnk} ⊂ {Dn}, xnk ∈ Dnk , xnk ⇀ x}.

If there exists a set D0 ⊂ H such that D0 =s-Lin Dn =w-Lsn Dn, we say that {Dn}
converges to D0 in the sense of Mosco and denote by M-limn→∞ Dn = D0. It is obvious to prove
that, if {Dn} is non-increasing with respect to inclusion, then {Dn} converges to

⋂∞
n=1 Dn in the

sense of Mosco.

Lemma 6 ([21,38]). Let Dn ⊂ H be a nonempty closed convex subsets, n = 1, 2, · · · . If D0 =
M- limn→∞ Dn exists and is nonempty, then ∀x ∈ H, PDn x → PD0 x.

3. Algorithms

In this section, we present two algorithms to find the solutions to variational inclusion
problems in Hilbert spaces.

The following conditions are assumed to be true.
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(A1) F : H → H is L-Lipschitz continuous (L > 0) and monotone.
(A2) G : H → 2H is maximal monotone.
(A3) f : H → H is a Meir–Keeler contraction.
(A4) Ω = (F + G)−1(0) 6= ∅.
We need the following lemma.

Lemma 7 ([6]). The sequence {γn} generated by the algorithm is non-increasing and

lim
n→∞

γn = γ ≥ min
{

γ1,
µ

L

}
.

4. Main Results

In this section, we analyze the strong convergence of Algorithms 7 and 8.

Algorithm 7: Multi-step inertial hybrid Tseng’s algorithm.
Initialization: Choose x0, x1 ∈ H, γ1 > 0, µ ∈ (0, 1) arbitrarily. For each
i = 1, 2, · · · , s (where s is a chosen positive integer), choose a bounded sequence
{αi,n} ⊂ R. Let {εn} be a nonnegative number sequence with limn→∞ εn = 0.

Iterative step: Compute xn+1 via

wn = xn + ∑
min{s,n}
i=1 αi,n(xn−i+1 − xn−i),

yn = Jγn(I − γnF)wn,
zn = yn − γn(Fyn − Fwn),

Cn =

{
u ∈ H : ‖zn − u‖2 ≤ ‖wn − u‖2 −

(
1− µ2 γ2

n
γ2

n+1

)
‖yn − wn‖2 + εn

}
,

Qn =

{
H, if n = 1,
{u ∈ Qn−1 : 〈xn − f (xn−1), xn − u〉 ≤ 0}, if n ≥ 2,

xn+1 = PCn∩Qn f (xn),

where

γn+1 =

{
min

{
γn, µ‖wn−yn‖

‖Fwn−Fyn‖

}
, if Fwn 6= Fyn,

γn, otherwise.

Algorithm 8: Multi-step inertial shrinking Tseng’s algorithm.
Initialization: Choose x0, x1 ∈ H, γ1 > 0, µ ∈ (0, 1) arbitrarily. Let C1 = H.
For each i = 1, 2, · · · , s (where s is a chosen positive integer), choose a bounded
sequence {αi,n} ⊂ R. Let {εn} be a nonnegative number sequence with
limn→∞ εn = 0.

Iterative step: Compute xn+1 via

wn = xn + ∑
min{s,n}
i=1 αi,n(xn−i+1 − xn−i),

yn = Jγn(I − γnF)wn,
zn = yn − γn(Fyn − Fwn),

Cn+1 =

{
u ∈ Cn : ‖zn − u‖2 ≤ ‖wn − u‖2 −

(
1− µ2 γ2

n
γ2

n+1

)
‖yn − wn‖2 + εn

}
,

xn+1 = PCn+1 f (xn),

where the computation of γn+1 is the same as in Algorithm 7.

Theorem 1. Assume that the conditions (A1)–(A4) are satisfied. Then, the sequence {xn} gener-
ated by Algorithm 7 converges strongly to x∗ ∈ Ω, where x∗ is the unique fixed point of PΩ f .
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Proof. The proof is divided into four steps.
Step 1. ∀n ∈ N, and Cn and Qn are closed and convex.
Obviously, for each n ∈ N, Cn is a half-space, so Cn is closed and convex.
For n = 1, Q1 = H is closed and convex. Suppose that xk is given and that Qk is

closed and convex for some k ∈ N. It is clear that {u ∈ H : 〈xk+1 − f (xk), xk − u〉 ≤ 0} is a
half-space, so it is closed and convex. Hence, Qk+1 is closed and convex. ∀n ∈ N, and Qn
is closed and convex by induction.

Step 2. We prove that Ω ⊂ Cn ∩Qn for each n ∈ N.
Let p ∈ Ω. We see that

‖zn − p‖2

= ‖(yn − p)− γn(Fyn − Fwn)‖2

= ‖yn − p‖2 + γ2
n‖Fyn − Fwn‖2 − 2γn〈yn − p, Fyn − Fwn〉

= ‖wn − p‖2 + ‖yn − wn‖2 + 2〈wn − p, yn − wn〉+ γ2
n‖Fyn − Fwn‖2

−2γn〈yn − p, Fyn − Fwn〉
≤ ‖wn − p‖2 − ‖yn − wn‖2 + γ2

n‖Fyn − Fwn‖2

−2〈yn − p, wn − yn + γn(Fp− Fwn)〉

≤ ‖wn − p‖2 − ‖yn − wn‖2 + µ2 γ2
n

γ2
n+1
‖yn − wn‖2

−2〈yn − p, wn − yn + γn(Fp− Fwn)〉

= ‖wn − p‖2 −
(

1− µ2 γ2
n

γ2
n+1

)
‖yn − wn‖2

−2〈yn − p, wn − yn + γn(Fp− Fwn)〉. (2)

Since yn = Jγn(I − γnF)wn = (I + γnG)−1(I − γnF)wn, we have

(I − γnF)wn ∈ (I + γnG)yn.

Hence,
1

γn
(wn − γnFwn − yn) ∈ Gyn. (3)

On the other hand, since p ∈ Ω = (F + G)−1(0), we have

0 ∈ (F + G)p.

Hence
− Fp ∈ Gp. (4)

From the maximal monotonicity of G, we deduce〈
1

γn
(wn − γnFwn − yn) + Fp, yn − p

〉
≥ 0,

which means
〈wn − yn + γn(Fp− Fwn), yn − p〉 ≥ 0. (5)

Substituting (5) into (2), we conclude

‖zn − p‖2 ≤ ‖wn − p‖2 −
(

1− µ2 γ2
n

γ2
n+1

)
‖yn − wn‖2

≤ ‖wn − p‖2 −
(

1− µ2 γ2
n

γ2
n+1

)
‖yn − wn‖2 + εn. (6)
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This means that p ∈ Cn. Hence, Ω ⊂ Cn for each n ∈ N.
For n = 1, Q1 = H, which yields Ω ⊂ C1 ∩Q1.
Assume that xk is given and that Ω ⊂ Ck ∩ Qk for some k ∈ N. From Lemma 3,

we obtain
〈y− xk+1, f (xk)− xk+1〉 ≤ 0, ∀y ∈ Ck ∩Qk.

Since Ω ⊂ Ck ∩Qk, we have

〈y− xk+1, f (xk)− xk+1〉 ≤ 0, ∀y ∈ Ω. (7)

From the expression of Qn, we obtain Ω ⊂ Qk+1. Hence, Ω ⊂ Ck+1 ∩Qk+1.
Therefore, ∀n ∈ N, Ω ⊂ Cn ∩Qn by induction.
Step 3. We prove that {xn} converges strongly to z, where z is the unique fixed point

of P⋂∞
n=1 Qn f .
From the expression of Qn, we know that ∅ 6= Ω ⊂ ⋂∞

n=1 Qn = M- limn→∞ Qn. Set
vn = PQn f (z). It follows from Lemma 6 that

vn → P⋂∞
n=1 Qn f (z) = z. (8)

Suppose the contrary, i.e., lim supn→∞ ‖xn − z‖ > 0. One can choose a real number
ε > 0 such that lim supn→∞ ‖xn − z‖ > ε. Continue to choose a real number δ1 such that
lim supn→∞ ‖xn − z‖ > ε + δ1. Since f is a Meir–Keeler contraction, there exists δ2 > 0
such that ‖x− y‖ < ε + δ2 implies, ∀x, y ∈ H, ‖ f (x)− f (y)‖ < ε. Take δ = min{δ1, δ2},
we have

lim sup
n→∞

‖xn − z‖ > ε + δ (9)

and
‖x− y‖ < ε + δ implies ‖ f (x)− f (y)‖ < ε, ∀x, y ∈ H. (10)

Since vn → z, there exists n0 ∈ N such that

‖vn − z‖ < δ, ∀n ≥ n0. (11)

The following two cases are considered now.
Case 1. There exists n1 ≥ n0 such that ‖xn1 − z‖ < ε + δ.
From the expression of Qn and Lemma 3, we can obviously see that xn+1 = PQn+1 f (xn).

Thus, from (10) and (11), we conclude

‖xn1+1 − z‖
≤ ‖xn1+1 − vn1+1‖+ ‖vn1+1 − z‖
< ‖PQn1+1 f (xn1)− PQn1+1 f (z)‖+ δ

≤ ‖ f (xn1)− f (z)‖+ δ

< ε + δ.

By induction, we obtain

‖xn1+m − z‖ < ε + δ, ∀m ∈ N,

which implies that
lim sup

n→∞
‖xn − z‖ ≤ ε + δ.

This contradicts (9).
Case 2. ‖xn − z‖ ≥ ε + δ for all n ≥ n0.
From Lemma 2, there exists ρ ∈ (0, 1) such that

‖ f (xn)− f (z)‖ ≤ ρ‖xn − z‖.
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Thus, for n ≥ n0, we obtain

‖xn+1 − z‖
≤ ‖xn+1 − vn+1‖+ ‖vn+1 − z‖
< ‖PQn+1 f (xn)− PQn+1 f (z)‖+ δ

≤ ‖ f (xn)− f (z)‖+ δ

≤ ρ‖xn − z‖+ δ

< ρ2‖xn−1 − z‖+ (1 + ρ)δ

· · ·
< ρn−n0+1‖xn0 − z‖+ (1 + ρ + · · ·+ ρn−n0)δ

< ‖xn0 − z‖+ δ

1− ρ
,

which means that lim supn→∞ ‖xn − z‖ is a finite number. Therefore,

lim sup
n→∞

‖xn − z‖

= lim sup
n→∞

‖xn+1 − z‖

≤ lim sup
n→∞

‖xn+1 − vn+1‖+ lim
n→∞

‖vn+1 − z‖

= lim sup
n→∞

‖PQn+1 f (xn)− PQn+1 f (z)‖

≤ lim sup
n→∞

‖ f (xn)− f (z)‖

≤ ρ lim sup
n→∞

‖xn − z‖

< lim sup
n→∞

‖xn − z‖.

This is a contradiction.
Hence, we obtain that {xn} converges strongly to z.
Step 4. We prove that {xn} converges strongly to x∗.
From Step 3, it is sufficient to prove that z = x∗. Since xn → z, we have

xn+1 − xn → 0, n→ ∞. (12)

From the computation of wn, we deduce

‖xn − wn‖

=

∥∥∥∥∥xn − xn −
s

∑
i=1

αi,n(xn−i+1 − xn−i)

∥∥∥∥∥
=

∥∥∥∥∥ s

∑
i=1

αi,n(xn−i+1 − xn−i)

∥∥∥∥∥
≤

s

∑
i=1
|αi,n|‖xn−i+1 − xn−i‖ (13)

for n ≥ s. From (12), (13), and the boundedness of {αi,n}, we have

xn − wn → 0, n→ ∞. (14)

Hence, wn → z. Therefore {wn} is bounded, and so are {Fwn}, {(I − γF)wn}, and
{Jγ(I − γF)wn}, where γ appears in Lemma 7. Combining (12) and (14), we conclude

xn+1 − wn → 0, n→ ∞. (15)
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Since xn+1 = PCn∩Qn f (xn), we know that xn+1 ∈ Cn. Hence,

‖zn − xn+1‖2 ≤ ‖wn − xn+1‖2 −
(

1− µ2 γ2
n

γ2
n+1

)
‖yn − wn‖2 + εn. (16)

By Lemma 7, we know that γn → γ > 0. Therefore, γn
γn+1
→ 1. Combining this with

µ ∈ (0, 1), we obtain

lim
n→∞

(
1− µ2 γ2

n

γ2
n+1

)
= 1− µ2 ∈ (0, 1) (17)

Combining (15)–(17) and the conditions of {εn}, we deduce

xn+1 − zn → 0, n→ ∞,

and hence
yn − wn → 0, n→ ∞,

i.e.,
Jγn(I − γnF)wn − wn → 0, n→ ∞. (18)

Since Jγn is nonexpansive, we conclude

‖Jγn(I − γnF)wn − Jγn(I − γF)wn‖
≤ ‖(I − γnF)wn − (I − γF)wn‖
= |γn − γ|‖Fwn‖.

Hence,
Jγn(I − γnF)wn − Jγn(I − γF)wn → 0, n→ ∞. (19)

From Lemma 5, we have

‖Jγn(I − γF)wn − Jγ(I − γF)wn‖

≤ |γn − γ|
γ

‖(I − γF)wn − Jγ(I − γF)wn‖.

Hence,
Jγn(I − γF)wn − Jγ(I − γF)wn → 0, n→ ∞. (20)

Combining (18)–(20), we obtain

wn − Jγ(I − γF)wn → 0, n→ ∞. (21)

By wn → z and the continuity of Jγ(I − γF), we conclude z = Jγ(I − γF)z. It follows
from Lemma 4 that z ∈ Ω. Since Ω ⊂ Qn+1, we see that

〈xn+1 − f (xn), xn+1 − y〉 ≤ 0, ∀y ∈ Ω. (22)

Taking the limit in (22), we obtain

〈z− f (z), z− y〉 ≤ 0, ∀y ∈ Ω. (23)

It follows from Lemma 3 that z = PΩ f (z). Since PΩ f has the unique fixed point x∗,
we obtain z = x∗.

Theorem 2. Assume that the conditions (A1)–(A4) are satisfied. Let the sequence {xn} be gener-
ated by Algorithm 8. Then, {xn} converges strongly to x∗ ∈ Ω, where x∗ is the unique fixed point
of PΩ f .
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Proof. It is obvious that Cn is a closed convex subset of H for each n ∈ N by induction.
Using the same proof as in (2)–(6), we obtain that Ω ⊂ Cn for each n ∈ N. Denote the
unique fixed point of P⋂∞

n=1 Cn f by z. From the expression of Cn, we know that ∅ 6= Ω ⊂⋂∞
n=1 Cn = M- limn→∞ Cn. Set vn = PCn f (z). It follows from Lemma 6 that vn is as follows:

vn → P⋂∞
n=1 Cn f (z) = z.

Using the similar proof of Theorem 1, we obtain xn → x∗.

Remark 1. If s = 1, εn ≡ 0, x0 = x1, and f ≡ x1, then Algorithm 8 reduces to Algorithm 4.

5. Applications

In this section, some applications for solving the nonsmooth composite convex mini-
mization problems are introduced in Hilbert spaces.

Denote Γ0(H) by

Γ0(H) = { f : H → (−∞, ∞] : f is proper convex lower semi-continuous}.

Consider the following problem

min
x∈H

(g(x) + h(x)), (24)

where g, h ∈ Γ0(H) and which satisfies the following conditions:

• g is Gâteaux differentiable, and its gradient ∇g is Lipschitz continuous. h may not be
Gâteaux differentiable.

• Ψ = arg minx∈H(g(x) + h(x)) 6= ∅.

We need the following definitions and lemmas.

Definition 4 ([34]). Let h ∈ Γ0(H). The proximal operator of h of order λ > 0 is defined by

proxλh(x) := arg min
y∈H

{
1

2λ
‖y− x‖2 + h(y)

}
, ∀x ∈ H.

Lemma 8 ([34]). Let h ∈ Γ0(H). Then, ∂h is maximal monotone and (I + λ∂h)−1 = proxλh.

Lemma 9 ([34]). Let g, h ∈ Γ0(H). Then, x̂ ∈ Ψ if and only if 0 ∈ (∇g + ∂h)(x̂).

Next, we apply our main results to solve problem (24).

Theorem 3. Assume that the condition (A3) is satisfied. Let the sequence {xn} be generated by
Algorithm 9. The {xn} converges strongly to x∗ ∈ Ψ, where x∗ is the unique fixed point of PΨ f .

Proof. ∇g is monotone because g is convex. Let F = ∇g and G = ∂h in Theorem 4.1. We
can obtain the desired result using Lemmas 8 and 9.

Theorem 4. Assume that the condition (A3) is satisfied. Let the sequence {xn} be generated by
Algorithm 10. Then, {xn} converges strongly to x∗ ∈ Ψ, where x∗ is the unique fixed point of PΨ f .

Proof. ∇g is monotone because g is convex. Let F = ∇g and G = ∂h in Theorem 4.2. We
can obtain the desired result by Lemmas 8 and 9.
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Algorithm 9:
Initialization: Choose x0, x1 ∈ H, γ1 > 0, µ ∈ (0, 1) arbitrarily. For each
i = 1, 2, · · · , s (where s is a chosen positive integer), choose a bounded sequence
{αi,n} ⊂ R. Let {εn} be a nonnegative number sequence with limn→∞ εn = 0.

Iterative step: Compute xn+1 via

wn = xn + ∑
min{s,n}
i=1 αi,n(xn−i+1 − xn−i),

yn = proxγnh(I − γn∇g)wn,
zn = yn − γn(∇g(yn)−∇g(wn)),

Cn =

{
u ∈ H : ‖zn − u‖2 ≤ ‖wn − u‖2 −

(
1− µ2 γ2

n
γ2

n+1

)
‖yn − wn‖2 + εn

}
,

Qn =

{
H, if n = 1,
{u ∈ Qn−1 : 〈xn − f (xn−1), xn − u〉 ≤ 0}, if n ≥ 2,

xn+1 = PCn∩Qn f (xn),

where

γn+1 =

{
min

{
γn, µ‖wn−yn‖

‖∇g(wn)−∇g(yn)‖

}
, if ∇g(wn) 6= ∇g(yn),

γn, otherwise.

Algorithm 10:
Initialization: Choose x0, x1 ∈ H, γ1 > 0, µ ∈ (0, 1) arbitrarily. Let C1 = H.
For each i = 1, 2, · · · , s (where s is a chosen positive integer), choose a bounded
sequence {αi,n} ⊂ R. Let {εn} be a nonnegative number sequence with
limn→∞ εn = 0.

Iterative step: Compute xn+1 via

wn = xn + ∑
min{s,n}
i=1 αi,n(xn−i+1 − xn−i),

yn = proxγnh(I − γn∇g)wn,
zn = yn − γn(∇g(yn)−∇g(wn)),

Cn+1 =

{
u ∈ Cn : ‖zn − u‖2 ≤ ‖wn − u‖2 −

(
1− µ2 γ2

n
γ2

n+1

)
‖yn − wn‖2 + εn

}
,

xn+1 = PCn+1 f (xn),

where the computation of γn+1 is the same as in Algorithm 9.

6. Conclusions

As known, the variational inclusion problems have always been a topic discussed by
a large number of scholars. It not only plays an increasingly important role in the field
of modern mathematics but also is widely used in many other fields, such as mechanics,
optimization theory, nonlinear programming, etc. Tan et al. combined Tseng’s algorithm
and hybrid projection algorithm to obtain a new strongly convergent algorithm. Our
work in this paper is based on the work conducted by Tan et al. combined with the multi-
step inertial method and the Krasnosel’skiı̌–Mann algorithm for solving the variational
inclusion problems in a real Hilbert space. Then, new strong convergence theorems are
obtained. By using our results, we can solve the related problems in a Hilbert space. Our
results extend and improve many recent correlative results of other authors [1–6,20,21]. For
example, our Algorithm 8 extends and improves Algorithm 4 in [6] in the following ways:

(i) One-step inertia is generalized to multi-step inertia.
(ii) There is an εn in the definition of Cn+1.
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(iii) The anchor value x0 is replaced with f (xn) for the last step of iteration, where f
is a Meir–Keeler contraction. This greatly expands the application scope of the
iterative algorithm.
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