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Abstract: Automated diagnosis systems aim to reduce the cost of diagnosis while maintaining the
same efficiency. Many methods have been used for breast cancer subtype classification. Some
use single data source, while others integrate many data sources, the case that results in reduced
computational performance as opposed to accuracy. Breast cancer data, especially biological data, is
known for its imbalance, with lack of extensive amounts of histopathological images as biological
data. Recent studies have shown that cascade Deep Forest ensemble model achieves a competitive
classification accuracy compared with other alternatives, such as the general ensemble learning
methods and the conventional deep neural networks (DNNSs), especially for imbalanced training
sets, through learning hyper-representations through using cascade ensemble decision trees. In this
work, a cascade Deep Forest is employed to classify breast cancer subtypes, IntClust and Pam50,
using multi-omics datasets and different configurations. The results obtained recorded an accuracy
of 83.45% for 5 subtypes and 77.55% for 10 subtypes. The significance of this work is that it is shown
that using gene expression data alone with the cascade Deep Forest classifier achieves comparable
accuracy to other techniques with higher computational performance, where the time recorded is
about 5 s for 10 subtypes, and 7 s for 5 subtypes.

Keywords: METABRIC dataset; breast cancer subtyping; deep forest; multi-omics data

1. Introduction

Breast cancer is one of the main causes of cancer death worldwide. Computer-aided
diagnosis systems aim to reduce the cost of diagnosis while maintaining the same effi-
ciency of the process. Conventional classification methods depend on feature extraction
methods, and to overcome many difficulties of those feature-based methods, deep learning
techniques are becoming important approaches to adopt.

Breast cancer classifiers use different methods and different data. Some methods use
images [1-3], some use biological data [4,5], and some integrate many types of data [6,7].

Many recent studies have incorporated deep learning, and especially Deep Forest in
their studies. Deep forest is still a young research area. However, a lot of work has shown
promising results for employing this model in healthcare systems and bioinformatics. For
example, reference [8] presents GcForest-PPI, which is a model that uses Deep Forest
for the prediction of protein—protein interaction networks. Their model showed and
enhanced prediction accuracy and a suggested improvement in drug discovery. The work
in reference [9] combined Deep Forest and autoencoders, for the prediction of IncRNA-
miRNA interaction, and their model showed improved results. Additionally, reference [10]
uses deep learning with Random Forests on the METABRIC dataset, to make use of the
different types of data. Their results enhanced the sensitivity values by 5.1%. Additionally,
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several studies have used deep learning and Deep Forest with the histopathological images
data and mammography images [2,3,11-13].

IntClust is breast cancer subtyping technique into 10 subtypes. The IntClust sub-
typing is dependent on molecular drivers that are obtained using combined genomics
and transcriptomic data. Pam50 is another breast subtyping method, and it consists of
5 subtypes [14].

For breast cancer subtyping, several data combined with several techniques have
been employed. Since 2011, Mendes et al. [15] employed a clustering method with gene
expression data, and showed that the subtyping obtained confirms with already established
subtypes. Gene expression and methylation data have been used with different Random
Forests models [16]. The study showed that gene expression data outperforms methylation
data; however, some features are only discovered using methylation. The work done in [17]
uses histopathological images, which was covered above; however, this work is specific
to breast cancer. Histopathological images were used with a Stacked Sparse Autoencoder
(SSAE), which is a deep learning strategy, and has shown improved performance, with
an F-measure of 84.49% and an average area under Precision-Recall curve (AveP) 78.83%.
Reference [18] proposes a method that uses histopathological images and extracts features
using a convolutional neural network (CNN). The CNN designed obtained an enhanced
performance, which was also slightly better when different CNNs were fused. In 2017,
Bejnordi et al. [19] applied deep learning algorithms to detect lymph nodes for breast
cancer in whole-slide pathology images cans and proposed an improved diagnosis.

Deep forest was used in [20] to classify cancer subtypes, and the model suffered
from overfitting and ensemble diversity challenges because of small sample size and high
dimensionality of biological data. This is overcome in the use of extensive biological data
in this research by employing the METABRIC dataset.

A deep learning technique has also been proposed in [21], and it shows a higher
performance than traditional machine learning methods for cancer subtype classification.

The small data size and imbalanced data problems have been addressed in [22], where
an enhanced algorithm to handle the data was proposed, combining traditional techniques
with deep learning methods. The results obtained confirmed that deep learning enhances
performance; in addition to that, methylation data were suggested to be effectively used to
improve diagnosis of cancer.

In reference [5], a deep neural networks model uses multi-omics data to classify breast
cancer subtypes. The types of omics data used were mRNAdata, DNAmethylation data,
and copy number variation (CNV), and the system achieved higher accuracy and area
under curve.

Additionally, the authors in reference [6] confirm that deep neural networks perform
better than traditional methods as it automatically extracts features from raw data. The
data used is copy number alteration and gene expression data for breast cancer patients
(METABRIC). The model presented integrates the datasets and the performance is superior
to other models.

Moreover, the authors in reference [23] use a network propagation method with a
deep embedded clustering (DEC) method to classify the breast tumors into four subtypes.
Reference [24] employs deep learning techniques for feature extraction and classification
to classify breast cancer lesions using mammograms. The system achieved high accuracy
using fused deep features for two datasets compared to similar methods. Additionally,
Zhang et al. [25] used a convolutional neural network (CNN) and a recurrent neural
network (RNN) to classify three breast cancer subtypes using MRI data. The accuracy
achieved was 91% and 83%, using CNN and CLSTM, respectively. Reference [26] combined
graph convolutional network (GCN) and convolutional neural network (CNN) to analyze
breast mammograms with an accuracy of 96.10 + 1.60%. Reference [27] also used deep
learning on histopathological images for breast cancer subtyping. Deep feature fusion and
enhanced routing (FE-BkCapsNet) is used, and results achieved over 90% of accuracy.
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Among many others, references [4,7] integrated multiple datasets to address the prob-
lem of cancer subtype classification. Xue et al. [4] used integrated omics data for cancer
subtype classification using a deep neural forest model, HI-DFNForest, proposing an im-
proved performance. It has been shown that integration of multi-omics data may enhance
cancer subtype classification. However, not all types of data are available extensively, and
not all types of data add to the classification process. In addition, employing all types of
data imposes the restriction of very high time requirements. In the process of diagnosis of
cancer, time becomes an important issue due to the critical cases of patients. In reference [7],
it was shown that without using sampling techniques on the METABRIC dataset, the
results obtained for classification of cancer subtypes are low. Additionally, there is a very
big challenge regarding images, where the number of available samples is only 208, much
lower than other omics data. Moreover, the techniques used to achieve the highest accuracy
obtained were relatively high. In this paper, it was shown that gene expression alone can
achieve comparable results on the Deep Forest configuration employed. In addition to
achieving very fast performance.

The objective of this work is to extend the previous research [7] by employing a
Deep Forest model for using feature combining and classifying the generated integrative
data profiles, and enhancing the previously proposed framework through using the full
dimension gene expression data and examining the computational performance.

In this paper, a cascade Deep Forest is employed to classify breast cancer subtypes
for both subtyping, IntClust (10 subtypes) and Pam50 (5 subtypes), using the METABRIC
datasets, namely clinical, gene expression, CNA, and CNV. The full dataset is used, without
dimensionality reduction, and without sampling. Several configurations for the cascade
Deep Forest are employed and the results obtained are an accuracy of 83.45% for 5 sub-
types and 77.55% for 10 subtypes. Other obtained performance metrics also confirm the
outperformance of employing gene expression solely, where the precision, recall, specificity,
F1-measure, Jaccard, Hamming loss, and Dice are 0.822, 0.774, 0.961, 0.772, 0.640, 0.225,
0.709, respectively, for 10 subtypes. The measures are 0.8421, 0.833, 0.904, 0.820, 0.711,
0.166, and 0.852, for the 5 subtypes, respectively. The precision and Dice measures are
slightly higher for the integrated profile gene expression, clinical, CNA, and CNV. The
significance of this work is that it is shown that using gene expression data alone with
the cascade Deep Forest classifier achieves comparable accuracy to other techniques with
higher computational performance, where the time recorded is about 5 s for 10 subtypes,
and 7 s for 5 subtypes.

The main contribution of this paper is to:

e Employ the omics METABRIC sub-datasets of gene expression, CNA, and CNV, in
addition to the clinical dataset in full dimension without sampling.

*  Develop a cascade Deep Forest-based model for breast cancer subtype classification
using multi-omics data.

*  Obtain comparable results using only omics data without using histopathologi-
cal images.

e Improve the classification time for breast cancer subtyping through using the cascade
Deep Forest classifier.

The rest of this paper is organized as follows. The methods used in evaluating the
employed model for breast cancer subtyping are elaborated in Section 2. In Section 3, ex-
perimental results are presented, followed by a discussion in Section 4. Finally, a conclusion
is presented in Section 5.

2. Materials and Methods

The proposed system in this manuscript uses integrative clinical data and genomics
data generated from the extraction and combination of the gene expression, Copy Num-
ber Aberrations (CNA), and Copy Number Variations (CNV) feature sets from the ge-
nomics dataset.
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As depicted in Figure 1, the proposed approach is composed of 4 phases; namely
(1) Data acquisition of METABRIC breast cancer subtypes datasets, (2) Data preparation and
preprocessing, (3) Integrated data profiles generation, and (4) Cascade Deep Forest-based
classification.

After the first phase of four breast cancer subtypes datasets acquisition, the proposed
system moves to the second phase of data preparation and preprocessing with only three
sub-datasets; namely the clinical data, the features of Copy Number Aberrations (CNA) and
Copy Number Variations (CNV) data types, as the fourth sub-dataset of gene expression is
submitted as it is without any preprocessing to the third phase of integrated data profiles
generation. In the second phase, data cleaning and imputation preprocessing are applied
to the clinical data, whereas statistical analysis is applied to the CNA and CNV features.
Subsequently, in phase three, the data profiles are generated by concatenating the genomics
and clinical features to obtain the integrated data profiles. Finally, the stages of classification
process are employed in the fourth phase for training and teasing the proposed system
through using the cascade Deep Forest model. The following subsections explain each
phase in more details.

___________________ T s S
| Breast Cancer Subtypes Data : Data Preparation and Preprocessing
1
1

Clinical 4:-‘I Data Cleaning and Img ion :

 Clinical Data,

Gene Expression (GE) GE Data

METABRIC Datasets .
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1
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Figure 1. General structure of the proposed approach.

2.1. Data Acquisition

In this phase the breast cancer subtypes dataset used in the conducted experiments is
the METABRIC dataset that contains several sub-datasets. The datasets considered for the
research conducted in this manuscript are: clinical dataset, gene expression dataset, Copy
Number Aberrations (CNA) dataset, and Copy Number Variations (CNV) dataset. The
source of the gene expression, CNA and CNV data are the European Genome-phenome
Archive (EGA) platform with the accession number, DAC ID, EGAC00001000484 [28].
However, the clinical data are obtained from the Synapse platform [29]. The datasets
obtained contain datasets for validation and discovery.

The clinical data available is categorized into four main categories of 27 features.
First, personal, which contains only the age at diagnosis. Second, the clinical pathology
data, which is data about the tumor, including, size, lymph nodes data, grade, histological
type, different hormonal levels, and other features. Third, the treatment category, which
indicates the type of treatment received by the patient. Fourth, survival features, which are
the status and time.

The Copy Number Aberration (CNA) dataset contains a total of 13 features describing
chromosome regions, namely information in somatic tissues about the markers count and
mutation type. The dataset also contains information about location, including five features.
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In addition to, information about the number of genes in each segment and mutation type
described in seven features. Similarly, the Copy Number Variation (CNV) dataset contains
13 features describing chromosome regions in germline tissues about the markers number,
mutation type, location, and genes count.

The gene expression dataset contains 48,803 genes expressed using Illumina Sequenced
HT 12 array v3.

At the end of breast cancer subtypes data acquisition phase, each obtained dataset is
submitted to a data preparation and preprocessing module in phase 2.

2.2. Data Preparation and Preprocessing

This section presents a discussion for the datasets preparation and preprocessing.

2.2.1. Data Preparation

The METABRIC dataset was obtained as explained earlier, and the discovery part was
extracted with its labels to include the clinical dataset, gene expression, CNA, and CNV
sets. Each of the resulting datasets was prepared according to the following steps:

1.  Submitting the CNA and CNV feature files to the statistical analysis feature engineer-
ing stage in the data preprocessing stage.
2. Submitting the clinical dataset to the preprocessing stage for data cleaning and imputation.
3. Transposing the gene expression data using Equation (1), then submitting it without
any preprocessing to the third phase of the proposed system, where (A);; represents
the matrix of the original gene expression data and (AT)l-j represents the resulted
transposed matrix.
(AT)ij = (A)ji Vi, j. @

2.2.2. Data Preprocessing

Following the preparation of data, the clinical dataset is submitted to the preprocessing
stage for data cleaning and imputation. In this stage, a statistical analysis feature engineer-
ing scheme is applied to the CNA and CNV datasets. For that scheme, the frequency and
the actual segment percentages Amplification (AMP), Insertions (GAIN), Homozygous
Deletion (HOMD), Heterozygous Deletion (HETD) and Neutral (NEUT) were calculated
for each chromosome. Figure 2 shows the detailed steps for statistical feature engineering
of CNA and CNV data.

The clinical dataset features are encoded using textual categorical encoding. First, fea-
tures with missing values more than 50% (like NOT_IN_OSLOVAL_P53_mutation_type),
and features with 90% blank values (like NOT_IN_OSLOVAL_P53_mutation_details) are
deleted. Data imputation [30] is performed on other features missing values with lower
ratios. On the other hand, the gene expression dataset is submitted to the integrated data
profiles generation phase as it is, without any preprocessing.

2.3. Integrated Data Profiles Generation

At the end of phase 2, the resulted CNA and CNYV statistical feature sets, imputed
clinical, and the features of gene expression datasets are submitted to phase 3 of integrated
data profiles generation, to be concatenated and then generate the output set of integrated
data profiles.

2.4. Cascade Deep Forest Based Classification

During phase 4 of the proposed system and after generating integrated data profiles
through feature concatenation of imputed clinical data, GE data, and statistically engi-
neered CNA and CNYV data, a cascade Deep Forest model is applied for cancer subtype
classification.As a preparatory step before the classification phase, the features obtained in
phase 3 are split into subsets of 2/3 for training and 1/3 for testing.
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Figure 2. Statistical feature engineering of CNA and CNYV data.

The motivation for considering cascade Deep Forest model in the proposed breast
cancer subtype classification approach is that conventional supervised machine learning
classifiers typically work with labeled data as well as neglecting a considerable amount
of data with insufficient information. Consequently, small sample size of training data
limits the progress in designing appropriate classifiers. Moreover, several challenges may
limit the application of common conventional machine leaning models, such as Support
Vector Machine (SVM) and Random Forests, to the task of cancer subtype classification.
The sounding challenge is strengthening the risk of overfitting in training, which is char-
acterized by using small sample size and high dimensionality of biology multi-omics
data. Additionally, class-imbalance is a very common situation in multi-omics data, which
augments the difficulties of model learning with the risk of weakening the ability of model
estimation for large sequencing bias. Although several approaches have been recently
developed to address the stated challenges [31,32], limited alternatives are proposed with
validated methods for small-scale multi-omics data. Additionally, more accurate and
robust methods still need further developments for achieving accurate of breast cancer
subtype classification.

On the other hand, compared to the typical architecture of convolutional deep neural
networks (DNNs) with several convolutional layers and fully connected layers, the DNNs
are also highly prone to overfitting, with more chances for convergence to local optimums,
when providing imbalanced or relatively small-size training data. However, dropout and
regularization methods are widely applied to alleviate that problem, overfitting is still an
inescapable problem for DNNs. Thus, the state-of-the-art recommended the cascade Deep
Forest model as an efficient alternative to DNNs for learning hyper-level representations in
more optimized way.

The cascade Deep Forest model fully uses the characteristics of both deep neural
networks and ensemble models. The cascade Deep Forest learn features of class distribution
by assembling decision tree-based forests while supervising the input, rather than the
overhead of applying forward and backward propagation algorithms to learn hidden
variables as in deep neural networks [33].
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The cascade forest follows a supervised learning scheme based on layers, which
employs ensemble Random Forests to obtain a class distribution of features that results
in more precise classification [20,34]. The feature importance in the cascade Deep Forest
model is not taken into account among multiple layers during the feature representation
training. Accordingly, the prediction accuracy obtained is highly affected by the number of
decision trees in each forest, especially with small-scale or imbalanced data, as it is critical
in the construction of decision trees, where the discriminative features are used to decide
splitting nodes. Figure 3 shows the architecture of the employed cascade forest.

As illustrated in Figure 3, considering the used cascade Deep Forest model, each level
of the cascade consists of two Random Forests (RF) (the blue blocks) and two Completely
Random Forests (CRF) (the yellow blocks). Therefore, suppose there are n subclasses
to predict, then each forest should output an n-dimensional class vector, which is then
concatenated for representing the original input.

Augmented Cascade Input
Features Layer Features

Final —
Prediction <
Max

[ST=T=T=T=]

Concatenation |

Ly L L

Figure 3. General structure of the cascade Deep Forest network.

3. Results

This section shows the results for different Deep Forest configurations against the
10 subtypes (IntClust) and the 5 subtypes (Pam50). The results in this paper are obtained
using the full dimension dataset of the gene expression. The experiments use the whole
48,803 features set. Initially, the Deep Forest configuration was used with the dimensionally
reduced gene expression data and the accuracy results were as low as 27%. This led to
using the whole gene expression dataset of 48,803 features and the performance obtained
showed promising results with high configurations. The performance is shown relative to
the time taken per each run. Different Deep Forest configurations were used against the
10 and 5 subtypes. The number of estimators is increased to 900 to make sure that there is
no increase in the accuracy. It is not easy to decide the most fitting configuration. For the
10 subtypes, the accuracy reached is 77.55% for the gene expression dataset using 100 trees
in each forest, 100 estimators, 5 layers, and 10 k-folds. with time 5:08 s. For the 5 subtypes,
the highest accuracy is achieved for the gene expression data and relatively for the CNV
and CNA, using 300 trees in each forest, 300 estimators, 5 layers, and 5 k-folds. This
accuracy is 83.45% for gene expression, with approximately 55% of accuracy for CNV and
CNA, which is comparable to other configurations regarding time. However, performance
was not the highest for the clinical data. The time achieved is 7:53 s.

Both experiments were performed using different number of trees per forest and
different number of estimators. Specifically, 100, 300, 500, 700 for trees and estimators,
using also 900 for the 5 subtypes. Those numbers were used once with 10 layers with
10 k-fold and once with 5 layers with 5 k-fold. To be more confident about the most fitting
architecture, another run using 5 layers with 10 K-fold and 10 layers with 5 k-folds was
performed. An extra experiment for gene expression data was performed using another
combination of layers and k-fold to confirm the results, using 5 layers with 5 k-fold and
10 layers with 10 k-fold.
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3.1. Results for Breast Cancer 10 Subtypes

Tables 1-4, show the results for 10 subtypes using all datasets, except images, since
the number of samples in the images dataset is much lower than other datasets. The tables
show that for gene expression, the highest accuracy achieved is 77.55%, with 100 trees,
100 estimators, 5 layers, and 10 k-folds, with time of 5:08 s. For clinical data, the highest
accuracy achieved is 44.22%, with 100 trees, 100 estimators, 5 layers, and 5 k-folds, with time
of 0:41 s. For CNV and CNA, the accuracy achieved is 55.78% and 53.40%, respectively, with
500 trees, 500 estimators, 10 layers, 10 k-folds, with a time of 23:01 and 22:40 s, respectively.

Table 1. Gene Expression—10 Subtypes.

Trees/Estimators Layers/k-Fold Training Accuracy Testing Accuracy  Duration
100/100 5/5 70.61% 73.13% 2:50
100/100 10/5 71.04% 74.83% 5:57
100/100 5/10 70.76% 77.55% 5:08
100/100 10/10 71.75% 73.47% 17:29
300/300 5/5 69.04% 73.81% 4:56
300/300 5/10 68.82% 72.11% 11:46
300/300 10/5 71.33% 75.85% 15:04
300/300 10/10 72.47% 75.85% 28:11
500/500 5/5 67.33% 70.07% 10:34
500/500 5/10 67.73% 70.41% 18:01
500/500 10/5 69.90% 72.11% 23:52
500/500 10/10 69.90% 73.47% 67:56
700/700 5/5 67.33% 69.05% 9:37
700/700 5/10 67.33% 70.07% 24:29
700/700 10/5 69.47% 72.45% 33:32
700/700 10/10 69.90% 71.77% 69:58

Table 2. Clinical Data—10 Subtypes.

Trees/Estimators Layers/k-Fold Training Accuracy Testing Accuracy =~ Duration
100/100 5/5 39.66% 44.22% 0:41
100/100 10/10 41.80% 41.16% 3:14
300/300 5/5 39.94% 42.18% 2:20
300/300 10/10 41.374% 38.78% 11:24
500/500 5/5 40.80% 43.20% 2:43
500/500 10/10 41.94% 38.10% 28:22
700/700 5/5 40.51% 43.54% 3:54
700/700 10/10 41.94% 37.07% 52:01

Table 3. CNV Data—10 Subtypes.

Trees/Estimators Layers/k-Fold Training Accuracy Testing Accuracy ~ Duration
100/100 5/5 54.92% 53.06% 00:52
100/100 10/10 56.49% 54.08% 3:23
300/300 5/5 53.21% 52.04% 1:50
300/300 10/10 57.49% 55.10% 9:11
500/500 5/5 54.78% 52.38% 2:56
500/500 10/10 56.63% 55.78% 23:01
700/700 5/5 55.06% 52.03% 3:24

700/700 10/10 57.06% 54.42% 38:10
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Table 4. CNA Data—10 Subtypes.

Trees/Estimators Layers/k-Fold Training Accuracy Testing Accuracy  Duration
100/100 5/5 52.64% 52.04% 00:44
100/100 10/10 55.92% 51.70% 4:27
300/300 5/5 55.35% 52.38% 1:48
300/300 10/10 56.06% 53.06% 9:37
500/500 5/5 53.92% 52.38% 2:32
500/500 10/10 56.35% 53.40% 22:44
700/700 5/5 53.64% 52.04% 3:25
700/700 10/10 55.92% 53.06% 42:18

Tables 5 and 6, show results of different integrated data profiles for the IntClust
(10 subtypes). The highest accuracy achieved for the 10 subtypes is 75.85%, for integrating
clinical data with gene expression; however, gene expression alone still achieves a higher
accuracy, as reported earlier. Please note that the accuracy reported in Table 6 is the overall
accuracy, while the accuracy in the other tables is the reached max layer accuracy. This is
the reason for the slight variation in the accuracy values. Moreover, the precision, recall,
specificity, F1-measure, Jaccard, Hamming loss, and Dice are 0.822, 0.774, 0.961, 0.772, 0.640,
0.225, 0.709, respectively. The results of the obtained performance and statistical measures
confirm the superiority of employing only gene expression.

Table 5. Integrated Profiles Classification Accuracy for 10 Subtypes.

Integrated Profile Training Accuracy Testing Accuracy
GE 70.76% 77.55%
Clinical 40.51% 43.54%
CNA 53.21% 51.70%
CNV 55.06% 53.06%
GE + Clinical 67.76% 73.47%
Clinical + GE 71.61% 75.85%
GE + CNV 69.76% 76.19%
GE + CNA 66.76% 70.75%
Clinical + CNA 58.63% 60.20%
Clinical + CNV 61.06% 57.82%
CNA + CNV 55.21% 51.70%
Clinical + CNV + GE 68.33% 72.79%
Clinical + CNA + GE 68.90% 71.09%
Clinical + CNA + CNV 60.34% 61.56%
GE + CNA + CNV 71.61% 74.83%
GE + CNV + CNA + Clinical 68.62% 74.15%
GE + CNA + CNV + Clinical 70.33% 74.49%
GE + Clinical + CNA + CNV 68.76% 72.79%

Table 6. Integrated Profiles Classification Performance Metrics for 10 Subtypes.

Data Profile Accuracy Precision Recall (Sensitivity) ~ Specificity F1-Measure  Jaccard Hamming-Loss Dice
GE 77.47% 0.822 0.774 0.961 0.772 0.640 0.225 0.709
Clinical 41.97% 0.369 0.4197 0.919 0.367 0.266 0.580 0.320
CNA 49.48% 0.445 0.494 0.926 0.450 0.309 0.505 0.297
CNV 53.24% 0.554 0.532 0.932 0.491 0.341 0.467 0.340
GE + Clinical 72.7% 0.789 0.726 0.956 0.708 0.573 0.273 0.561
GE + CNV 76.11% 0.812 0.761 0.961 0.749 0.613 0.239 0.644
GE + CNA 70.64% 0.749 0.706 0.951 0.683 0.546 0.293 0.555
Clinical + CNA 58.02% 0.5286 0.5802 0.938 0.541 0.402 0.419 0.522
Clinical + CNV 57.6% 0.521 0.576 0.938 0.537 0.3959 0.423 0.44

CNA +CNV 51.54% 0.472 0.515 0.9303 0.463 0.323 0.484 0.217
Clinical + CNV + GE 69.28% 0.753 0.693 0.950 0.676 0.532 0.307 0.611
Clinical + CNA + GE 70.9% 0.767 0.7098 0.953 0.6919 0.552 0.2901 0.623
CNA + CNV + Clinical 59.01% 0.557 0.6143 0.939 0.578 0.4387 0.3856 0.590
GE + CNA + CNV 74.74% 0.809 0.747 0.958 0.732 0.599 0.252 0.678

GE + CNV + CNA + Clinical 74.06% 0.809 0.7406 0.955 0.723 0.590 0.259 0:621
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3.2. Results for Breast Cancer 5 Subtypes

For the 5 subtypes, Tables 7-10 show results of different datasets. For gene expression,
the highest accuracy achieved is 83.45%, with 300 trees, 300 estimators, 5 layers, and
5 k-folds, with time of 7:53 s. For clinical data, the highest accuracy achieved is 76.35%,
with 700 trees, 700 estimators, 10 layers, and 10 k-folds, with time of 16:28 s. For CNV, the
accuracy achieved is 56.76%, with 500 trees, 500 estimators, 10 layers, 10 k-folds, with a
time of 12:04 s. For CNA, the accuracy achieved is 56.42%, with 700 trees, 700 estimators,
5 layers, 5 k-folds, with a time of 3:54 s.

Table 7. Gene Expression—5 Subtypes.

Trees/Estimators Layers/k-Fold Training Accuracy Testing Accuracy Duration
100/100 5/5 81.26% 80.07% 1:59
100/100 5/10 81.12% 79.39% 8:50
100/100 10/5 81.25% 82.09% 7:11
100/100 10/10 81.69% 81.76% 13:25
300/300 5/5 83.55% 83.45% 7:53
300/300 5/10 80.26% 80.07% 13:09
300/300 10/5 81.83% 79.73% 18:05
300/300 10/10 83.12% 81.42% 37:08
500/500 5/5 78.40% 80.07% 9:03
500/500 5/10 79.69% 80.41% 23:13
500/500 10/5 81.69% 81.08% 22:56
500/500 10/10 81.83% 82.77% 42:41
700/700 5/5 78.97% 79.73% 9:01
700/700 5/10 79.11% 80.07% 23:03
700/700 10/5 81.40% 81.08% 29:40
700/700 10/10 81.83% 82.77% 68:15
900/900 5/5 78.54% 79.73% 11:40
900/900 5/10 78.97% 80.41% 29:32
900/900 10/5 81.69% 82.77% 38:02
900/900 10/10 81.97% 82.43% 72:10

Table 8. Clinical Data—b5 Subtypes.

Trees/Estimators Layers/k-Fold Training Accuracy Testing Accuracy =~ Duration
100/100 5/5 73.46% 74.66% 0:38
100/100 10/10 73.25% 75.34% 4:51
300/300 5/5 72.96% 75.00% 2:25
300/300 10/10 74.11% 74.66% 10:28
500/500 5/5 73.39% 75.00% 2:54
500/500 10/10 73.96% 75.00% 10:33
700/700 5/5 74.25% 75.00% 3:35
700/700 10/10 73.96% 76.35% 16:28
900/900 5/5 74.11% 75.00% 4:09
900/900 10/10 73.82% 74.66% 17:01

Table 9. CNV Data—D5 Subtypes.

Trees/Estimators Layers/k-Fold Training Accuracy Testing Accuracy ~ Duration
100/100 5/5 63.09% 56.08% 0:43
100/100 10/10 63.38% 56.42% 2:46
300/300 5/5 62.37% 55.41% 2:29
300/300 10/10 63.95% 55.41% 9:13
500/500 5/5 63.52% 55.47% 3:10
500/500 10/10 63.38% 56.76% 12:04
700/700 5/5 63.23% 55.41% 3:44
700/700 10/10 64.23% 55.74% 18:00
900/900 5/5 62.95% 55.74% 4:12

900/900 10/10 64.52% 56.76% 19:32
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Table 10. CNA Data—b5 Subtypes.

Trees/Estimators

Layers/k-Fold

Training Accuracy

Testing Accuracy

Duration

100/100
100/100
300/300
300/300
500/500
500/500
700/700
700/700
900/900
900/900

5/5
10/10
5/5
10/10
5/5
10/10
5/5
10/10
5/5
10/10

63.52%
65.09%
62.80%
64.38%
62.95%
64.52%
62.95%
64.38%
62.95%
64.09%

56.08%
54.73%
55.74%
55.07%
55.41%
55.41%
56.42%
55.74%
55.74%
55.41%

0:52
3:09
3:07
11:27
4:09
13:37
3:54
14:56
4:18
19:19

Tables 11 and 12 show results of different integrated data profiles for the Pam50
(5 subtypes) subtyping. The highest accuracy achieved for the 5 subtypes is 80.41%, for
CNA, CNV, gene expression, and clinical data. Still, gene expression alone achieves a
higher prediction accuracy. The slight variation in accuracy reported in Tables 6 and 12
is that it is the overall accuracy, while the accuracy in the other tables is the reached
max layer accuracy. In addition to the obtained accuracy, precision, recall, specificity, F1-
measure, Jaccard, Hamming loss, and Dice are 0.8421, 0.833, 0.904, 0.820, 0.711, 0.166, and
0.852, respectively. The precision and Dice measures are slightly higher for the integrated
profile gene expression, clinical, CNA, and CNV. However, the remaining measures are in
favor of the gene expression profile, which confirm the outperformance of the suggested

data profile.

Table 11. Integrated Profiles Classification Accuracy for 5 Subtypes.

Integrated Profile Training Accuracy Testing Accuracy
GE 83.55% 83.45%
Clinical 72.96% 75.00%
CNA 62.80% 55.74%
CNV 62.37% 55.41%
GE + Clinical 81.26% 82.09%
Clinical + GE 80.40% 79.05%
GE + CNV 81.26% 79.05%
GE + CNA 81.12% 79.39%
Clinical + CNA 73.82% 69.93%
Clinical + CNV 74.54% 70.95%
CNA + CNV 63.09% 56.76%
Clinical + CNV + GE 80.11% 78.38%
Clinical + CNA + GE 80.83% 78.72%
Clinical + CNA + CNV 73.68% 68.92%
GE + CNA + CNV 80.83% 79.05%
GE + CNV + CNA + Clinical 81.55% 82.09%
GE + CNA + CNV + Clinical 81.12% 80.41%
GE + Clinical + CNA + CNV 80.54% 80.07%
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Table 12. Integrated Profiles Classification Performance Metrics for 5 Subtypes.

Data Profile Accuracy Precision Recall (Sensitivity)  Specificity F1-Measure Jaccard Hamming-Loss Dice
GE 83.38% 0.8421 0.833 0.904 0.820 0.711 0.166 0.852
Clinical 75.59% 0.761 0.755 0.892 0.748 0.611 0.244 0.796
CNA 55.59% 0.5474 0.555 0.705 0.500 0.360 0.444 0.432
CNV 55.93% 0.553 0.559 0.702 0.503 0.362 0.440 0.382
GE + Clinical 82.03% 0.848 0.8203 0.868 0.797 0.687 0.179 0.857
GE + CNV 79.05% 0.765 0.786 0.846 0.754 0.634 0.213 0.845
GE + CNA 79.39% 0.827 0.793 0.849 0.767 0.644 0.206 0.842
Clinical + CNA 67.7% 0.7009 0.677 0.807 0.654 0.504 0.322 0.644
Clinical + CNV 71.1% 0.725 0.711 0.818 0.694 0.546 0.288 0.783
CNA + CNV 56.76% 0.479 0.566 0.697 0.505 0.366 0.433 0.4

Clinical + CNV + GE 78.6% 0.769 0.786 0.841 0.756 0.635 0.213 0.842
Clinical + CNA + GE 78.9% 0.772 0.789 0.8447 0.759 0.639 0.210 0.842
Clinical + CNA + CNV 68.92% 0.644 0.688 0.809 0.659 0.514 0.311 0.727
GE + CNA + CNV 78.9% 0.768 0.789 0.846 0.759 0.64 0.210 0.842
GE + CNV + CNA + Clinical ~ 82.37% 0.848 0.823 0.872 0.801 0.693 0.176 0.857

4. Discussion

In this work, the experiments first make use of different Deep Forest configurations on
each dataset solely. Gene expression alone significantly gave the best performance, where
the accuracy was 83.45% for 5 subtypes using 300 estimators, 5 layers, 5 k-folds, and the
accuracy was 77.55% for 10 subtypes using 100 estimators, 5 layers, and 10 k-folds. This
was concluded after experimenting 100,300,500,700 and 900 estimators across 5, 10 layers
and 5, 10 k-folds. The integration of datasets was performed by concatenating the datasets
and applying the best configuration of Deep Forest to classify it. The results reached did not
give any improvement over the highest accuracy reached using gene expression. However,
for the 5 subtypes, the integrated profile CNA + CNV achieved 56.7%, while CNA alone
achieved 55.74%, and CNV alone achieved 55.41%. For the 10 subtypes, the clinical data
alone achieved 43.5%, CNV alone achieved 53.06%, and the CNA alone achieved 51.70%.
The integrated clinical data with the CNA achieved 60.20%, the integrated clinical data
with CNV achieved 57.82%, and the integrated clinical data with both CNA and CNV
achieved 61.56%.

In the research [7], an accuracy of 88.36% was achieved for IntClust (10 subtypes)
subtyping using Linear-SVM. The accuracy achieved was using the data profile of clinical,
gene expression, CNA, and CNV datasets. For the Pam50 subtyping (5 subtypes), the
accuracy was 97.1% using Linear-SVM and E-SVM classifiers, with all data including
histopathological images features. However, the images data are not comprehensive, as
they are only available for 208 samples, unlike other data, which are extensively available
for all patients in the dataset. Moreover, the time taken to obtain the above-mentioned
accuracy is extensive. hence, the Deep Forest used in this paper, makes use of the gene
expression data alone to achieve comparable results without using any sampling techniques.
In [7], the highest accuracy achieved used SMOTE sampling. The highest accuracy achieved
among all different data profiles was 71.35% for IntClust, which was outperformed by the
Deep Forest configuration in this paper, achieving 77.55%, and a running time of 5:08 s,
which is extensively less than the model proposed in [7]. For the gene expression data alone
in [7], the accuracy only reached 46.08%. Similarly, for Pam50 (5 subtypes), gene expression
alone achieved 78.85%, while the highest recorded accuracy was 80.66%, without images,
for the gene expression and clinical data profiles. However, the proposed Deep Forest
configuration achieved up to 83.45% of accuracy and 7:53 s run time.

The current study could be further expanded by examining the technique on more
datasets for breast cancer subtyping. Additionally, other deep learning methods could be
employed to verify the robustness of using gene expression data.

5. Conclusions

This research proposes a Deep Forest classifier for the IntClust and Pam50 breast
cancer subtypes. The experiments are carried out using different combinations of trees and
estimators, specifically 100, 300, 500, 700, and 900, as well as layers and k-folds of 5 and
10. Gene expression alone significantly gave the best performance, with an accuracy of
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83.45% for 5 subtypes and 77.55% for 10 subtypes, and time about 5 s for 10 subtypes, and
7 s for 5 subtypes. The integration of datasets did not give any improvement, where for the
5 subtypes, CNA and CNV data achieved 56.7%, while CNA alone achieved 55.74%, and
CNV alone achieved 55.41%. For the 10 subtypes, the clinical data achieved 43.5%, CNV
alone achieved 53.06%, and the CNA alone achieved 51.70%. The integrated clinical data
with the CNA achieved 60.20%, the integrated clinical data with CNV achieved 57.82%,
and the integrated clinical data with both CNA and CNV achieved 61.56%. It is concluded
that using gene expression alone achieves comparable results.
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