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Abstract: Several variants of the SARS-CoV-2 virus have been detected during the COVID-19 pan-
demic. Some of these new variants have been of health public concern due to their higher infectious-
ness. We propose a theoretical mathematical model based on differential equations to study the effect
of introducing a new, more transmissible SARS-CoV-2 variant in a population. The mathematical
model is formulated in such a way that it takes into account the higher transmission rate of the new
SARS-CoV-2 strain and the subpopulation of asymptomatic carriers. We find the basic reproduction
numberR0 using the method of the next generation matrix. This threshold parameter is crucial since
it indicates what parameters play an important role in the outcome of the COVID-19 pandemic. We
study the local stability of the infection-free and endemic equilibrium states, which are potential
outcomes of a pandemic. Moreover, by using a suitable Lyapunov functional and the LaSalle invari-
ant principle, it is proved that if the basic reproduction number is less than unity, the infection-free
equilibrium is globally asymptotically stable. Our study shows that the new more transmissible
SARS-CoV-2 variant will prevail and the prevalence of the preexistent variant would decrease and
eventually disappear. We perform numerical simulations to support the analytic results and to show
some effects of a new more transmissible SARS-CoV-2 variant in a population.

Keywords: SARS-CoV-2 virus; global stability analysis; Lyapunov functions; variants; basic repro-
duction number

1. Introduction

The world is suffering one of the worst pandemics in history. The spread of the SARS-
CoV-2 virus started at the end of the year 2019 and has now affected the whole world from
a variety of points of view. The COVID-19 pandemic has caused more than 160 million
confirmed cases and more than 3.2 million deaths (May 2021) [1,2]. It is important to remark
that the number of cases is underestimated due to lack of tests and asymptomatic cases
among other reasons [3–11]. Several variants of the SARS-CoV-2 virus have been discovered
and some of these new SARS-CoV-2 variants have been of concern due to their higher
transmissibility [12–18]. These new more transmissible SARS-CoV-2 variants can have
a great impact on the number of infected cases, prevalence, hospitalizations and deaths.
The people, researchers, and media are concerned about what the consequences will be of
having a more transmissible SARS-CoV-2 variant [12,18–21]. It has been observed that not
all the countries have been able to start a strong vaccination program and therefore these
countries are facing the introduction of SARS-CoV-2 variants that are more transmissible.

Mutations of viruses are common and, as a consequence, SARS-CoV-2 can acquire muta-
tions that allow the virus to spread better and provide immunological resistance [12–17,22].
In 2020, a new variant of the SARS-CoV-2 virus was discovered in England, and has
been named the VOC-202012/01 of lineage B.1.1.7. [23–25]. This new SARS-CoV-2 vari-
ant increased the number of infected cases and deaths in England. Test results showed
that the new SARS-CoV-2 variant, VOC-202012/01, was prevalent and its proportion
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increased at the end of 2020 in England [26]. Several studies have found that the new
SARS-CoV-2 variant VOC-202012/01 is more transmissible than the previously prevalent
variants [24,27–29].

Based on the appearance of new SARS-CoV-2, it is important to construct mathemati-
cal models to study the potential consequences of these new variants. Mathematical models
have been widely used to investigate and understand the dynamics of many infectious
diseases [30–39]. Mathematical models provide useful insight into the nonlinear complex
phenomena [31,40,41]. Thus, mathematical models are helpful for gaining knowledge and
providing scientific support to decide which are the most suitable public health policies. A
variety of mathematical models have been developed to study and aid in the control of the
spread of the SARS-CoV-2 virus in the population and predicting hospitalizations [42–55].
The proposed models vary in different ways, including assumptions, methodology, tech-
niques and approaches [50,56]. However, our proposed deterministic model is different
from others since we consider two different SARS-CoV-2 variants, as well as asymptomatic
cases for both variants.

In this study, we construct a compartmental mathematical model based on differential
equations to study the effect of introducing a new more transmissible SARS-CoV-2 strain
into a population. Agent-based models might be more suitable, but have the difficulty of
a greater number of parameters and uncertainties. Another advantage of the differential
equation model is that it allows for mathematical analysis over the long term, which
provides useful insight into the short term, as well. The differential equation based model
we propose belongs to the general class of positive polynomial systems that are applied
in many fields [57,58]. The mathematical model is formulated in such a way that it
takes into account the higher transmission rate of the new SARS-CoV-2 variant and the
asymptomatic individuals.

The paper is organized as follows: in Section 2, we present the mathematical model of
SARS-CoV-2 transmission and disease progression and some preliminary results about the
positivity of the solutions. Section 3 is devoted to stability mathematical analysis, including
local and global stability analysis. In Section 4, the numerical simulation results using
the constructed mathematical model of SARS-CoV-2 transmission are shown, and the last
section is devoted to the conclusions.

2. Mathematical Model of SARS-CoV-2 Spread

We constructed a compartmental model based on a deterministic system of nonlinear
differential equations that considers two variants of SARS-CoV-2. This situation has been
common in several countries, where there is a prevalent preexistent SARS-CoV-2 variant
and then a second variant such as the VOC-202012/01 of lineage B.1.1.7 is introduced in
the population.

The model includes individuals in the susceptible (S(t)), latent (E(t)), infected (I(t)),
asymptomatic (A(t)), and hospitalized (H(t)) classes, as shown in Figure 1. The transition
of individuals from one class to another depends on the stage of the disease. The mathemat-
ical model also assumes that individuals can only get one SARS-CoV-2 variant and there is
no co-infection. The individuals can be in two disjoint groups related to disease progression:
infected with variant one and infected with variant two. The model also assumes that
individuals infected with one SARS-CoV-2 variant have full immunity against the other
variant due to the adaptive immune response [59–62]. The model has a constant recruiting
rate (births) Λ to the susceptible (S(t)) class. The transmission rate from infected individu-
als with variant i (Ii(t)) to susceptible individuals (S(t)) is given by β Ii . The transmission
rate from asymptomatic individuals with variant i (Ai(t)) to susceptible individuals (S(t))
is given by βAi . The model includes individuals in the latent stage (either with variant one
or variant two) who are not yet infectious. The individuals remain in the latent phase (E(t))
for a certain time with mean α. The individuals in classes E1(t) and E2(t) then transit into
the infective symptomatic (I1(t) or I2(t)) or asymptomatic classes (A1(t) or A2(t))), where
they are able to transmit the SARS-CoV-2 to other individuals. The infected people stay in
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the infectious phase for a certain time with mean γ. The asymptomatic individuals transit
to the recovered class at a rate of γ. However, infected individuals with symptoms might
also transit to the hospitalized class (H(t)), as can be seen in Figure 1.

In the mathematical model it is assumed that hospitalized individuals can die due the
COVID-19 disease [50,63–66]. Some scientific literature has mentioned that the antibody
titers decline over time in individuals who have recovered from COVID-19, particularly
in those who were asymptomatic [67]. In the constructed mathematical model, we do not
consider that recovered individuals can get reinfected by going back to the susceptible
class. This assumption seems plausible for a relatively short period of one year.

The proposed mathematical model has parameters (depicted beside the arrows in
Figure 1) related to the severity of the disease, which include the mortality rate. The
mathematical model is formulated as follows:

Ṡ(t) = Λ− dS(t)−
(

β I1 I1(t) + βA1 A1(t) + β I2 I2(t) + βA2 A2(t)
)

S(t),

Ė1(t) =
(

β I1 I1(t) + βA1 A1(t)
)

S(t)− (d + α)E1(t),

İ1(t) = (1− a) αE1(t)− (d + h + γ)I1(t),

Ȧ1(t) = a αE1(t)− (d + γ)A1(t),

Ḣ(t) = hI1(t) + hI2(t)− (d + δ + ρ) H(t),

Ṙ(t) = γ
(

I1(t) + I2(t) + A1(t) + A2(t)
)
+ ρH(t)− dR(t), (1)

Ė2(t) =
(

β I2 I2(t) + βA2 A2(t)
)

S(t)− (d + α)E2(t),

İ2(t) = (1− a) αE2(t)− (d + h + γ)I2(t),

Ȧ2(t) = a αE2(t)− (d + γ)A2(t),

Ḋ(t) = δH(t),

where N(t) = S(t) + E1(t) + I1(t) + A1(t) + H(t) + R(t) + E2(t) + I2(t) + A2(t) and the
initial conditions

S(0) > 0, E1(0) ≥ 0, I1(0) ≥ 0, A1(0) ≥ 0, H(0) ≥ 0, R(0) ≥ 0,

E2(0) ≥ 0, I2(0) ≥ 0, A2(0) ≥ 0, D(0) ≥ 0. (2)

This model contains ten variables that represent susceptible individuals (S(t)), two
classes of latent individuals (E1,2(t)), two classes of infectious individuals (I1,2(t)), two
classes of asymptomatic individuals (A1,2(t)), hospitalized H(t), recovered R(t) and deaths
D(t). Individuals in classes Ei(t), H(t), R(t) and D(t) do not transmit the infection. The
parameters inherent to the model (1) are shown in Table 1, and the transition of individuals
between subpopulations is shown in Figure 1.

Table 1. Mean values of parameters for the numerical simulations.

Parameter Symbol Value

Incubation period α−1 5.2 days [68,69]
Infectious period γ−1 7 days [68]

Hospitalization rate h−1 3.5 days× 0.04 [50,68,70]
Hospitalization period ρ−1 10.4 days [50,68,70]

Death rate (hospitalized) δ−1 10.4 days× 0.103 [65,71]
Probability of being asymptomatic a 0.5 [1,72]

Recruiting rate Λ 767.1 days−1 [73]
Death rate d 0.00002378 days−1 [73]
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Positivity and Boundedness of Solutions

All the variables of the mathematical model (1) represent the number of individuals.
Therefore, we need to guarantee that the solutions exist, and are positive and bounded. By
the fundamental theory of differential equations [74,75], we can check that the solution of
the system (1) with the initial condition exists for all t ≥ 0 and it is unique. Since variable
D is decoupled, without loss of generality, we set the following system:

Ṡ(t) = Λ− dS(t)−
(

β I1 I1(t) + βA1 A1(t) + β I2 I2(t) + βA2 A2(t)
)

S(t),

Ė1(t) =
(

β I1 I1(t) + βA1 A1(t)
)

S(t)− (d + α)E1(t),

İ1(t) = (1− a) αE1(t)− (d + h + γ)I1(t),

Ȧ1(t) = a αE1(t)− (d + γ)A1(t),

Ḣ(t) = hI1(t) + hI2(t)− (d + δ + ρ) H(t),

Ṙ(t) = γ
(

I1(t) + I2(t) + A1(t) + A2(t)
)
+ ρH(t)− dR(t), (3)

Ė2(t) =
(

β I2 I2(t) + βA2 A2(t)
)

S(t)− (d + α)E2(t),

İ2(t) = (1− a) αE2(t)− (d + h + γ)I2(t),

Ȧ2(t) = a αE2(t)− (d + γ)A2(t).Version May 25, 2021 submitted to Mathematics 3 of 21

Figure 1. Diagram for the COVID-19 mathematical model (1). This shows the transition of individuals
between epidemiological classes. The arrows represent the transition between the classes.
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All the variables of the mathematical model 1 represent number of individuals. Therefore, over the
time study we need to guarantee that the solutions exist, are positive and bounded. By the fundamental

Figure 1. Diagram of the COVID-19 mathematical model (1). This shows the transition of individuals
between epidemiological classes. S(t) is the susceptible class, E1,2(t) are the two classes of latent
individuals for the two SARS-CoV-2 variants, I1,2(t) represents two classes of infectious individuals,
A1,2(t) are the asymptomatic individuals (one for each variant), H(t) represents the hospitalized
individuals, R(t) represents the recovered and D(t) is the number of deaths.

Theorem 1. If the parameters of model (3) are positive and Equation (2) holds, then the solution
(

S(t), E1(t), I1(t), A1(t), H(t), R(t), E2(t), I2(t), A2(t))
)

of system (3) is positive and uniformly bounded on [0,+∞).

Proof. We define

T = sup
{

θ > 0
/
∀t ∈ [0, θ], S(t) ≥ 0, Ei(t) ≥ 0, Ii(t) ≥ 0,

Ai(t) ≥ 0, H(t) ≥ 0, R(t) ≥ 0, D(t) ≥ 0
}

,
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for i = 1, 2. Then T = +∞. Suppose that does not hold, then T < ∞. Thus, by the
continuity of solutions we have that

S(T ) = 0, or E1(T ) = 0, or I1(T ) = 0, or A1(T ) = 0, or H(T ) = 0, or

R(T ) = 0, or E2(T ) = 0, or I2(T ) = 0, or A2(T ) = 0, or D(T ) = 0.

Thus, if S(T ) = 0, before the other variables become zero, then

dS(T )
dt

= lim
t→T −

S(T )− S(t)
T − t

≤ 0.

Next, from the first equation of model (3), it follows that

Ṡ(T ) = Λ−
(

β I1 I1(T ) + βA1 A1(T ) + β I2 I2(T ) + βA2 A2(T )
)

S(T )
− dS(T ) = Λ > 0,

which is a contradiction.
Now, if E1(T ) = 0, above the other variables (S, I1, A1, H, R, E2, I2, A2, D) then

dE1(T )
dt

= lim
t→T −

E1(T )− E1(t)
T − t

≤ 0,

and again from the second equation of system (3) one gets that

Ė1(T ) =
(

β I1 I1(T ) + βA1 A1(T )
)

S(T )− (d + α)E1(T )

=
(

β I1 I1(T ) + βA1 A1(T )
)

S(T ) > 0.

This leads to a contradiction. In the same way, we can demonstrate similar contradic-
tions with the other variables. As a consequence, T could not be finite. This implies that

S(t) ≥ 0, E1(t) ≥ 0, I1(t) ≥ 0, A1(t) ≥ 0, H(t) ≥ 0,

R(t) ≥ 0, E2(t) ≥ 0, I2(t) ≥ 0, A2(t) ≥ 0, D(t) ≥ 0,

for t ≥ 0.
On the other hand, we can add the equations of model (3) to obtain

Ṅ(t) = Λ− dN(t)− δH(t) ≤ Λ− dN(t). (4)

Using the Gronwall inequalities for Equation (4) one gets

N(t) ≤ Λ
d
+

(
N(0)− Λ

d

)
e−d t, (5)

for t ≥ 0. Therefore, N(t) ≤ Λ
d

if N(0) ≤ Λ
d

. Thus, the set given by

D =

{
(S, E1, I1, A1, H, R, E2, I2, A2) ∈ R9

+

/
N(t) ≤ Λ

d
, t ≥ 0

}
, (6)

is positively invariant and the solutions of model (3) remain bounded. Furthermore, if N(0) >
Λ
d

,

then either the solution entersD infinite time or N(t) approaches
Λ
d

asymptotically.

Remark 1. This Theorem can also be proved using general techniques used for positive polynomial
systems [57,58].
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3. Mathematical Stability Analysis

In this section, we find the steady state solutions, and we study their stability. First,
we prove that there are two equilibrium points of interest. One equilibrium point is the
disease-free and the other is the endemic. It is important to mention that this endemic
point occurs when we take into account demographic factors such as births and natural
deaths. Otherwise, we just obtain a disease-free equilibrium point which means that the
SARS-CoV-2 virus disappears [31]. However, since we have births the system provides new
susceptible individuals and this allows us to have an endemic equilibrium point. Notice
that the real world situation includes births and deaths, even though the time scale of
these demographic factors is slower than the one corresponding to SARS-CoV-2. We also
compute the basic reproduction number R0, which is defined as the average number of
new cases of an infection caused by one infected individual, in a population consisting
of susceptible individuals only [31,76]. There are several methods to compute the basic
reproduction number under different conditions and assumptions, for a nice review see [77].
Here we use the next generation matrix to compute the basic reproduction number R0
of the constructed mathematical model (3). It is important to remark that the effective
reproduction numberRt is time-varying and depends on the basic reproduction number
R0. Thus, under certain conditions (for instance only individuals in the S(t) class can get
infected) Rt = R0S(t)/N, which relates the value of the virus transmissibility β to the
effective reproduction number (for more details see [31,78,79]). In addition, in this section
we study the global stability of these equilibrium points using some suitable Lyapunov
functionals [43,80–85].

3.1. Equilibrium Points andR0

The solutions of model (3) depend on the parameters involved in the deterministic
system of differential equations for their local and global behavior. This is especially so
for the basic reproduction numberR0, which is defined as the number of secondary cases
produced by an infectious individual that is introduced into the susceptible population,
and in some way it makes it possible to determine the magnitude of the disease [76,86–88].

Setting the right hand side of the equations of model (3) to zero, and solving for the
state variables, the disease-free equilibrium (DFE) is obtained, which is given by

DFE =
(

S0, E0
1, I0

1 , A0
1, H0, R0, E0

2, I0
2 , A0

2

)
=

(
Λ
d

, 0, 0, 0, 0, 0, 0, 0, 0
)

. (7)

Next, using the methodology of the next generation matrix [76,86], we can obtain the
algebraic expression of the basic reproduction number R0 as the spectral radius of the
FV−1 matrix, where F is the matrix of new infection cases and the V matrix the of the
transition terms associated with model (3), which can be written as

ẋ(t) = F (x, y)− V(x, y), ẏ(t) = G(x, y)

where x(t) = (E1(t), E2(t), A1(t), A2(t), I1(t), I2(t), H(t))t, y(t) = (S(t), R(t))t, and

• Fi is the rate of appearance of new infections in compartment i,
• Vi incorporates the remaining transitional terms, namely births, deaths, disease pro-

gression and recovery.

It is assumed that the disease-free system ẏ(t) = G(0, y) has a unique equilibrium

y = y0 =

(
Λ
d

, 0
)

that is locally asymptotically stable within the disease-free space,

such that Fi(0, y) = 0, Vi(0, y) = 0, Fi(x, y) ≥ 0, Vi(x, y) ≤ 0 whenever xi = 0, and
∑i Vi(x, y) ≥ 0 for all x, y ≥ 0. For this case, we have
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F =




(
β I1 I1(t) + βA1 A1(t)

)
S(t)(

β I2 I2(t) + βA2 A2(t)
)

S(t)

0
0
0
0
0




,

V =




(d + α)E1(t)
(d + α)E2(t)

−(1− a) αE1(t) + (d + h + γ)I1(t)
−(1− a) αE2(t) + (d + h + γ)I2(t)
−a αE1(t) + (d + γ)A1(t)
−a αE2(t) + (d + γ)A2(t)

−hI1(t) + hI2(t) + (d + δ + ρ) H(t)




.

From [76], we define two 7× 7 matrices

F =

[
∂Fi(0, y0)

∂xj

]
, V =

[
∂Vi(0, y0)

∂xj

]
.

Thus,

F =




0 0
β I1 Λ

d
0

βA1 Λ
d

0 0

0 0 0
β I2 Λ

d
0

βA2 Λ
d

0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




,

and

V =




α + d 0 0 0 0 0 0
0 α + d 0 0 0 0 0

(a− 1)α 0 V33 0 0 0 0
0 (a− 1)α 0 V44 0 0 0
−aα 0 0 0 d + γ 0 0

0 −aα 0 0 0 d + γ 0
0 0 −h h 0 0 d + δ + ρ




,

where V33 = d + h + γ, V44 = d + h + γ. Thus, the next generation matrix is given by

FV−1 =




R01 0 FV−1
13 0

βA1 Λ
d(d + γ)

0 0

0 R02 0 FV−1
24 0

βA2 Λ
d(d + γ)

0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




,
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where FV−1
13 =

β I1 Λ
d(d + h + γ)

, FV−1
24 =

β I2 Λ
d(d + h + γ)

, and

R01 =
Λβ I1(1− a)α

d(d + α)(d + h + γ)
+

ΛβA1 aα

d(d + α)(d + γ)
,

R02 =
Λβ I2(1− a)α

d(d + α)(d + h + γ)
+

ΛβA2 aα

d(d + α)(d + γ)
, (8)

are control reproduction numbers for the two variants of SARS-CoV-2, respectively. There-
fore, the spectral radius of the matrix FV−1 is given by

R0 = max
{
R01 , R02

}
. (9)

3.2. Local Stability of Disease-Free Equilibrium Point

The basic reproduction numberR0 threshold determines whether the disease can be
eradicated or whether it will remain endemic. Thus, whenR0 < 1, the transmission of the
disease can be eliminated considering that the initial sizes of the subpopulations of the
model (3) are in the neighborhood of attraction of the disease-free equilibrium (DFE). The
following theorem guarantees the above statement.

Theorem 2. The disease-free equilibrium point given in (7) of the model (3) is locally asymptotically
stable ifR0 < 1, and unstable ifR0 > 1.

Proof. Applying Theorem 2 given in [76], the result is confirmed.

3.3. Global Stability of Disease-Free Equilibrium Point

Now, when the eradication of the disease is independent of the initial conditions of
the subpopulations, then it must be shown that if R0 < 1, the disease-free equilibrium
(DFE) is globally asymptotically stable (GAS). This condition is proven below.

Theorem 3. The disease-free equilibrium point (7) of system (3) is globally asymptotically stable if
R0 ≤ 1.

Proof. We analyze the global stability at the disease-free equilibrium point, using a suitable
Lyapunov function F as follows:

F (X(t)) = E1(t) + E2(t) +
S0β I1

d + h + γ
I1(t) +

S0β I2

d + h + γ
I2(t)

+
S0βA1

d + γ
A1(t) +

S0βA2

d + γ
A2(t), (10)

where X(t) = (S(t), E1(t), I1(t), A1(t), H(t), R(t), E2(t), I2(t), A2(t)). The function F
satisfies

F (DFE) = 0,

F (X(t)) > 0, for all X(t) 6= DFE, (11)

F (X(t))→ ∞, when ‖X‖ → ∞. Thus F (X(t)) is radially unbounded.

Now, making the time derivative of F (X(t)) along the trajectories of model (3), and
from (6) one gets that
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dF (X(t))
dt

= Ė1(t) + Ė2(t) +
S0β I1

d + h + γ
İ1(t)

+
S0β I2

d + h + γ
İ2(t) +

S0βA1

d + γ
Ȧ1(t) +

S0βA2

d + γ
Ȧ2(t)

=
(

β I1 I1(t) + βA1 A1(t)
)

S(t)− (d + α)E1(t)

+
(

β I2 I2(t) + βA2 A2(t)
)

S(t)− (d + α)E2(t)

+
S0β I1(1− a) α

d + h + γ
E1(t)− S0β I1 I1(t)

+
S0β I2(1− a2) α

d + h + γ
E2(t)− S0β I2 I2(t)

+
S0βA1 aα

d + γ
E1(t)− S0βA1 A1(t) +

S0βA2 aα

d + γ
E2(t)− S0βA2 A2(t)

≤ (d + α)

(
S0β I1(1− a) α

(d + α)(d + h + γ)
+

S0βA1 aα

(d + α)(d + γ)
− 1

)
E1(t)

+ (d + α)

(
S0β I2(1− a2) α

(d + α)(d + h + γ)
+

S0βA2 aα

(d + α)(d + γ)
− 1

)
E2(t)

= (d + α)
(
R01 − 1

)
E1(t) + (d + α)(R02 − 1)E2(t)

≤ (d + α)(R0 − 1)(E1(t) + E2(t)).

Thus,
dF (X(t))

dt
≤ 0 when R0 ≤ 1, and

dF (X(t))
dt

= 0 if and only if E1(t) = 0 and

E2(t) = 0. This implies that the set

LDFE =

{
X(t) ∈ D :

dF (X(t))
dt

= 0
}

is reduced to {DFE}. Then, applying LaSalle’s Invariance Principle [89], it follows that
ifR0 ≤ 1, the solutions of (3) tend to DFE and thus the disease free equilibrium point is
globally stable in D

3.4. Global Stability of New SARS-CoV-2 Variant Endemic Point

The determination of endemic equilibrium points in a disease is important because it
allows health institutions and governments to take preventive measures to control the level
of transmission and prevent it from becoming endemic. We are interested in analyzing
the behavior of the solutions of model (3) when the transmission rate of the new SARS-
CoV-2 is higher than that of the preexistent one, that is, β I2 > β I1 , and βA2 > βA1 . These
transmission rates measure in some way the effect of the magnitude of the second strain
with respect to the the first one through time. Thus, the endemic equilibrium can be found
by setting the right hand side of the equations of the model (3) to zero, that is,
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0 = Λ− dS∗ −
(

β I1 I∗1 + βA1 A∗1 + β I2 I∗2 + βA2 A∗2
)

S∗,

0 =
(

β I1 I∗1 + βA1 A∗1
)
S∗ − (d + α)E∗1 ,

0 = (1− a)αE∗1 − (d + h + γ)I∗1 ,

0 = aαE∗1 − (d + γ)A∗1 ,

0 = hI∗1 + hI∗2 − (d + δ + ρ) H∗,

0 = γ
(

I∗1 + A∗1 + I∗2 + A∗2
)
+ ρH∗ − dR∗, (12)

0 =
(

β I2 I∗2 + βA2 A∗2
)

S∗ − (d + α)E∗2 ,

0 = (1− a) αE∗2 − (d + h + γ)I∗2 ,

0 = a αE∗2 − (d + γ)A∗2 .

It is clear from the first equation of system (12) that S∗ > 0. Moreover, Λ− dS∗ > 0,
which implies that S∗ ∈ D. Now, we need the following proposition to get the en-
demic point.

Proposition 1. When β I2 > β I1 , and βA2 > βA1 , then E∗1 = I∗1 = A∗1 = 0.

Proof. Suppose that E∗1 = I∗1 = A∗1 = 0, does not hold. Hence, if any of the points E∗1 , I∗1 , A∗1
is zero, a contradiction follows from (12). Suppose the case when E∗1 > 0, I∗1 > 0, A∗1 > 0,
then from (12) we have that

I∗2 = I∗1
E∗2
E∗1

, A∗2 = A∗1
E∗2
E∗1

.

Using the seventh equation of system (12), one gets that

(α + d)E∗2 =
(

β I2 I∗2 + βA2 A∗2
)

S∗ >
(

β I1 I∗2 + βA1 A∗2
)

S∗

=
(

β I2 I∗1
E∗2
E∗1

+ βA2 A∗1
E∗2
E∗1

)
S∗, (13)

which is a contradiction with the second equation of system (12).

Therefore, Proposition 1 allows us to affirm that the only endemic point given by

S2EP =
(
S∗2 , 0, 0, 0, H∗2 , R∗2 , E∗2,2, I∗2,2, A∗2,2

)
, (14)

where

0 = Λ− dS∗2 −
(

β I2 I∗2,2 + βA2 A∗2,2

)
S∗2 ,

0 = hI∗2,2 − (d + δ + ρ) H∗2 ,

0 = γ
(

I∗2,2 + A∗2,2

)
+ ρH∗2 − dR∗2 , (15)

0 =
(

β I2 I∗2,2 + βA2 A∗2,2

)
S∗2 − (d + α)E∗2,2,

0 = (1− a2) αE∗2,2 − (d + h + γ)I∗2,2,

0 = a2 αE∗2,2 − (d + γ)A∗2,2.
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After performing some algebraic manipulations in the system (15), it follows that the
point S2EP satisfies

S∗2 =
Λ

dR02

,

E∗2,2 =
Λ

d + α

R02 − 1
R02

,

A∗2,2 =
aαΛ

(d + γ)(d + α)

R02 − 1
R02

, (16)

I∗2,2 =
(1− a)αΛ

(d + h + γ)(d + α)

R02 − 1
R02

,

H∗2 =
h(1− a)αΛ

(d + δ + ρ)(d + h + γ)(d + α)

R02 − 1
R02

,

R∗2 =

(
γ(1− a)αΛ

d(d + h + γ)(d + α)
+

γaαΛ
d(d + γ)(d + α)

+
ρ

d
h(1− a)αΛ

(d + δ + ρ)(d + h + γ)(d + α)

)
R02 − 1
R02

.

We can abbreviate the above results in the following proposition.

Proposition 2. The endemic point S2EP given by (14) exists ifR02 > max
{
R01 , 1

}
.

In the construction of the Lyapunov function to analyze the global stability of the
equilibrium point (14), we use the Volterra function,

G(w) = w− 1− ln w,

which is non-negative for w > 0 and G(w) = 0 if and only if w = 1.

Theorem 4. WhenR02 > 1 > R01 , the endemic equilibrium point S2EP given by (14) is globally
asymptotically stable on D.

Proof. Let L (X(t)) be the Lyapunov function given by

L (X(t)) = E1(t) +
S0β I1

d + h + γ
I1(t) +

S0βA1

d + γ
A1(t)

+ S∗2

(
S(t)
S∗2
− 1− ln

(
S(t)
S∗2

))
+ E∗2,2

(
E2(t)
E∗2,2

− 1− ln

(
E2(t)
E∗2,2

))

+
β I2 I∗2,2S∗2

(1− a)αE∗2,2
I∗2,2

(
I2(t)
I∗2,2
− 1− ln

(
I2(t)
I∗2,2

))
(17)

+
βA2 A∗2,2S∗2

aαE∗2,2
A∗2,2

(
A2(t)
A∗2,2

− 1− ln

(
A2(t)
A∗2,2

))
,

with X(t) = (S(t), E1(t), I1(t), A1(t), H(t), R(t), E2(t), I2(t), A2(t)). It is clear that the func-
tion L satisfies (11). Next, making the time derivative of L (X(t)) along the trajectories of
model (3), one gets that
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dL (X(t))
dt

= Ė1(t) +
S0β I1

d + h + γ
İ1(t) +

S0βA1

d + γ
Ȧ1(t)

+

(
1− S∗2

S(t)

)
Ṡ(t) +

(
1−

E∗2,2

E2(t)

)
Ė2(t) (18)

+
β I2 I∗2,2S∗2

(1− a)αE∗2,2

(
1−

I∗2,2

I2(t)

)
İ2(t)

+
βA2 A∗2,2S∗2

aαE∗2,2

(
1−

A∗2,2

A2(t)

)
Ȧ2(t).

Replacing the derivatives of the state variables in the above expression, we get

dL (X(t))
dt

=
(

β I1 I1(t) + βA1 A1(t)
)

S(t)− (d + α)E1(t) (19)

+
S0β I1

d + h + γ
((1− a) αE1(t)− (d + h + γ)I1(t))

+
S0βA1

d + γ

(
a αE1(t)− (d + γ)A1(t)

)

+

(
1− S∗2

S(t)

)(
Λ− dS(t)

−
(

β I1 I1(t) + βA1 A1(t) + β I2 I2(t) + βA2 A2(t)

)
S(t)

)

+

(
1−

E∗2,2

E2(t)

)((
β I2 I2(t) + βA2 A2(t)

)
S(t)− (d + α)E2(t)

)

+
β I2 I∗2,2S∗2

(1− a)αE∗2,2

(
1−

I∗2,2

I2(t)

)
((1− a2) αE2(t)− (d + h + γ)I2(t))

+
βA2 A∗2,2S∗2

aαE∗2,2

(
1−

A∗2,2

A2(t)

)
(a2 αE2(t)− (d + γ)A2(t)).

From the equations given in (15), we have that

Λ = dS∗2 +
(

β I2 I∗2,2 + βA2 A∗2,2

)
S∗2 , d + α =

(
β I2 I∗2,2 + βA2 A∗2,2

)
S∗2

E∗2,2
(20)

d + h + γ =
(1− a2) αE∗2,2

I∗2,2
, d + γ =

a2 αE∗2,2

A∗2,2
.

Substituting (20) in (19) and regrouping terms it follows that

dL (X(t))
dt

= − d
(
S(t)− S∗2

)2

S(t)
+ 3β I2 I∗2,2S∗2 + 3βA2 A∗2,2S∗2 +

(
β I1 I1(t) + βA1 A1(t)

)
S∗2

− S0β I1 I1(t)− S0βA1 A1(t) + (d + α)E1(t)(R01 − 1) (21)

−
β I2 I∗2,2S∗2 S∗2

S(t)
−

βA2 A∗2,2S∗2 S∗2
S(t)

−
β I2 E∗2,2 I2(t)S(t)

E2(t)
−

βA2 E∗2,2 A2(t)S(t)
E2(t)

−
β I2 I∗2,2 I∗2,2S∗2 E2(t)

I2(t)E∗2,2
−

βA2 A∗2,2 A∗2,2S∗2 E2(t)
A2(t)E∗2,2

.
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Thus,

dL (X(t))
dt

≤ −d(S(t)− S∗2)
2

S(t)

+ β I2 I∗2,2S∗2

(
3− S∗2

S(t)
−

E∗2,2 I2(t)S(t)
E2(t)I∗2,2S∗2

−
I∗2,2E2(t)
I2(t)E∗2,2

)
(22)

+ βA2 A∗2,2S∗2

(
3− S∗2

S(t)
−

E∗2,2 A2(t)S(t)
E2(t)A∗2,2S∗2

−
A∗2,2E2(t)
A2(t)E∗2,2

)

+ (d + α)E1(t)(R01 − 1).

Using the relationship between arithmetic and geometric means, one gets that
(

3− S∗2
S(t)

−
E∗2,2 I2(t)S(t)
E2(t)I∗2,2S∗2

−
I∗2,2E2(t)
I2(t)E∗2,2

)
≤ 0, (23)

(
3− S∗2

S(t)
−

E∗2,2 A2(t)S(t)
E2(t)A∗2,2S∗2

−
A∗2,2E2(t)
A2(t)E∗2,2

)
≤ 0.

Therefore, if R02 > 1 > R01 then
dL (X(t))

dt
≤ 0. Moreover,

dL (X(t))
dt

= 0 if only

if E1(t) = I1(t) = A1(t) = 0, S(t) = S∗2 , A2(t) = A∗2,2, I2(t) = I∗2,2. Thus, using LaSalle’s
principle theorem [89], the set defined as

LS2EP =

{
X(t) ∈ D :

dL (X(t))
dt

= 0
}

= {S2EP}, (24)

is invariant and contains the single point S2EP. Therefore, the endemic equilibrium given
by (14) is said to be globally asymptotically stable in the region D ifR02 > 1 > R01 .

Theorem 5. WhenR02 > R01 > 1, the endemic equilibrium point S2EP given by (14) is globally
asymptotically stable on D.

Proof. In this case, we use the following Lyapunov function

S (X(t)) = R02 S∗2

(
S(t)
S∗2
− 1− ln

(
S(t)
S∗2

))
+R02 E1(t)

+
S0β I1

d + h + γ
I1(t) +

S0βA1

d + γ
A1(t)

+R02 E∗2,2

(
E2(t)
E∗2,2

− 1− ln

(
E2(t)
E∗2,2

))

+
R02 β I2 I∗2,2S∗2
(1− a)αE∗2,2

I∗2,2

(
I2(t)
I∗2,2
− 1− ln

(
I2(t)
I∗2,2

))
(25)

+
R02 βA2 A∗2,2S∗2

aαE∗2,2
A∗2,2

(
A2(t)
A∗2,2

− 1− ln

(
A2(t)
A∗2,2

))
,

where X(t) = (S(t), E1(t), I1(t), A1(t), H(t), R(t), E2(t), I2(t), A2(t)). Again the function
L holds (11). Now, taking the time derivative of S (X(t)) along the trajectories of sys-
tem (3), we obtain
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dL (X(t))
dt

= R02

(
1− S∗2

S(t)

)
Ṡ(t) +R02 Ė1(t) +

S0β I1

d + h + γ
İ1(t)

+
S0βA1

d + γ
Ȧ1(t) +R02

(
1−

E∗2,2

E2(t)

)
Ė2(t) (26)

+
R02 β I2 I∗2,2S∗2
(1− a)αE∗2,2

(
1−

I∗2,2

I2(t)

)
İ2(t)

+
R02 βA2 A∗2,2S∗2

aαE∗2,2

(
1−

A∗2,2

A2(t)

)
Ȧ2(t).

Substituting the derivatives of the state variables, using (20) and regrouping terms,
we get that

dL (X(t))
dt

= −dR02(S(t)− S∗2)
2

S(t)
+ 3R02 β I2 I∗2,2S∗2 + 3R02 βA2 A∗2,2S∗2

+ (d + α)E1(t)(R01 −R02) (27)

−
R02 β I2 I∗2,2S∗2S∗2

S(t)
−
R02 βA2 A∗2,2S∗2S∗2

S(t)
−
R02 β I2 E∗2,2 I2(t)S(t)

E2(t)

−
R02 βA2 E∗2,2 A2(t)S(t)

E2(t)

−
R02 β I2 I∗2,2 I∗2,2S∗2 E2(t)

I2(t)E∗2,2
−
R02 βA2 A∗2,2 A∗2,2S∗2 E2(t)

A2(t)E∗2,2
.

Thus,

dL (X(t))
dt

= −R02 d(S(t)− S∗2)
2

S(t)
+ (d + α)E1(t)(R01 −R02)

+R02 β I2 I∗2,2S∗2

(
3− S∗2

S(t)
−

E∗2,2 I2(t)S(t)
E2(t)I∗2,2S∗2

−
I∗2,2E2(t)
I2(t)E∗2,2

)
(28)

+R02 βA2 A∗2,2S∗2

(
3− S∗2

S(t)
−

E∗2,2 A2(t)S(t)
E2(t)A∗2,2S∗2

−
A∗2,2E2(t)
A2(t)E∗2,2

)
.

Therefore, from (23) and if R02 > R01 > 1, then
dL (X(t))

dt
≤ 0. Moreover,

dL (X(t))
dt

= 0 if only if E1(t) = I1(t) = A1(t) = 0, S(t) = S∗2 , A2(t) = A∗2,2, I2(t) = I∗2,2,
that is, (24) holds. Thus, again by the LaSalle’s principle theorem, the Strain-2 Endemic
Equilibrium point S2EP given by (16) is globally asymptotically stable on D, provided that
R02 > R01 > 1.

4. Numerical Simulation Results

In this section, we will perform some numerical simulations of the mathematical
model (1) in order to corroborate the previous theoretical results. These simulations
will allow us to analyze only qualitatively the potential impact of a new SARS-CoV-2
variant with a higher transmission rate than that of the preexistent variant. The numerical
simulations presented here are not a prediction or forecast of the COVID-19 pandemic,
even though we used parameter values from the scientific literature. The results presented
here allow us to have a better understanding of the introduction of a new SARS-CoV-2
variant with a higher transmission rate.

The numerical simulations are performed using the parameter values given in Table 1.
The initial conditions for the subpopulations are modified in order to corroborate the local
and global theoretical stability results. Some of these previous values are based approxi-
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mately on the demographics and the current situation in Colombia. We include several
numerical simulations with different transmission rates of the two SARS-CoV-2 variants.
Two important key parameters are the transmissibility of the two SARS-CoV-2 variants,
since they are related to the basic reproduction number R0 [30,31,76,86], and therefore
to the effective reproduction number Rt [79]. The scientific literature provides a wide
range for these parameter values, but some studies have mentioned that the new SARS-
CoV-2 variant (VOC-202012/01) is in the range of 20–70% more transmissible [1,23,27,90].
The numerical simulations provide the steady states that include values for the different
subpopulations, such as the number of infected people with each variant, susceptible
individuals, hospitalized, and deaths. These metrics are useful and relevant to health
authorities and people in general.

In the numerical simulations, we are interested in the situation in which a new more
transmissible SARS-CoV-2 variant is introduced (β I2 > β I1 and βA2 > βA1). We can
assume that this new variant is the VOC-202012/01 of lineage B.1.1.7. However, the
mathematical model considers that it could be another SARS-CoV-2 variant, but more
transmissible. Therefore, this study is also valid, for instance, if the new second variant
is the 501Y.V2 [91]. We assume that the rates of virus transmission in asymptomatic and
symptomatic individuals are time-invariant from the beginning of the simulation. This
implies that people have approximately the same behavior (on average) regarding SARS-
CoV-2 virus spread protection. This assumption is plausible in reality but it might change if
the number of cases and deaths increase dramatically due to the new SARS-CoV-2 variant.
In countries where a vaccination program is advancing quickly it is necessary to construct
an alternative model with more classes and parameters, among which is the vaccinated
class. For example, in previous work, both discrete and continuous mathematical models
have included several subclasses of the vaccinated class where the individuals have less
probability of getting infected, transmitting the virus or dying [52,65]. If some changes,
such as lock-downs or curfews, occur then the mathematical model (1) should include
time-varying parameters, which for instance have been used to study influenza [38]. This
would make the mathematical model more complex due to time-varying parameters.
We assume that the parameters related to the latent and infectiousness stages are the
same for both SARS-CoV-2 variants. For the death rate of hospitalized individuals we
use data from different scientific sources, but since we are not forecasting it is not crucial
in this study [50,65,92–94]. For the asymptomatic proportion we chose, as a conservative
starting point, the percentage of infections that are asymptomatic as 50% [1]. The available
data from scientific papers and health institutions have a great variation [1,50,72,95–100].
For the numerical simulations we additionally considered percentages varying between
30–70% [1,72]. For the initial conditions, in all the numerical simulations we compute the
initial susceptible subpopulation using the fact that S(0) = N(0)− E1(0)− I1(0)− A1(0)−
E2(0)− I2(0)− A2(0)− R(0)− H(0).

Finally, we show the qualitative results in a graphic form for different scenarios,
varying the contagiousness of the two SARS-CoV-2 variants and the ratio between the
transmissibility of the new SARS-CoV-2 variant and the previously prevalent SARS-CoV-2
variant. Figure 2 shows different epidemiological classes when R01 < 1 and R02 < 1.
The SARS-CoV-2 variants disappear and the system reaches the disease free equilibrium
point. Then in Figure 3 it can be seen that the solution reaches the endemic equilibrium
point EP whenR01 < 1 andR02 > 1. The preexistent SARS-CoV-2 variant vanishes. The
last numerical simulation illustrates, in Figure 4, the case where R02 > R01 > 1. The
new highly transmissible SARS-CoV-2 variant still dominates over the preexistent variant,
which disappears despiteR01 > 1. The system reaches the endemic equilibrium point EP.
When the new SARS-CoV-2 variant is introduced and this variant is more contagious, then
the total number of infected, hospitalized, recovered, and deaths increases.



Mathematics 2021, 9, 1564 16 of 22Version May 25, 2021 submitted to Mathematics 15 of 21

0 500

Time t 

4.57

4.58

4.59

4.6

4.61

S
u
s
c
e
p
ti
b
le

 P
o
p
u
la

ti
o
n
, 
S

(t
) 107

0 500

Time t 

0

1

2

3

4

In
fe

c
ti
o
u
s
 P

o
p
u
la

ti
o
n
, 
I 1

(t
)

104

0 500

Time t 

0

1

2

3

4

A
s
y
m

p
to

m
ti
c
 2

, 
A

1
(t

)

104

0 500

Time t 

0

1000

2000

3000

4000

H
o
s
p
it
a
liz

e
d
 P

o
p
u
la

ti
o
n
, 
H

(t
)

0 500

Time t 

0

100

200

300

400

500

In
fe

c
ti
o
u
s
 P

o
p
u
la

ti
o
n
, 
I 2

(t
)

0 500

Time t 

0

100

200

300

400

500

A
s
y
m

p
to

m
ti
c
 2

, 
A

2
(t

)
Figure 2. Numerical simulation of the mathematical model (1) when R01 < 1 and R02 < 1. The
SARS-CoV-2 variants disappear and the system reaches the disease equilibrium point.

system reaches the disease free equilibrium point. Then in Figure 3 it can be seen that the solution goes205

to the endemic equilibrium point EP whenR01 < 1 andR02 > 1. The preexistent SARS-CoV-2 variant206

vanishes. The last numerical simulation illustrates in Figure 4, the case whenR02 > R01 > 1. The new207

high transmissible SARS-CoV-2 variant still dominates over the preexistent variant which disappears208

despiteR01 > 1. The system reaches the endemic equilibrium point EP. When the new SARS-CoV-2209

variant is introduced and this variant is more contagious, then the total of infected people, the number210

of hospitalized, recovered, and deaths increases.211

5. Conclusions212

Mathematical models are useful to study and understand the dynamics of many infectious213

diseases. Mathematical models provide results that are generally difficult to predict a priori due to214

the nonlinearity and complexity of the phenomena. Although, mathematical models have limitations,215

in general they help to provide knowledge and scientific support to make the optimal public health216

policies.217

We constructed a mathematical model based on a set of deterministic ordinary differential218

equations that describe the dynamics of the spread of two variants of the SARS-CoV-2. The motivation219

for doing this is the current COVID-19 pandemic and particularly the recent detection of new220

SARS-CoV-2 variants that are more transmissible than the preexistent ones. The new SARS-CoV-2221

variants have been of health public concern due to a higher infectiousness. The analysis of the222

proposed mathematical model was done taking into account the higher transmission rate of a new223

SARS-CoV-2 strain and the subpopulation of asymptomatic carriers. We used the next generation224

matrix method to obtain two basic reproduction number R0. We proposed several theorems that225

established the necessary and sufficient conditions for the asymptotic global stability of the disease226

free and endemic steady states. We constructed some suitable Lyapunov functionals and used the227

LaSalle invariant principle to prove the global stability. The theoretical results shows that there228

Figure 2. Numerical simulation of the mathematical model (1) when R01 < 1 and R02 < 1. The
SARS-CoV-2 variants disappear and the system reaches the disease free equilibrium point.

Version May 25, 2021 submitted to Mathematics 16 of 21

0 5

Time t 105

4.5

4.6

4.7

4.8

4.9

5

S
u

s
c
e

p
ti
b

le
 P

o
p

u
la

ti
o

n
, 

S
(t

) 107

0 5

Time t 105

0

1

2

3

4

In
fe

c
ti
o

u
s
 P

o
p

u
la

ti
o

n
, 

I 1
(t

)

104

0 5

Time t 105

0

1

2

3

4

A
s
y
m

p
to

m
ti
c
 2

, 
A

1
(t

)

104

0 5

Time t 105

0

1000

2000

3000

4000

H
o

s
p

it
a

liz
e

d
 P

o
p

u
la

ti
o

n
, 

H
(t

)

0 5

Time t 105

0

1000

2000

3000

In
fe

c
ti
o

u
s
 P

o
p

u
la

ti
o

n
, 

I 2
(t

)

0 5

Time t 105

0

1000

2000

3000

A
s
y
m

p
to

m
ti
c
 2

, 
A

2
(t

)

Figure 3. Numerical simulation of the mathematical model (1) whenR01 < 1 andR02 > 1. The new
high transmissible SARS-CoV-2 variant dominates the preexistent variant which disappears and the
system reaches the endemic equilibrium point EP.
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Figure 4. Numerical simulation of the mathematical model (1) when R02 > R01 > 1. The new high
transmissible SARS-CoV-2 variant still dominates the preexistent variant which disappears even though
R01 > 1. The system reaches the endemic equilibrium point EP.

Figure 3. Numerical simulation of the mathematical model (1) whenR01 < 1 andR02 > 1. The new
highly transmissible SARS-CoV-2 variant dominates the preexistent variant, which disappears and
the system reaches the endemic equilibrium point EP.
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Figure 3. Numerical simulation of the mathematical model (1) whenR01 < 1 andR02 > 1. The new
high transmissible SARS-CoV-2 variant dominates the preexistent variant which disappears and the
system reaches the endemic equilibrium point EP.
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Figure 4. Numerical simulation of the mathematical model (1) when R02 > R01 > 1. The new high
transmissible SARS-CoV-2 variant still dominates the preexistent variant which disappears even though
R01 > 1. The system reaches the endemic equilibrium point EP.

Figure 4. Numerical simulation of the mathematical model (1) whenR02 > R01 > 1. The new highly
transmissible SARS-CoV-2 variant still dominates the preexistent variant, which disappears even
thoughR01 > 1. The system reaches the endemic equilibrium point EP.

5. Conclusions

The proposed mathematical model assumes that individuals infected with one SARS-
CoV-2 variant have full immunity against the other variant due to the adaptive immune
response and that the immunity is lifelong. This is not well known and there are currently
ongoing studies concerning this. If immunity is not lifelong then the model needs to be
modified slightly. In this case, we would not expect the qualitative results to change, and the
more transmissible SARS-CoV-2 variant would still take over the population and, in fact, at
a much faster pace. The proposed mathematical model does not consider any vaccination
program. Thus, in countries where vaccination is advancing quickly it is necessary to
construct an alternative model that includes the vaccinated class. Nevertheless, even if
vaccination programs are included we expect that similar qualitative conclusions would be
reached since the new more transmissible SARS-CoV-2 variant will become the prevalent
one based on the results presented here. Eventually, at some point, if all the population is
vaccinated and the immunity is lifelong then both SARS-CoV-2 variants will vanish. This
situation seems unlikely due to different factors such as, for example, the reluctance of a
great number of people to get vaccinated.

We constructed a mathematical model based on a set of deterministic ordinary differ-
ential equations that describe the dynamics of the spread of two variants of SARS-CoV-2.
The motivation for doing this is the current COVID-19 pandemic and, particularly, the
recent detection of new SARS-CoV-2 variants that are more transmissible than the pre-
existent ones. The new SARS-CoV-2 variants have been of health public concern due
to their higher infectiousness. The proposed model differs from previous models since
it considers two different SARS-CoV-2 variants as well as asymptomatic cases for both
variants. The analysis of the proposed mathematical model was conducted taking into
account the higher transmission rate of a new SARS-CoV-2 strain and the subpopulation of
asymptomatic carriers. We used the next generation matrix method to obtain two basic
reproduction numbersR0. We proposed several theorems that established the necessary
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and sufficient conditions for the asymptotic global stability of the disease free and endemic
steady states. We constructed some suitable Lyapunov functionals and used the LaSalle
invariant principle to prove the global stability. The theoretical results show that there
is competition between the SARS-CoV-2 variants, but the variant that persists is the one
with the larger basic reproduction number R02 > R01 , which is the new SARS-CoV-2
variant. We performed numerical simulations that corroborated our analytical results. As
we mentioned previously, these results help to support decisions in terms of health policies
and to raise awareness about the risks of the introduction of new SARS-CoV-2 variants
with higher transmission rates such the VOC-202012/01 of lineage B.1.1.7 or the 501Y.V2.
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