
mathematics

Article

Graph Theory for Primary School Students with High Skills
in Mathematics

Rocío Blanco * and Melody García-Moya

����������
�������

Citation: Blanco, R.; García-Moya, M.

Graph Theory for Primary School

Students with High Skills in

Mathematics. Mathematics 2021, 9,

1567. https://doi.org/10.3390/

math9131567

Academic Editor: David Pugalee

Received: 23 May 2021

Accepted: 1 July 2021

Published: 3 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Facultad de Educación, Campus Universitario s/n, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain;
Melody.Garcia@uclm.es
* Correspondence: mariarocio.blanco@uclm.es

Abstract: Graph theory is a powerful representation and problem-solving tool, but it is not included
in present curriculum at school levels. In this study we perform a didactic proposal based in graph
theory, to provide students useful and motivational tools for problem solving. The participants, who
were highly skilled in mathematics, worked on map coloring, Eulerian cycles, star polygons and
other related topics. The program included six sessions in a workshop format and four creative
sessions where participants invented their own mathematical challenges. Throughout the experience
they applied a wide range of strategies to solve problems, such as look for a pattern, counting
strategies or draw the associated graph, among others. In addition, they created as challenges the
same type of problems posed in workshops. We conclude that graph theory successfully increases
motivation of participants towards mathematics and allows the appearance and enforcement of
problem-solving strategies.

Keywords: mathematical problem solving; graph theory; elementary education; gifted students

1. Introduction

In this paper we show the results of the implementation of the didactic proposal
developed in [1] with minor changes. We state main previous results and briefly sketch the
structure of the proposal. All details can be found in [1]. In this proposal we introduce graph
theory [2] for gifted primary school students as a motivational tool of representation and
problem solving. This could be a first step to finally include graph theory at school levels.

A graph is a set of vertices (points) with some of them connected by edges (lines).
Graph theory is not included in current school curriculum in Spain, neither in primary
nor secondary education [3,4]. In other countries, discrete mathematics is proposed to be
included in school levels [5] and highly recommended for students aged between 5 and 18
years old [6,7].

Several authors suggest the inclusion of graph theory at school and highlight its
importance as a tool to model real-life situations, learn mathematical styles of thinking
and solve problems [8–10]. In this line, some experimental studies have been carried
out, especially with secondary education students, but there are hardly any experiences
with primary education or gifted students. We mention here previous work with primary
education students.

Starting from map coloring [8], an experience with students aged between 5 and
14 years old is presented in [11]. They propose that map coloring activities for this age
range should be ordered by level of difficulty but neither their methodology nor results
are clearly presented. They conclude students can translate a map into a graph from
7 years old, and when over 9 years old they can construct the graph corresponding to a
map and color it.

In Italy, some teaching experiments have been performed. About fifty 8–9 year old
students participated in 12 sessions, one weekly meeting along 3 months, involving Eule-
rian and semi-Eulerian graphs, Hamiltonian graphs, planar graphs and graph coloring [12].
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Using the laboratorian methodology, the authors propose activities such as problems to
be solved with the help of paper and pencil, and online games such as YED Graph Editor.
They claim that most students were able to solve the activities, increased their logical skills
and active participation in class, and moreover, after this experience, they understood
mathematics as a game. Following this line of work, in [13] they present an approach to
mathematics and connections of mathematics with real life by means of Eulerian graphs.
Contents treated with primary education students include definition of graph, planar
graph, vertex coloring, Eulerian graph, and Hamiltonian graph. A planar graph is a graph
that can be drawn with no crossing edges. A Eulerian graph is a graph having a Eulerian
cycle, that is a closed path (starting and finishing in the same vertex) passing only once
for every edge, although it is allowed to pass more than one time for the vertices. A
Hamiltonian graph is a graph having a Hamiltonian cycle, that is, a closed path passing
only once for every vertex. Figure 1 shows several examples of these types of graphs. At
the end of the experience, students were able to recognize main parts of a graph, draw
and represent a graph, solve problems using graphs, and they found graphs were fun
and motivating.
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A learning trajectory to teach Eulerian paths is developed in [14]. An outdoor didacti-
cal approach is used to give the participants a realistic point of view of the mathematics
involved in the classical Köningsberg bridges problem [8], that it is used to motivate and
introduce graphs. They use a combination of maps and paper and pencil activities to lead
the students to a better understanding of the existence or not of a Eulerian path (a path
passing only once for every edge) inside a graph. Along the experience they notice an
improvement of collaborative problem-solving skills in the students.

Graph theory [2] can be introduced in different ways, such as map coloring or Eulerian
paths, among others. Our proposal aligns with this classical approach, it begins with map
coloring, posed as a challenge to solve, and carries on with Eulerian cycles, we further
relate graphs with classical handshake problem [15] and other applications of graphs.

The original proposal developed in [1] is structured in four stages according to the
teaching–learning methodology of Dienes [16]. The first activity is presented as a challenge
(Adaptation), followed by some activities to practice the new concept with concrete exam-
ples (Structuring); then the student should be able to abstract the underlying mathematical
concepts (Abstraction), and finally he/she reasons about what has been learned, discover-
ing connections to other mathematical concepts (Reasoning). Table 1 summarizes activities
and sessions proposed at each stage.

This proposal aims to work individually with each participant, using a methodology
based on the Pólya problem-solving model [17], posing questions that guide the partici-
pant in solving the problem. All the detailed questions that can be used throughout the
experience can be found in [1]. This proposal [1] is designed for students 8 years and older.

Here, we briefly describe proposed activities. We started with map coloring, asking
the participant if he/she could color the map of Spain with as few colors as possible, such
that neighboring regions do not have the same color. This motivates the appearance of the
associated graph to the map; we suggested setting a point in every region and joining points
in neighboring regions with a line. In the second session, we presented the Köningsberg
bridges problem and suggested the use of graphs after a few unsuccessful attempts. In the
third session, we presented Eulerian cycles by giving the participant some examples to
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check and then proposing him/her to create more Eulerian and non-Eulerian cycles. In
the fourth session, we posed the handshake problem (see Appendix A), and in the last
session we worked on drawing star polygons and related this topic to the previous one by
counting the edges of the star polygons.

Table 1. Sessions, topics and activities in the original proposal.

Stage Activities Topics Session

Adaptation Coloring of maps
Four color theorem

1
Idea of graph and cycle

Structuring
Köningsberg bridges problem

Graph associated, degree of a vertex, closed path
2

Eulerian cycles 3

Abstraction Give me five
Complete graphs

4
Induction

Reasoning Star polygons Drawing star polygons 5

Two gifted students of 8 and 9 years old participated in the exploratory phase of the
study. They correctly carried out the proposed tasks, showing great interest in them, but
having some difficulties in some parts. This led us to make some changes to the original
didactic proposal. The results of this exploratory study were presented in [18].

Our main goal is to encourage the use of graphs as a tool for representation and
problem solving in primary education classrooms from a playful perspective. As a first
step, we implemented this proposal with primary education students having high skills in
mathematics, as part of an enrichment program. This experience provided students with
suitable mathematical contents to improve the development of their problem-solving skills.

2. Materials and Methods
2.1. Description of the Settings

The experience was developed inside an enrichment program during the 2018/2019
academic year. Weekly sessions of 45 min in format of workshops were performed with 7
participants, within school hours, outside the normal classroom. The program included
graph theory, classical problems of combinatory, logic, probability and geometry using
a wide range of manipulative resources to motivate participants. Results obtained with
manipulatives can be found in [19].

The original proposal [1] was intended to be developed individually with each partici-
pant, so we adapted the work situation to make it suitable for 7 participants working at the
same time. When a question is settled, participants start attacking the problem individu-
ally, and after a while, they work in collaborative groups. We distributed participants in
3 groups using age criteria. Participants with the same age (or very close) were assigned to
the same group. Youngest participants worked mainly in a group (G1 group). Workshops
alternated with sessions where participants invented their own mathematical challenges.
Working in groups, they had to propose a challenge and a suitable solution two weeks
later, uploading the problem and its solution to a web page available for all students at
their school.

Our proposal is structured following the teaching stages of the Dienes teaching–
learning methodology [16].

• Initial challenge (Adaptation): Activity posed as a challenge aimed to create curiosity
in the students so that they want to learn about the subject.

• Practice of the new concept (Structuring): We use graphs to represent routes or
pathways under certain conditions.
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• Abstraction (Abstraction): Graphs are used to solve a problem of greater difficulty
than previous ones, where more abstract mathematical processes appear, in this case
induction and generalization.

• Closing activities (Reasoning): The objective is to relate the graphs that were studied
with other mathematical concepts.

The methodology employed in every workshop is inspired by the Pólya problem-
solving model [17]. We pose a question as a challenge and let the participants try to solve it
freely, then, we go on by giving some hint, and we continue asking them new questions.
We avoid theoretical explanations and formal definitions; the students build the concepts
involved and their own knowledge in a guided learning process.

The sessions and topics treated are summarized in Table 2, together with activities
proposed to participants. We have modified the order of some activities with respect to
the original proposal explained in [1] (suitable for students aged 8 and over) to make it
accessible for younger participants, simplifying the structuring stage and extending the
reasoning phase. We decided to vary the order of the activities according to their degree
of difficulty, moving the Köningsberg bridges problem to the last stage. We also lowered
the degree of difficulty of some activities. A description of activities proposed and basic
definitions can be found in Appendix A.

Table 2. Sessions, topics and activities.

Stage Activities Topics Session

Adaptation Coloring of maps
Four color theorem

1
Idea of graph and cycle

Structuring Star polygons Drawing star polygons 2

Abstraction Give me five
Complete graphs

3
Induction

Path tracing Eulerian cycle, degree of a vertex 4

Reasoning Köningsberg bridges problem
Closed path, graph associated

5
Degree of a vertex

Chess routes Hamiltonian path 6

2.2. Description of the Participants

The participants belong to a public school, located in Toledo (Castilla-La Mancha,
Spain), and were selected by faculty because of their high academic performance in mathe-
matics. Participants do not have a formal diagnosis of giftedness, but both their teachers
and their families agree that they have great creativity, learn faster than mates, like to
investigate tasks that interest them, and go beyond what is proposed in the classroom.
Therefore, they meet characteristics appropriate of gifted people [20,21]. Table 3 shows
data for the participants. Following age criteria, the participants were organized into 3
groups (Table 3).

Table 3. Participants.

Student Age Gender Group

A1, A2 6 Female G1
A3 9 Male G2

A4, A5 10 Female G2
A6, A7 11 Female G3

3. Results

In the following sections, we describe the results obtained during the experience.
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3.1. Map Coloring

The first session was devoted to map coloring. Figures 2 and 3 show the first attempt
of coloring the map of Spain [22] with as few colors as possible, such that neighboring
regions do not have the same color. Participants A3 and A6 use five colors and participant
A4 uses four colors, but two neighboring regions have the same color. Students A3 and A4
make several efforts to complete the map with four colors.
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Figure 3. First attempt of coloring the map of Spain. Drawing made by participant: (a) A1; (b) A2 (orange is yellow); (c) A5;
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The other participants color the map with four colors starting from left to right, from
top to bottom or using the same color and jumping from one region to another.

Then, they are asked to draw a continuous line joining all regions such that regions
with same color are not directly joined. They use the previous map and try to join the
points without lifting the pencil from the paper. Participants A1, A4 and A6 do not get a
cycle, as seen in Figure 4. Participant A4 even forgets some regions.
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Figure 4. Failed attempt of Eulerian cycle. Drawing made by participant: (a) A1; (b) A4; (c) A6.

However, all participants understood the problem, they do not draw a cycle because
the first and last region of the path both have the same color (pink in A1 drawing, red in
A4 drawing, blue in A6 drawing). The other participants draw a Eulerian cycle, as seen
in Figure 5.
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We can observe several strategies to draw the cycle. Some participants labeled the
vertices (A3, A4, A5 and A7); they go from left to right, going up and down; going from
exterior regions to interior regions (A4 and A5). The cycle made by participant A2 is
the only one that follows an ordered pattern with no crossing edges (planar graph). All
participants looked for patterns as a problem-solving strategy.

3.2. Star Polygons

Using a template with regular polygons of 4, 5, 9, 17 and 37 edges, we ask participants
to draw star polygons by jumping a certain number of vertices without lifting the pencil
from the paper. They choose jumps randomly, even larger than the number of vertices of
the polygon. Figure 6 shows several examples. Participants A1, A2 and A3 only work with
a pentagon and enneagon. All participants draw the star polygon 5/2 inside the pentagon,
but only A1, A2, A3 and A7 find 9/2 and 9/4 inside the enneagon.
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In the case of 17 and 37 edges, participants A4, A5, A6 and A7 obtain some star
polygons, the findings of A6 and A7 being more elaborated, as shown in Figure 7.
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When they realize that every person greets the number of people minus one (participant 
A1 even writes it) they employ an inductive counting strategy. Participant A1 needs some 
help to perform the computations and finally uses a calculator. 
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Figure 7. Star polygons. Drawing made by participant: (a) A4; (b) A5; (c) A6; (d) A7.

Now we ask participants (except A1 and A2) why they think we get the same star
polygons with different jump numbers. They try several wrong arguments: because the
jump is a prime number, the jump is a multiple of a certain number, some jumps are even
numbers and others are odd numbers, etc. Only A3 reaches the correct answer arguing
over the enneagon, concluding that a jump of 2 vertices gives the same star polygon as a
jump of 7 vertices because 7 + 2 = 9 (and repeats the same argument for 4 + 5 = 9; 3 + 6 = 9).



Mathematics 2021, 9, 1567 7 of 15

Participants used the trial and error method as a problem-solving strategy; however,
they fail to generalize their conclusions. Only one participant, A3, found the correct answer
in the particular case of the enneagon, although he does not verify this result with the other
regular polygons.

3.3. Give Me Five

We reformulate the handshake problem, giving to the students a list of questions to
solve (see Appendix A), including how many times 2, 3, 4, 5, 9, 17 and 27 people high-five
when they meet. In the last question, they were asked to explain the process followed to
get the results.

All participants use a drawing to support a counting strategy, but not all of them
discover a correct counting pattern. Figure 8 shows drawings made by participants that
reach best performance.
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Figure 8. Counting strategies. Drawing made by participant: (a) A6; (b) A1.

As shown in Figure 8, participants A6 and A1 use graphs to count the number of high
fives, counting the edges between points in cases where the number of people is small.
When they realize that every person greets the number of people minus one (participant
A1 even writes it) they employ an inductive counting strategy. Participant A1 needs some
help to perform the computations and finally uses a calculator.

Participant A5 uses induction but finds a wrong pattern, adding all the numbers from
the given number of people until 1. The other participants give some correct answers, but
they do not reach the use of induction. Figure 9 shows their performance from highest
(Figure 9a, participant A5) to lowest (Figure 9e, participant A4).
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3.4. Path Tracing/Eulerian Cycles

We explain to them the meaning of Eulerian cycle (see Appendix A). Next, we ask
them to draw a graph with a Eulerian cycle stating the number of edges left out or arriving
to each vertex, in a set of six vertices. Figure 10 summarizes the answers given by the
participants. They surround the starting vertex with a circle, except participant A7.

Mathematics 2021, 9, x FOR PEER REVIEW 8 of 16 
 

 

they do not reach the use of induction. Figure 9 shows their performance from highest 
(Figure 9a, participant A5) to lowest (Figure 9e, participant A4). 

 

 

 

 

 
 

 

(a) (b) (c) (d) (e) 

Figure 9. Counting strategies. Drawing made by participant: (a) A5; (b) A2; (c) A3; (d) A7; (e) A4. 

3.4. Path Tracing/Eulerian Cycles 
We explain to them the meaning of Eulerian cycle (see Appendix A). Next, we ask 

them to draw a graph with a Eulerian cycle stating the number of edges left out or arriving 
to each vertex, in a set of six vertices. Figure 10 summarizes the answers given by the 
participants. They surround the starting vertex with a circle, except participant A7. 

 

 

 

 

    
(a) (b) (c) (d) (e) 

Figure 10. Tracing Eulerian cycles. Drawing made by participant: (a) A3; (b) A5; (c) A4; (d) A6; (e) A7. 

Afterward, we gather their work in common, and every participant shows and ex-
plains his/her graphs to the others. We then encourage them to create more graphs with 
Eulerian cycles and other graphs with no Eulerian cycles. We show some of the created 
graphs in Figure 10. 

We give to the participants a template with nine points (see Appendix A) and ask 
them to join all the points using only four straight lines, without lifting the pencil from the 
paper and crossing only once through each edge. All participants solve the puzzle cor-
rectly, except participants A1 and A2 who do it with help of the researcher. 

Participants use the trial and error method again, together with use of symmetry. 
In this session and the following ones, participants A1 and A2 solve all the activities 

with the help of the researcher; therefore, we do not include the rest of their performance. 

3.5. Seven Bridges of Köningsberg 
After telling the story of the Seven Bridges of Köningsberg, we give the participants 

an image [23] with the representation of the city and pose some questions (see Appendix 
A). Figure 11 shows the participants’ attempts to find a closed walking path through the 
four areas of the city, crossing each bridge only once (Eulerian cycle). 

Figure 10. Tracing Eulerian cycles. Drawing made by participant: (a) A3; (b) A5; (c) A4; (d) A6; (e) A7.

Afterward, we gather their work in common, and every participant shows and ex-
plains his/her graphs to the others. We then encourage them to create more graphs with
Eulerian cycles and other graphs with no Eulerian cycles. We show some of the created
graphs in Figure 10.

We give to the participants a template with nine points (see Appendix A) and ask
them to join all the points using only four straight lines, without lifting the pencil from the
paper and crossing only once through each edge. All participants solve the puzzle correctly,
except participants A1 and A2 who do it with help of the researcher.

Participants use the trial and error method again, together with use of symmetry.
In this session and the following ones, participants A1 and A2 solve all the activities

with the help of the researcher; therefore, we do not include the rest of their performance.

3.5. Seven Bridges of Köningsberg

After telling the story of the Seven Bridges of Köningsberg, we give the participants an
image [23] with the representation of the city and pose some questions (see Appendix A).
Figure 11 shows the participants’ attempts to find a closed walking path through the four
areas of the city, crossing each bridge only once (Eulerian cycle).
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Figure 11. Köningsberg bridges. Drawing made by participant: (a) A7; (b) A6; (c) A5; (d) A3; (e) A4.

Only participants A7 and A6 set a dot in every region and draw the associated graph
to the city map. The other participants forget to connect some points or they focus directly
on the bridges and do not consider points to mark each region. However, all participants
affirm that is not possible to cross the city in that way. They apply the associated graph to
the problem, and use the guess-and-check method and direct reasoning as problem-solving
strategies.

When we ask if they observe any differences between their first/last vertex chosen
and other vertices, all of them say yes. We ask them to count the number of edges that
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leave out or reach to each vertex (degree of a vertex) and what should be the number of
edges passing though each vertex for such path to be possible. That is, how many times
would it be necessary to cross every bridge to complete a closed path across all the bridges
(at least once). Figure 12 summarizes answers given by students, where they drew the
associated graph indicating the paths. All of them conclude that the number of edges must
be an even number.
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3.6. Chess Routes

We motivate the activity by showing a chess set, reminding the rules for moving
each chess piece. Then, we let the participants practice the different movements on the
chessboard. Later, we give a drawn chessboard [24] to the participants and ask if the knight
can go through all the squares, passing only once through each one. That is, we are asking
the participants to find a Hamiltonian graph. Answers given by participants are collected
in Figure 13 and ordered by achievement; none of them manages to complete the tour.
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In Figure 13, we can observe that the best performance is reached by participant A5.
Repeating some patterns, A5 is able to pass through almost all squares. Participant A7
is also able to pass through all squares around a chosen one, but forgets to go through
that one, although at the end gets a connected graph. A5 and A6 get a graph with two
nonconnected components, and A3 and A4 get more than two components. All of them
except A6 follow some patterns and repeat them along the chessboard. A6 makes some
mistakes joining the vertices, following a wrong knight movement.

After the knight, we let them choose another chess piece and try again, and in this
case, some of them are able to complete the path. Results can be seen in Figure 14, ordered
by achievement. We observe that participants A5, A3 and A7 choose a pattern to complete
the path along the chessboard. Participants A4 and A6, however, do not choose a pattern
and therefore cannot complete the path, missing some squares or passing twice through
some of them.

Participants show good performance looking for patterns and apply them to solve the
problem. Some of them also use symmetry as a problem-solving strategy.
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3.7. Mathematical Challenges

Challenges were created by participants working in groups. They start by brainstorm-
ing and then choose an idea as a challenge; they write it, solve it and finally they record
a video with the question and another one with the answer. Proposals involving graph
theory are collected in Table 4.

Table 4. Challenges posed by participants.

Challenge Group Problem Strategy

1

G1

Set the minimum number of colors
needed to color Castilla-La

Mancha [25], such that neighboring
regions do not have the same color
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Table 4. Cont.

Challenge Group Problem Strategy

3

G1

We are 15 friends playing with the ball,
but we cannot pass the ball twice to the
same classmate. How many times did

we pass the ball? (They solve it
by counting.)
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already invented

As observed in Table 4, participants create similar activities to that ones already solved
during the experience, using analogy, simplification and variation of the original problems.

All groups pose challenges consisting of drawing star polygons; G2 and G3 do it in
two of the challenges. All groups use routes and cycles or Eulerian cycles, or problems
joining points, but only G1 creates a challenge similar to the handshake problem (challenge
number 3).

These activities created by participants prove that they are able to apply the learned
knowledge to similar situations as the ones already solved.
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4. Discussion

In the first activity, all participants except A6 color the map with four colors. This
matches with results of [11], where all participants color correctly between three and six
different maps after several attempts. To perform the activities, they start looking for a
pattern to successfully color the map with four colors. To highlight the patterns followed,
we ask them to draw a Eulerian cycle. All of them understand the problem and use patterns
to carry out the activity.

The next two sessions offer an original approach which differs from those found in
previous work [11–14]. In the second session, we use star polygons to practice Eulerian
cycles. Only one participant generalizes his results, but all participants understand the
notion of star polygon. In the third session, we apply graphs to solve the handshake
problem. Participants develop graph-supported counting strategies and some of them
successfully use induction. The results of both sessions show that graphs can be used to
develop and support other thinking strategies such as generalization and induction.

The reasoning stage is mainly devoted to deepening the understanding of Eulerian
paths and cycles; Hamiltonian graphs appear briefly in the last session. We finally explain
the definition of Eulerian cycle and propose to the participants some activities to distinguish
Eulerian and non-Eulerian cycles before presenting the Köningsberg bridges problem,
which is frequently used in the literature to introduce graphs [12–14].

In [12], the author introduces the notion of a graph with this problem and guides the
students to solve it using graphs as a mathematical model. Keeping the problem unsolved
during some lessons motivates the curiosity of participants, but when the author explains
the concept of Eulerian cycle, some participants get confused and think that all the graphs
fulfill the condition.

Our approach avoids this confusion; all participants understand the notion of degree
of a vertex and draw different examples of Eulerian graphs before tackling the Köningsberg
bridges problem. All the participants affirm that it is impossible to find such a path, and
some of them use the associated graph with the problem by themselves.

Therefore, our findings are in line with the previous results obtained by other authors,
who state that graphs increased the logical abilities of the participants [12]; they were able
to draw and represent graphs and to solve problems using graphs [13].

Moreover, our results prove that graphs have also brought out other problem-solving
strategies, which have not been described in previous studies.

The involvement of the participants in the challenges shows that they have enjoyed
the experience, so we have fulfilled the objective of motivating them through graph theory,
as was also shown in previous research [12,13].

5. Conclusions

As we have seen throughout the activities performed by the participants, they have
applied several strategies for problem solving, such as look for a pattern, trial and error
method, counting strategies, induction, use symmetry, associated graph, guess and check
method and direct reasoning.

Introducing the concept of graphs and some basic results of graph theory allowed
participants to graphically represent abstract situations and develop several problem-
solving strategies.

They also created their own problems by analogy, using a simpler problem, related
problem or variation of the problem. This is also evidence of learning by imitation. Par-
ticipants propose similar activities to those worked during workshops, simplifying them
when they found it difficult to solve them.

Challenge 3 also shows that participants applied graph theory to real-life problems,
making mathematical connections through graphs, relating mathematics to everyday
life situations.

Graphs are shown to be a useful and powerful tool for increasing participants’
problem-solving skills and their motivation towards mathematics.
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It would be necessary to review the reasoning phase to adapt it to participants less than
8 years of age. Futures lines of research include the implementation of the didactic proposal
inside an ordinary classroom, in order to check if similar problem-solving strategies arise.
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Appendix A

In this section, we briefly explain activities proposed to participants and sketch some
basic definitions; more details about graph theory can be found, for example, in [2] or [8].

Four color theorem states that it is possible to color any geographical map with four
colors, such that neighboring regions do not have the same color. In session 1, we ask
participants if they can color the map of Spain with as few colors as possible. The map of
Spain that we have used can be found in [22]. Next, we introduce the idea of graph and
cycle asking them to draw a continuous line joining all regions such that regions with the
same color are not directly joined. This implies looking for a path that jumps from one
region to another, and they use dots that are already marked on the map to complete the
path without forgetting any region.

Graphs can be walkable, describing paths that go from one vertex to another. A path
is, therefore, a set of vertices connected by edges. The idea of cycle and Eulerian cycle
also appear here. A cycle is a closed path, starting and finishing in the same vertex; and
a Eulerian cycle is a closed path passing only once for every edge, although it is allowed
to pass more than one time for the vertices. Graphs which can be drawn with no crossing
edges are planar graphs.

A star polygon is a polygon obtained by joining nonconsecutive vertices in a regular
polygon, that is, jumping 2 by 2, 3 by 3, . . . and going through all vertices, such that we
can draw it without lifting the pencil from the paper. This jump is called polygon density
and the usual notation is n/q, where n is the number of vertices of the regular polygon and
q is the polygon density. For example, 5/2 is a five-pointed star inside a pentagon. Star
polygons can be seen as graphs, and in fact, as Eulerian cycles. The star polygon n/(n − q)
is the same as n/q because orientation does not matter when we draw star polygons.

Star polygons have a wide collection of interesting properties; some examples with
hexagon and octagon can be seen in [26].

Handshake problem or Party problem [15] (p. 60) is a classical combinatorial problem
saying that if there are n people in a room and they all shake hands, how many handshakes
are there? We adapt the problem to school context by changing handshakes to high fives.
In session 3, we give the following list of questions to the participants:

1. How many times 2 people high-five when they meet?
2. How many times 3 people high-five when they meet?
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3. How many times 4 people high-five when they meet?
4. How many times 5 people high-five when they meet?
5. How many times 9 people high-five when they meet?
6. How many times 17 people high-five when they meet?
7. How many times 27 people high-five when they meet?
8. How did you get the answers?

We expected participants to use graphs to represent the problem and cause the use of
induction. The computation of this number using induction gives us the sum of 1 + 2 + 3 +
4 + . . . + (n − 1) high fives, counting for 2 people (1 high five), 3 people (1 + 2) and so on.

Complete graphs [2] also appear here. A complete graph is one where every pair of
vertices is connected by an edge. A complete graph of n vertices has n(n − 1)/2 edges
because each vertex is connected with all the others, that is, (n − 1), so we have n(n − 1)
edges, but we need to divide by 2 to avoid counting them twice. If we draw the associated
graph representing the high five problem, we get a complete graph, so it is possible to
compute the number of high fives using the previous formula. Both formulas coincide.

In session 4, we introduce the definition of Eulerian cycle and let the notion of degree
of a vertex arise. The degree of a vertex is the number of edges leaving out or entering that
vertex. This notion becomes necessary for the next session.

Session 5 is devoted to the Seven Bridges of Köningsberg problem [2,8] solved by
Leonhard Euler, in what gave birth to graph theory. Köningsberg city (Kaliningrad cur-
rently) has a river called Pregel that divides the city in 4 zones joined by 7 bridges. The
problem is to find a closed path walking through the 4 areas of the city, crossing each
bridge only once. Euler proved that this is impossible by drawing a graph representing the
problem and concluding that the problem has no solution because all vertices have odd
degree. Such a path is called a Eulerian cycle in his honor.

We start the session with the story of the Seven Bridges of Köningsberg and give one
illustration [23] to students. Then, we pose some questions:

1. Can you find a way walking through the 4 areas of the city, crossing each bridge only
once and going back to the starting point?

2. Can you see any difference between the starting point and the other ones?
3. Count the number of edges leaving out or arriving at each vertex.
4. How many times would it be necessary to cross every bridge to complete a closed

path going through all the bridges (at least once).

In session 6, we pose a problem involving chess routes [8] (p. 108). After introducing
the activity, we give to the participants an image with a chessboard [24] and ask them:

1. Can the knight go through all the squares, passing only once through each one? Can
you prove it?

2. Now choose the chess piece you prefer and try again.
3. These ways described by chess pieces are Hamiltonian paths. A Hamiltonian path is

a path (nonclosed path) passing only once for every vertex.
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