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Abstract: Ranking interval-valued fuzzy soft sets is an increasingly important research issue in
decision making, and provides support for decision makers in order to select the optimal alternative
under an uncertain environment. Currently, there are three interval-valued fuzzy soft set-based
decision-making algorithms in the literature. However, these algorithms are not able to overcome the
issue of comparable alternatives and, in fact, might be ignored due to the lack of a comprehensive
priority approach. In order to provide a partial solution to this problem, we present a group decision-
making solution which is based on a preference relationship of interval-valued fuzzy soft information.
Further, corresponding to each parameter, two crisp topological spaces, namely, lower topology and
upper topology, are introduced based on the interval-valued fuzzy soft topology. Then, using the
preorder relation on a topological space, a score function-based ranking system is also defined to
design an adjustable multi-steps algorithm. Finally, some illustrative examples are given to compare
the effectiveness of the present approach with some existing methods.

Keywords: interval-valued fuzzy soft sets; interval-valued fuzzy soft topology; preference relation-
ship; decision-making

1. Introduction
Dealing with vagueness and uncertainty, rather than exactness, in most real-world

situations is the main problem in data-analysis sciences and decision-making. Many math-
ematical theories and tools such as probability theory, fuzzy set theory [1], interval-valued
fuzzy set theory [2], intuitionist fuzzy set theory [3], rough set theory [4] and soft set the-
ory [5] have been implemented to handle this problem, with the latter allowing researchers
to deal with parametric data. Nowadays, soft sets theory contributes to a vast range of
applications, particularly in decision-making. In this regard, many important results have
been achieved, from parameter reduction to new ranking models.

Many soft set extensions and their applications have been discussed in previous
studies, such as fuzzy soft sets [6–13] intuitionistic fuzzy sets [14–17], rough soft sets [18,19]
and fuzzy soft topology [20–23]. The interval-valued fuzzy soft method was first used for
decision-making problems by Son [24]. He applied this method by using the comparison
table. Yang et al. [25] developed the method presented in [7] for an interval-valued fuzzy
soft set and then, applied the concept of interval-valued fuzzy choice values to propose
an approach for solving decision-making problems. The notion of level set in decision-
making based on interval-valued fuzzy soft sets was introduced by Feng et al. [26] and
then, the level soft set for interval-valued fuzzy soft sets was developed, further see [27].
Khameneh et al. [28–30] introduced the preference relationship for both fuzzy soft sets and
intuitionistic fuzzy soft sets and then selected an optimal option for group decision-making
problems by defining a new function value. In addition, interval-valued fuzzy soft sets
have also been applied to various fields, for example information measure [31–34], decision
making [35–38], matrix theory [39–41], and parameter reduction [37,38,42].
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Recently, Ma et al. [43] introduced an average and an antitheses table for interval-
valued fuzzy soft sets and then selected an optimal option for group decision-making
problems through the score value. Ma et al. [44] developed two methods [26,45] to solve
decision-making problems by providing a new efficient decision-making algorithm and
also considering added objects. However, these methods did not address the problem
of incomparable alternatives because they lack a comprehensive priority approach. In
order to solve these issues, this paper proposes an application of the induced preorderings
based method for solving decision-making with interval-valued fuzzy soft information.Our
contributions are as follows:
1 Proposing application of induced preordering based method for solving decision-

making with interval-valued fuzzy soft information.
2 Proposing a novel score function of interval-valued fuzzy soft sets that selects an

optimal option for group decision-making problems.
3 A real-life example is given to compare the effectiveness of this approach with some

existing methods.

2. Preliminaries
In this section, we recall some definitions and properties of interval-valued fuzzy sets

(IVF) and interval-valued fuzzy soft sets (IVFS). Note that, throughout this paper, X and
E denote the sets of objects and parameters, respectively. IX and [I]X , where I = [0, 1] and
[I] = {[a, b], a ≤ b, a, b ∈ I} denote, respectively, the set of all fuzzy subsets and the set of
all interval-valued fuzzy subsets of X.

Definition 1. Ref. [2] A pair ( f , X), is called an IVF subset of X if f is a mapping given by
f : X → [I] such that for any x ∈ X, f (x) = [ f−(x), f+(x)] is a closed subinterval of [0, 1]
where f−(x) and f+(x) are referred to as the lower and upper degrees of membership x to f and
0 ≤ f−(x) ≤ f+(x) ≤ 1.

In 1999, Molodtsov [5] defined the concept of soft sets (SS) for the first time as a pair
of ( f , E) or fE such that E is a parameter set and f is the mapping f : E → 2X where for
any e ∈ E, f (e) is a subset of X. By combining the concepts of soft sets and interval-valued
fuzzy sets, a new hybrid tool was defined as the following.

Definition 2. Ref. [25] A pair ( f , E) is called an IVFS set over X if the mapping f is given by
f : E→ [I]X where for any e ∈ E and x ∈ X, f (e)(x) = [ f−(e)(x), f+(e)(x)].

Consider two IVFSs fE, gE over the common universe X. The union of fE and
gE, denoted by fE∨̃gE, is the IVFSs ( f ∨̃g)E, where ∀e ∈ E and any x ∈ X, we have
( f ∨̃g)(e)(x) = [max{ f−e (x), g−e (x)}, max{ f+e (x), g+e (x)}]. The intersection of fE and
gE, denoted by fE∧̃gE, is the IVFSs ( f ∧̃g)E, where ∀e ∈ E and ∀x ∈ X, we have
( f ∧̃g)(e)(x) = [min{ f−e (x), g−e (x)}, min{ f+e (x), g+e (x)}]. The complement of fE is de-
noted by f c

E and is defined by f c : E → [I]X where ∀e ∈ E and any x ∈ X, f c(e)(x) =
[1− f+e (x), 1− f−e (x)]. The null IVFSs, denoted by ∅E, is defined as an IVFSs over X
such that f−e (x) = f+e (x) = 0 for all e ∈ E and any x ∈ X. The absolute IVFSs, denoted by
XE, is defined as an IVFSs over X where f−e (x) = f+e (x) = 1, ∀e ∈ E and any x ∈ X.

Using the matrix form of interval-valued fuzzy relations, authors in [39] represented a
finite IVFSs fE as the following n×m matrix

fE =
[
[ f−ij , f+ij ]

]
n×m

=

[ f−e1
(x1), f+e1

(x1)] . . . [ f−e1
(xm), f+e1

(xm)]
... . . .

...
[ f−en (x1), f+e1

(x1)] . . . [ f−en (xm), f+e1
(xm)]


n×m

where | E |= n, | X |= m and f−ij = f−ei
(xj), f+ij = f+ei

(xj) for i = 1, . . . , n and j = 1, . . . , m.
Accordingly, the concepts of union, intersection, complement, etc., can be represented

in a matrix format in the finite case.
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Definition 3. Ref. [46] A triplet (X, E, τ) is called an interval-valued fuzzy soft topological space
(IVFST) if τ is a collection of interval-valued fuzzy soft subsets of X containing absolute and null
IVFSs and closed under arbitrary union and finite intersection.

Preorders and Topologies
In this subsection, we present some basic properties about the connection between

preorders and topologies proposed by [47].
Topological structures and classical order structures are well recognised to have close

relationships, which can be summarised as follows:
(1) A subset A of X is called an upper set of X if A =↑ A, where ↑ A defined by

↑ A = {y ∈ X : ∃x ∈ A, x ≤ y}, and X is a preordered set, and B is called a lower set
B =↓ B = {y ∈ X : ∃x ∈ X, y ≤ x}.

(2) The family of all upper subsets of x is a topology for a preorder set (X,≤), which is
called the Alexandrov topology induced in (X,≤).

(3) A topological space (X, τ) is defined by x ≤ y if and only if x ∈ U, then y ∈ U for
each open set U of X, or equivalently x ∈ c{y}, where c{y}, is the closure of {y}.
Then, ≤ is a preorder on X, called the specialization order (X, τ) on X.

3. Construction Tow Preorderings in Lower and Upper Spaces
By using the notion of [α1, α2]-level sets of interval-valued fuzzy soft open sets in

(X, E, τ), this section, introduces two topological spaces, known as lower and upper spaces,
by which two preordering relations over the universal set X are investigated.

Definition 4. Let fE be an IVFS set over X. Corresponding to each parameter e ∈ E,, we define
two crisp sets, called α-upper-e crisp set and β-lower-e crisp set, where α = [α1, α2] ⊂ I, β =
[β1, β2] ⊂ I as the following:

U.C.S f
α(e) = {x ∈ X : [ f−e (x), f+e (x)] > α, α ⊆ [0, 1)}

= {x ∈ X : f−e (x) > α1, f+e (x) > α2, α1, α2 ∈ [0, 1)}
L.C.S f

β(e) = {x ∈ X : [ f−e (x), f+e (x)] < β, β ⊆ (0, 1]}
= {x ∈ X : f−e (x) < β1, f+e (x) < β2, β1, β2 ∈ (0, 1]}

Proposition 1. Let X be the set of objects, E be the set of parameters and fE, gE be two IVFSs
over X. Suppose that the threshold intervals α1, α2,⊆ [0, 1), and β1, β2,⊆ (0, 1] are given such
that α1 = [α?1 , α??1 ], α2 = [α?2 , α??2 ], β1 = [β?

1, β??
1 ] and β2 = [β?

2, β??
2 ]. Consider the parameter

e ∈ E.
1. If α1 ≥ α2, then U.C.S f

α1(e) ⊆ U.C.S f
α2(e). If β1 ≥ β2, then L.C.S f

β2
(e) ⊆ L.C.S f

β1
(e).

2. If fE≤̃gE, then U.CS f
α1(e) ⊆ U.C.Sg

α1(e) and L.C.S f
β1
(e) ⊆ L.C.Sg

β1
(e).

3. If fE = XE, then U.C.S f
α1(e) = X and L.C.S f

β1
(e) = ∅. Moreover, if fE = ∅E then,

U.CS f
α1(e) = ∅ and L.CS f

β1
(e) = X.

4. U.C.S f
α1(¬e) = L.CS f

[1−α??1 ,1−α?1 ]
(e) and L.CS f

α1(¬e) = U.CS f
[1−α??1 ,1−α?1 ]

(e).

5. U.CS¬ f
α1 (e) = L.CS f

[1−α??1 ,1−α?1 ]
(e) and L.CS¬ f

α1 (¬e) = U.Des f
[1−α??1 ,1−α?1 ]

(e).

Proof. It is straightforward.

Theorem 1. Let (X, E, τ) be an IVFSTS. Suppose that the threshold intervals α1, α2,⊆ [0, 1),
and β1, β2,⊆ (0, 1] are given such that α = [α1, α2] and β = [β1, β2], then

1. The collection {U.C.S f
α(e) : fE ∈ τ, e ∈ E, α ⊆ [0, 1)}, denoted by τu

e,α, is a topology over X.

2. The collection Bl
β(e) = {L.C.S f

β(e) : fE ∈ τ, e ∈ E, β ⊆ (0, 1]}, is a base for a topology

over X, denoted by τl
e,β.
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Proof. 1. (a) By Proposition 1, X, ∅ ∈ τu
e,α, since XE, ∅E ∈ τ.

(b) Let {U.C.S fi
α (e)}i∈I be a subfamily of τu

e,α. Then, we have
⋃

iU.C.S fi
α (e)

= U.C.S(∨̃i∈I fi)
α (e) ∈ τu

e,α, since ∨̃i∈I fiE ∈ τ.

(c) Let U.C.S f
α(e) and U.C.Sg

α(e) be two open sets in τu
e,α. Then, we have U.CS f

α(e) ∩
U.C.Sg

α(e) = U.C.S( f ∧̃g)
α (e) ∈ τu

e,α, since fE∧̃gE ∈ τ. This completes the proof.
2. (a) That X ∈ Bl

β(e) is implied from ∅E is in τ.

(b) Let L.C.S f
β(e) and L.C.Sg

β(e) in Bl
β(e). Then, we have L.C.S f

β(e) ∩ L.C.Sg
β(e) =

L.C.S f ∨̃g
β (e) ∈ Bl

β(e) that is implied form f ∨̃g ∈ τ.

Theorem 2. Let (X, E, τ) be an IVFSTS. Suppose that the threshold intervals α1, α2,⊆ [0, 1),
and β1, β2,⊆ (0, 1] are given such that α = [α1, α2] and β = [β1, β2].
1. The binary relation %τ

e,α on X defined by

y �τ
e,α x ⇔ [∀V ∈ τu

e,α : x ∈ V ⇒ y ∈ V]

is a preorder relation called α-upper-e preorder relation on X.
2. The binary relation �τ,β

e on X defined by

y �τ,β
e x ⇔ [∀U ∈ τl

e,β : x ∈ U ⇒ y ∈ U]

is a preorder relation called β-lower-e preorder relation on X.

Proof. 1. For all x ∈ X, obviously, x %u
e,α x, that is, “%u

e,α” is reflexive. Now, for all
x, y, z ∈ X, if y %u

e,α x, and z %u
e,α y, then, if for all V ∈ τu

e,α-open set, x ∈ V, then
y ∈ V and z ∈ V, so, z %u

e,α x, that is, “%u
e,α” is transitive. Thererfore, (X,%u

e,α) is a
preordered set.

2. A similar technique is used to prove the second part.

Theorem 3. Let (X, E, τ) be an IVFSTS. Suppose that the threshold intervals α1, α2,⊆ [0, 1),
and β1, β2,⊆ (0, 1] are given such that α = [α1, α2] and β = [β1, β2].
1. The binary relation wτ

e,α,defined by

y wτ
e,α x ⇔ [y %τ

e,α x, x %τ
e,α y]

is an equivalence relation over X. If y wτ
e,α x, then we say x and y are α-upper equivalent

with to respect to the parameter e.
The equivalence relation wτ

e,α, generates the partition Pτ
e,α of X where the equivalence classes

are defined as [x]τe,α = {z ∈ X : z wτ
e,α x and are called α-upper-e equivalence classes.

2. The binary relation wτ,β
e , where β = [β1, β2],

y wτ,β
e x ⇔ [y -τ,β

e x, x -τ,β
e y]

is an equivalence relation over X. If y wτ
e,β x, then we say x and y are [β1, β2]-lower equivalent

with to respect to the parameter e. The equivalence relation wτ,β
e , generates the partition Pτ,β

e

of X where the equivalence classes are defined as [x]τ,β
e = {z ∈ X : z wτ,β

e x and are called
β-lower-e equivalence classes.

Proof. It is straightforward.

Preorder and Equivalence Matrices
Now, let the finite sets X = {x1, · · · , xm} and E = {e1, · · · , en} be given as the sets

of objects and parameters. Then, the previous properties can be represented by using the
matrix form of IVFS sets as the following.
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Take an IVFS set fE over X. First, for any 1 ≤ i ≤ m and 1 ≤ t ≤ n, the concepts of
α-upper-et and β-lower-et matrices of fE, where α, β ⊆ I, can be formulated as the following
two matrices (or row vectors)

U.C.Sαe f
t = [u f

i (et, α)]1×m =

{
1 if f−et (xi) > α1, f+et (xi) > α2
0 if f−et (xi) ≤ α1, f+et (xi) ≤ α2

(1)

and

L.C.Sβe f
t = [l f

i (et, β)]1×m =

{
0 if f−et (xi) ≥ β1, f+et (xi) ≥ β2
1 if f−et (xi) < β1, f+et (xi) < β2

(2)

where α = [α1, α1] and β = [β1, β2] are the given threshold vectors.
Then, obviously, for any et ∈ E, the topologies τu

et ,α and τl
et ,β

can be represented by the
collections

τu
et ,α = {[u f

i (et, α)]1×m : α ⊆ [0, 1), fE ∈ τ, 1 ≤ i ≤ m}
and

τl
et ,β = {[l f

i (et, β)]1×m : β ⊆ (0, 1], fE ∈ τ, 1 ≤ i ≤ m}
where τ is the IVFST on X.

Accordingly, the preorderings �τ
et ,α and �τ,β

et can be represented by

xi �τ
et ,α xj ⇔ [∀ fE ∈ τ : u f

j (et, α) = 1⇒ u f
i (et, α) = 1]

and
xi �τ,β

et xj ⇔ [∀ fE ∈ τ : l f
j (et, β) = 1⇒ l f

i (et, β) = 1]

where xi, xj ∈ X.

The matrix forms of the preorderings %τ
et ,α and -τ,β

et are used to define two comparison
matrices Gα(et) = [gα(et)ij]m×m and Sβ(et) = [sβ(et)ij]m×m, which are two square matrices
whose rows and columns are labeled by the objects of X, as below.

Definition 5. Consider the binary relations %τ
et ,α and -τ,β

et and threshold intervals α = [α1, α2],
β = [β1, β2 ⊆ I. Then, we define

Gα(et) = [gα(et)ij]m×m : g[α1,α2]
(et)ij =

{
1 if xi %τ

et ,α xj
0 otherwis (3)

and

Sβ(et) = [sβ(et)ij]m×m : s[β1,β2]
(et)ij =

{
1 if xi -

τ,β
et xj

0 otherwis
(4)

Proposition 2. Let (X, E, τ) be an IVFST and Gα(e) and Sβ(e) be two matrices defined in
Equations (3) and (4). Then,
1. For 1 ≤ i ≤ m, gα(et)ii = 1 and sβ(et)ii = 1,
2. If gα(et)ij = gα(et)jk = 1, then gα(et)ik = 1. If sβ(et)ij = sβ(et)jk = 1, then sβ(et)ik = 1.
3. Gα(et) and Sβ(et) are symmetric matrices.
where i, j, k ∈ {1, . . . , m}
Proof. It is straightforward.

Proposition 3. Let (X, E, τ) be an IVFSTS and α, β ⊆ I, where α = [α1, α1] and β = [β1, β2]
are the threshold intervals, then
1. Gα(et) is an identity matrix if and only if ¬(xi �τ

etα xj), ∀i, j = 1, . . . , m and i 6= j.

2. Sβ(et) is an identity matrix if and only if ¬(xi �τ,β
et xj), ∀i, j = 1, . . . , m and i 6= j.

3. Gα(et) is a unit matrix if and only if xi �τ
et ,α xj, ∀i, j = 1, . . . , m and i 6= j.

4. Sβ(et) is a unit matrix if and only if xi �τ,β
et xj, ∀i, j = 1, . . . , m and i 6= j.
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Proof. It is straightforward.

Proposition 4. Let (X, E, τ) be an IVFSTS and α, β ⊆ I, where α = [α1, α1], β = [β1, β2] are
the threshold intervals, then
1. Gα(et) = IU

m if and only if we have x1 �τ
et ,α · · · �τ

et ,α xm.

2. Sβ(et) = IU
m if and only if x1 �τ,β

et · · · �
τ,β
et xm.

3. Gα(et) = IL
m if and only if xm �τ

et ,α · · · �τ
et ,α x1.

4. Sβ(et) = IL
m if and only if xm �τ,β

et · · · �
τ,β
et x1.

where IU
m , IL

m are the upper and lower triangular matrix, respectively.

Proof. It is straightforward.
Analogously, the equivalence relations wτ

et ,α and wτ,β
et can be applied to compute the

following two square matrices
EU

α (et) = [eu
α(et)ij]m×m and EL

β(et) = [el
β(et)ij]m×m, respectively, where α = [α1, α2],

β = [β1, β2] ⊆ I.

Definition 6. Consider the binary relations wτ
et ,α and wτ,β

et and threshold intervals α = [α1, α2],
β = [β1, β2 ⊆ I. We define

EU
α (et) = [eu

α(et)ij]m×m : eu
α(et)ij =

{
1 if xi wτ

et ,α xj
0 otherwis (5)

and

EL
β(et) = [el

β(et)ij]m×m : el
β(et)ij =

{
1 if xi w

τ,β
et xj

0 otherwis
(6)

Proposition 5. Let (X, E, τ) be an IVFST and EU
α (et) and EL

β(et) be the comparison matrices
defined in Equations (5) and (6). Then,
1. For any 1 ≤ i ≤ m: eu

α(et)ii = 1 and el
β(et)ii = 1.

2. EU(et) and EL(et) are symmetric matrices.
3. If eu

α(et)ik = eu
α(et)jk = 1, then eu

α(et)ij = eu
α(et)ji = 1. If el

β(et)ik = el
β(et)jk = 1, then

el
β(et)ij = el

β(et)ji = 1.

4. If eu
α(et)ki = eu

α(et)kj = 1, then eu
α(et)ij = eu

α(et)ji = 1. If el
β(et)ki = el

β(et)kj = 1, then

el
β(et)ij = el

β(et)ji = 1.

where i, j, k ∈ {1, · · · , m}

Proof. It is straightforward.

4. An Application in Decision-Making Problems
The main task in decision making methods is to rank the given candidates to find the

optimum choice. Since the proposed preorderings, given in Section 3, are not total or linear,
we define a score function S based on the entries of defined comparison matrices to obtain
a new ranking system of objects according to preorderings %τ

et ,α and -τ,β
et .

Definition 7. Let X and E be the universal sets of objects and parameters, respectively, and α, β ⊆
I, where α = [α1, α1] and β = [β1, β2], are the threshold intervals. The mapping S = X → R
defined by

S(xi) = Si =
n

∑
t=1

([
m

∑
j=1

gα(et)ij −
m

∑
j=1

eu
α(et)ij

]
−
[

m

∑
j=1

sβ(et)ij −
m

∑
j=1

el
β(et)ij

])

where xi ∈ X and Si is score value of object xi.



Mathematics 2021, 9, 1575 7 of 19

Example 1. Suppose that X = {o1, o2, o3, o5} be a set of 5 hotels in Langkawi and
E = {e1, . . . , e4} be a set of parameters where for any t = 1, . . . , 4 the parameter et stands
for “location”, “cleanliness”, “facilities”, and “ food”, respectively. Reviewers are classified into
three groups: couples, solo travelers, and a group of friends. We consider these groups of reviewers
as three different decision-makers, f1, f2, f3, characterized based on the criteria et ∈ E. These three
groups provide the following three IVFS matrices f1E, f2E, f3E.

Step 1. The following three interval-valued fuzzy soft set fsE(s = 1, 2, 3) that are given
in Tables 1–3.

Table 1. f1E.

f1E o1 o2 o3 o4 o5

e1 [0.1, 0.4] [0.4, 0.4] [0.4, 0.5] [0, 0.5] [0.0, 0.0]
e2 [0.5, 0.6] [0.3, 0.6] [0.3, 1.0] [0.7, 1.0] [0.0, 0.7]
e3 [0.0, 0.5] [0.5, 0.8] [0.1, 0.8] [0.1, 0.9] [0.3, 0.9]
e4 [0.0, 0.8] [0.7, 0.8] [0.1, 0.7] [0.1, 1.0] [0.6, 1.0]

Table 2. f2E.

f2E o1 o2 o3 o4 o5

e1 [0.2, 0.6] [0.2, 0.6] [0.6, 0.6] [0.5, 0.6] [0.5, 0.6]
e2 [0.4, 0.8] [0.0, 0.8] [0.0, 0.6] [0.6, 0.9] [0.6, 0.9]
e3 [0.1, 0.5] [0.1, 0.8] [0.6, 0.8] [0.5, 0.6] [0.5, 0.9]
e4 [0.3, 0.6] [0.3, 0.3] [0.2, 0.3] [0.2, 0.7] [0.7, 0.7]

Table 3. f3E.

f3E o1 o2 o3 o4 o5

e1 [0.5, 0.6] [0.6, 0.5] [0.1, 0.8] [0.1, 0.5] [0.5, 0.6]
e2 [0.2, 0.8] [0.2, 0.2] [0.2, 0.2] [0.2, 0.6] [0.1, 0.6]
e3 [0.1, 0.3] [0.1, 0.2] [0.2, 0.3] [0.2, 0.3] [0.2, 0.8]
e4 [0.7, 0.8] [0.0, 0.8] [0.0, 0.1] [0.1, 1.0] [0.1, 0.3]

Step 2. Assume that [α1, α2] = [0.3, 0.6] and [β, β2 = [0.2, 0.4].
Step 3. The upper crisp matrices and lower crisp matrices, as below:

f1 =


0 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 1 0 0 1

, f2 =


0 0 0 0 0
1 0 0 1 1
0 0 1 0 1
0 0 0 0 1

, f3 =


0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0



f1 =


0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

, f2 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

, f3 =


0 0 0 0 0
0 0 0 0 0
1 1 0 0 0
0 0 1 0 1



Step 4. The upper topology and lower topology are shown in Tables 4 and 5.
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Table 4. α-Upper-et topology; α = [α1, α2], t = 1, . . . , 4.

τu
et ,α

e1 {[0]1×5 [1]1×5 [0 1 0 0 0]}
e2 {[0]1×5 [1]1×5 [0 0 0 1 0] [1 0 0 1 1 ]}
e3 {[0]1×5 [1]1×5 [0 1 0 0 0] [0 0 1 0 1 ]

[0 1 1 0 1] }
e4 {[0]1×5 [1]1×5 [0 1 0 0 1] [0 0 0 0 1 ]

[1 0 0 0 0 ] [1 0 0 0 1 ]
[1 1 0 0 1 ] }

Table 5. β-Lower-et topology; β = [β1, β2], t = 1, . . . , 4.

τL
et ,β

e1 {[0]1×5 [1]1×5 [0 0 0 0 1]}
e2 {[0]1×5 [1]1×5}
e3 {[0]1×5 [1]1×5 [1 1 0 0 0 ] }
e4 {[0]1×5 [1]1×5 [0 0 1 0 1]}

Step 5. The comparison matrices G(et, α), S(et, β), EU(et, α) and EU(et, α), over X
where α = [α1, α2], β = [β1, β2], t = 1, . . . , 4 as below:

G(e1, [0.3, 0.6]) =


1 0 1 1 1
1 1 1 1 1
1 0 1 1 1
1 0 1 1 1
1 0 1 1 1

S(e1[0.2, 0.4) =


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
0 0 0 0 1



G(e2, [0.3, 0.6]) =


1 1 1 0 1
0 1 1 0 0
0 1 1 0 0
1 1 1 1 1
1 1 1 1 1

S(e2[0.2, 0.4) =


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1



G(e3, [0.3, 0.6]) =


1 0 0 1 0
1 1 0 1 0
1 0 1 1 1
1 0 0 1 0
1 0 1 1 1

S(e3, [0.2, 0.4) =


1 1 0 0 0
1 1 0 0 0
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1



G(e4, [0.3, 0.6]) =


1 0 1 1 0
0 1 1 1 0
0 0 1 1 0
0 0 1 1 0
0 1 1 1 1

S(e4, [0.2, 0.4) =


1 1 1 1 1
1 1 1 1 1
0 0 1 0 1
1 1 1 1 1
0 0 1 0 1



EU(e1, [0.3, 0.6]) =


1 0 1 1 1
0 1 0 0 0
1 0 1 1 1
1 0 1 1 1
1 0 1 1 1

EL(e1, [0.2, 0.4) =


1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
0 0 0 0 1


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EU(e2, [0.3, 0.6]) =


1 0 0 0 1
0 1 1 0 0
0 1 1 0 0
0 0 0 0 1
1 0 0 1 1

EL(e2, [0.2, 0.4) =


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1



EU(e3, [0.3, 0.6]) =


1 0 0 1 0
0 1 0 0 0
0 0 1 0 1
1 0 0 1 0
0 0 1 0 1

EL(e3, [0.2, 0.4) =


1 1 0 0 0
1 1 0 0 0
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1



EU(e4, [0.3, 0.6]) =


1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 1 1 0
0 0 0 0 1

EL(e4, [0.2, 0.4) =


1 1 0 1 0
1 1 0 1 0
0 0 1 0 1
1 1 0 1 0
0 0 1 0 1


Step 6. By using Definition (2), we have,

S1 = r1(e1; [0.3, 0.6], [0.2, 0.4]) + r1(e2, [0.3, 0.6], [0.2, 0.4]) + r1(e3, [0.3, 0.6], [0.2, 0.4])
+r1(e4, [0.3, 0.6], [0.2, 0.4] = 1.

Similarly, S2 = 5, S3 = 0, S4 = −1, S6 = 5.

Step 7. Then, the ordering is obtained as below

o2 w o5 � o1 � o3 � o4

Steps 8 and 9. Accordingly, o2 and o5 can be the best objects (Acceptance region), while
o4 not be selected(Rejection region), and o1, o3 cannot be judged(Boundary region).

4.1. Comparison with Existing Methods
In this section, we will apply and compare present method and other methods [25,43,44]

using real-life example via datasets given in [47] Table 8 from the www.weather.com.cn
website. (accessed on 15 May 2021).

Example 2. Let an IFVSs fE describes a family who wants to go to a city in China. Suppose that
the weather provides a forecast for fifteen cities in China during the holiday, X = {o1, . . . , o15},
which is shown in Table 6. Suppose that the data of weather forecast describes five parameters
E = {e1, e2, e3, e4, e5}. Parameters et, t = 1, . . . , 5, stand for “temperature”, “air quality index”,

“levels of ultraviolet radiation”, “wind speed”, “precipitation”, respectively.

Step 1. The IVFSs fE is given in Table 6.
Step 2. Suppose that
α = [0.67, 0.92], [0.75, 0.94], [0.66, 0.92], [0.49, 0.75], [0.96, 0.99]
β = [0.14, 0.8], [0.37, 0.77], [0.25, 0.76], [0.26, 0.76], [0.67, 1],
where α = [α1, α2], β = [β1, β2]

www.weather.com.cn
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Table 6. Table for fE.

fE e1 e2 e3 e4 e5

o1 [0.14, 0.86] [0.21, 0.97] [0.0, 0.47] [0.25, 1.0] [1.0, 1.0]
o2 [0.43 ,0.82] [0.45, 0.78] [0.0, 0.33] [0.25, 1.0] [0.83, 1]
o3 [0.64, 1.0] [0.26, 0.63] [0.0, 0.73] [0.5, 1.0] [1.0, 1.0]
o4 [0.5, 0.82] [0.45, 0.82] [0.6, 0.93] [0.0, 1.0] [0.97, 1]
o5 [0.39, 0.68] [0.79, 0.88] [0.67, 1.0] [0.25, 1.0] [0.83, 1]
o6 [0.68, 0.93] [0.6, 0.77] [0.6, 0.93] [0.5, 1.0] [0.58, 1]
o7 [0.36, 0.71] [0.37, 0.96] [0.67, 0.93] [0.0, 0.75] [0.96, 1]
o8 [0.5, 0.89] [0.76, 0.95] [0.67, 1.0] [0.5, 1.0] [0.89, 1]
o9 [0.25, 0.71] [0.02, 1.0] [0.67, 1.0] [0.0, 0.75] [0.58, 1]
o10 [0.0, 0.71] [0.53, 0.92] [0.6, 0.93] [0.5, 0.75] [1.0, 1.0]
o11 [0.0, 0.54] [0.58, 1.0] [0.73, 1.0] [0.0, 0.75] [0.67, 1]
o12 [0.34, 0.89] [0.0, 1.0] [0.67, 1.0] [0.25, 0.75] [1.0, 1.0]
o13 [0.25, 0.71] [0.58, 1.0] [0.73, 1.0] [0.0, 0.75] [0.67, 1]
o14 [0.34, 0.89] [0.53, 0.95] [0.67, 0.93] [0.25, 0.75] [1.0, 1.0]
o15 [0.25, 0.71] [0.66, 0.97] [0.6, 0.93] [0.25, 1.0] [0.0, 1.0]

Steps 3 and 4. The α-Upper-et Crisp and β-Lower-et Crisp; the α-Upper-et Topology
and β-Lower-et Topology (where (t = 1, . . . , 5)) as shown in Tables 7–10.

Table 7. α-Upper-et; t = 1, . . . , 5.

Upper-et Crisp

x x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15
e1 [ 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]
e2 [ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ]
e3 [ 0 0 0 0 1 1 1 1 1 0 1 1 1 1 0]
e4 [ 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 ]
e5 [1 0 1 1 0 0 0 0 0 1 0 1 0 1 0]

Table 8. β-Lower-et; t = 1, . . . , 5.

Lower-et Crisp

x x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15
e1 [ 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0]
e2 [ 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 ]
e3 [ 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0]
e4 [ 0 0 0 0 0 0 1 0 1 0 1 1 1 1 0 ]
e5 [0 0 0 0 0 1 0 0 1 0 0 0 0 0 0]

Table 9. α-Upper-et topology; t = 1, . . . , 5.

τu
et ,α

e1 {[0]1×15, [1]1×15, [ 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]}
e2 {[0]1×15, [1]1×15, [ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ]}
e3 {[0]1×15, [1]1×15, [ 0 0 0 0 1 1 1 1 1 0 1 1 1 1 0]}
e4 {[0]1×15, [1]1×15, [ 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 ]}
e5 {[0]1×15, [1]1×15, [1 0 1 1 0 0 0 0 0 1 0 1 0 1 0]}
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Table 10. β-Lower-et topology; t = 1, . . . , 5.

τl
et ,β

e1 {[0]1×15, [1]1×15, [ 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0]}
e2 {[0]1×15, [1]1×15, [ 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 ]}
e3 {[0]1×15, [1]1×15, [ 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0]}
e4 {[0]1×15, [1]1×15, [ 0 0 0 0 0 0 1 0 1 0 1 1 1 1 0 ]}
e5 {[0]1×15, [1]1×15, [0 0 0 0 0 1 0 0 1 0 0 0 0 0 0]}

Step 5. The comparison matrices G(et, α), S(et, β), EU(et, α) and EL(et, β), where
α = [α1, α2], β = [β1, β2], t = 1, . . . , 5 are below:

G(e1, [0.67, 0.92]) and L(e1, [0.13, 0.8])

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1



&



1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 1 1 1 1


G(e2, [0.75, 0.94]) and L(e2, [0.37, 0.77])

1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 11
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1



&



1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1


G(e3, [0.66, 0.92]) and L(e3, [0.25, 0.76])
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

1 1 1 1 0 0 0 0 0 1 0 0 0 0 1
1 1 1 1 0 0 0 0 0 1 0 0 0 0 1
1 1 1 1 0 0 0 0 0 1 0 0 0 0 1
1 1 1 1 0 0 0 0 0 1 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0 0 1 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0 0 1 0 0 0 0 1



&



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1


G(e4, [0.48, 0.74]) and L(e4, [0.26, 0.76])

1 1 0 1 1 1 1 0 1 0 1 1 1 1 1
1 1 0 1 1 1 1 0 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 0 1 0 1 1 1 1 1
1 1 0 1 1 1 1 0 1 0 1 1 1 1 1
1 1 0 1 1 1 1 0 1 0 1 1 1 1 1
1 1 0 1 1 1 1 0 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 0 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 0 1 0 1 1 1 1 1
1 1 0 1 1 1 1 0 1 0 1 1 1 1 1
1 1 0 1 1 1 1 0 1 0 1 1 1 1 1
1 1 0 1 1 1 1 0 1 0 1 1 1 1 1
1 1 0 1 1 1 1 0 1 0 1 1 1 1 1



&



1 1 1 1 1 1 0 1 0 1 0 0 0 0 1
1 1 1 1 1 1 0 1 0 1 0 0 0 0 1
1 1 1 1 1 1 0 1 0 1 0 0 0 0 1
1 1 1 1 1 1 0 1 0 1 0 0 0 0 1
1 1 1 1 1 1 0 1 0 1 0 0 0 0 1
1 1 1 1 1 1 0 1 0 1 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 1 0 1 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 1 0 1 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 1 0 1 0 0 0 0 1


G(e5, [0.96, 0.99]) and L(e5, [0.67, 1])

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 1 1 1 1 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 1 1 1 1 1 0 1 0 1 0 1
0 1 0 0 1 1 1 1 1 0 1 0 1 0 1
0 1 0 0 1 1 1 1 1 0 1 0 1 0 1
0 1 0 0 1 1 1 1 1 0 1 0 1 0 1
0 1 0 0 1 1 1 1 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 1 1 1 1 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 1 1 1 1 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 1 1 1 1 1 0 1 0 1 0 1



&



1 1 1 1 1 0 1 1 0 1 1 1 1 1 1
1 1 1 1 1 0 1 1 0 1 1 1 1 1 1
1 1 1 1 1 0 1 1 0 1 1 1 1 1 1
1 1 1 1 1 0 1 1 0 1 1 1 1 1 1
1 1 1 1 1 0 1 1 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 0 1 1 1 1 1 1
1 1 1 1 1 0 1 1 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 0 1 1 1 1 1 1
1 1 1 1 1 0 1 1 0 1 1 1 1 1 1
1 1 1 1 1 0 1 1 0 1 1 1 1 1 1
1 1 1 1 1 0 1 1 0 1 1 1 1 1 1
1 1 1 1 1 0 1 1 0 1 1 1 1 1 1
1 1 1 1 1 0 1 1 0 1 1 1 1 1 1


Now, we compute matrices EU(et, α), EL(et, β)α = [α1, α2], β = [β1, β2], t = 1, . . . , 5
EU(e1, [0.67, 0.92]) and EL(e1, [0.13, 0.8])
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

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1



&



1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 1 1 1 1


EU(e2, [0.75, 0.94]) and EL(e2, [0.37, 0.77])

1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 11
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1



&



1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1


EU(e3, [0.66, 0.92]) and EL(e3, [0.25, 0.76])

1 1 1 1 0 0 0 0 0 1 0 0 0 0 1
1 1 1 1 0 0 0 0 0 1 0 0 0 0 1
1 1 1 1 0 0 0 0 0 1 0 0 0 0 1
1 1 1 1 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 1 1 1 1 1 0 1 1 1 1 0
0 0 0 0 1 1 1 1 1 0 1 1 1 1 0
0 0 0 0 1 1 1 1 1 0 1 1 1 1 0
0 0 0 0 1 1 1 1 1 0 1 1 1 1 0
0 0 0 0 1 1 1 1 1 0 1 1 1 1 0
1 1 1 1 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 1 1 1 1 1 0 1 1 1 1 0
0 0 0 0 1 1 1 1 1 0 1 1 1 1 0
0 0 0 0 1 1 1 1 1 0 1 1 1 1 0
0 0 0 0 1 1 1 1 1 0 1 1 1 1 0
1 1 1 1 0 0 0 0 0 1 0 0 0 0 1



&



1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1


EU(e4, [0.48, 0.74]) and EL(e4, [0.26, 0.76])
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

1 1 0 1 1 1 1 0 1 0 1 1 1 1 1
1 1 0 1 1 1 1 0 1 0 1 1 1 1 1
0 0 1 0 0 0 0 1 0 1 0 0 0 0 0
1 1 0 1 1 1 1 0 1 0 1 1 1 1 1
1 1 0 1 1 1 1 0 1 0 1 1 1 1 1
1 1 0 1 1 1 1 0 1 0 1 1 1 1 1
1 1 0 1 1 1 1 0 1 0 1 1 1 1 1
0 0 1 0 0 0 0 1 0 1 0 0 0 0 0
1 1 0 1 1 1 1 0 1 0 1 1 1 1 1
0 0 1 0 0 0 0 1 0 1 0 0 0 0 0
1 1 0 1 1 1 1 0 1 0 1 1 1 1 1
1 1 0 1 1 1 1 0 1 0 1 1 1 1 1
1 1 0 1 1 1 1 0 1 0 1 1 1 1 1
1 1 0 1 1 1 1 0 1 0 1 1 1 1 1
1 1 0 1 1 1 1 0 1 0 1 1 1 1 1



&



1 1 1 1 1 1 0 1 0 1 0 0 0 0 1
1 1 1 1 1 1 0 1 0 1 0 0 0 0 1
1 1 1 1 1 1 0 1 0 1 0 0 0 0 1
1 1 1 1 1 1 0 1 0 1 0 0 0 0 1
1 1 1 1 1 1 0 1 0 1 0 0 0 0 1
1 1 1 1 1 1 0 1 0 1 0 0 0 0 1
0 0 0 0 0 0 1 0 1 0 1 1 1 1 0
1 1 1 1 1 1 0 1 0 1 0 0 0 0 1
0 0 0 0 0 0 1 0 1 0 1 1 1 1 0
1 1 1 1 1 1 0 1 0 1 0 0 0 0 1
0 0 0 0 0 0 1 0 1 0 1 1 1 1 0
0 0 0 0 0 0 1 0 1 0 1 1 1 1 0
0 0 0 0 0 0 1 0 1 0 1 1 1 1 0
0 0 0 0 0 0 1 0 1 0 1 1 1 1 0
1 1 1 1 1 1 0 1 0 1 0 0 0 0 1


EU(e5, [0.96, 0.99]) and EL(e5, [0.67, 1])

1 0 1 1 0 0 0 0 0 1 0 1 0 1 0
0 1 0 0 1 1 1 1 1 0 1 0 1 0 1
1 0 1 1 0 0 0 0 0 1 0 1 0 1 0
1 0 1 1 0 0 − 0 0 1 0 1 0 1 0
0 1 0 0 1 1 1 1 1 0 1 0 1 0 1
0 1 0 0 1 1 1 1 1 0 1 0 1 0 1
0 1 0 0 1 1 1 1 1 0 1 0 1 0 1
0 1 0 0 1 1 1 1 1 0 1 0 1 0 1
0 1 0 0 1 1 1 1 1 0 1 0 1 0 1
1 0 1 1 0 0 0 0 0 1 0 1 0 1 0
0 1 0 0 1 1 1 1 1 0 1 0 1 0 1
1 0 1 1 0 0 0 0 0 1 0 1 0 1 0
0 1 0 0 1 1 1 1 1 0 1 0 1 0 1
1 0 1 1 0 0 0 0 0 1 0 1 0 1 0
0 1 0 0 1 1 1 1 1 0 1 0 1 0 1



&



1 1 1 1 1 0 1 1 0 1 1 1 1 1 1
1 1 1 1 1 0 1 1 0 1 1 1 1 1 1
1 1 1 1 1 0 1 1 0 1 1 1 1 1 1
1 1 1 1 1 0 1 1 0 1 1 1 1 1 1
1 1 1 1 1 0 1 1 0 1 1 1 1 1 1
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
1 1 1 1 1 0 1 1 0 1 1 1 1 1 1
1 1 1 1 1 0 1 1 0 1 1 1 1 1 1
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
1 1 1 1 1 0 1 1 0 1 1 1 1 1 1
1 1 1 1 1 0 1 1 0 1 1 1 1 1 1
1 1 1 1 1 0 1 1 0 1 1 1 1 1 1
1 1 1 1 1 0 1 1 0 1 1 1 1 1 1
1 1 1 1 1 0 1 1 0 1 1 1 1 1 1
1 1 1 1 1 0 1 1 0 1 1 1 1 1 1


Step 6. By using Definition (7), we have:

S1 = r1(e1; [0.67, 0.92], [0.13, 0.8]) + r1(e2, [0.75, 0.94], [0.37, 0.77]) + r1

(e3, [0.66, 0.92], [0.25, 0.76]) + r1(e4, [0.48, 0.74], [0.26, 0.76] + r1(e5, [0.96, 0.99], [0.67, 1]
= 0 + 0− 3 + 0 + 0 = −3

Similarly, we have:

S2 = −12, S3 = −5, S4 = −9, S5 = 6, S6 = 7, S7 = 15, S8 = 42, S9 = 2,
S8 = 42, S9 = 2, S10 = 8, S11 = −16, S12 = 6, S13 = −3, S14 = −9, S15 = 0.

Step 7. We have the following ordering system on X :

o8 � o7 � o10 � o6 � o12 ' o5 � o9 � o15 � o13 ' o1 � o14 ' o4 � o2 � o11.

Steps 8 and 9. Then, from the corresponding object, we obtain, o8 to be the best
object (Acceptance region), while o11 is not selected (Rejection region) and others options
(o7, o10, o6, o12, o5, o9, o15,
o13, o1, o14, o4, o2) cannot be judged(Boundary region).

Example 3. (Example 2) Let us discuss Example 2 compared to existing methods proposed
in [25,43,44] according to the ranking of objects.
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Yang et al. [25] defined the function score value as simply the total of lower and upper
membership degrees of objects concerning each parameter. Ma et al. [44] applied Yang’s Algorithm 1,
which is given in [25] to solve Example 2 and showed the score value as follows: o8 � o6 � o14 �
o5 � o4 � o10 � o12 � o3 � o7 � o13 � o15 � o11 � o9 � o2 � o1.

Ma et al. [44] proposed a new efficient decision-making algorithm by using added objects. By
using Algorithm 3 Section 4 in [44], Example 2 was solved and the score value for all objects was
obtained as follows o8 � o6 � o14 � o5 � o4 � o10 � o12 � o3 � o7 � o13 � o15 � o11 �
o9 � o2 � o1.

Ma et al. [43] applied a new decision-making algorithm, based on the average table and the
antithesis table—the antithesis the table has symmetry between the objects. Applying Algorithm
in [43], Section 3, to solve the Example 2, the following ranking of objects is obtained o8 � o6 �
o5 � o14 � o4 � o12 � o10 � o3 � o13 � o7 � o15 � o11 � o2 � o9 � o1.

The comparison results among the present method and methods in [25,43,44] are given in
Figure 1.

Algorithm 1: Rangking Objects by Interval-Valued Fuzzy Soft Topology
Input:
|E| = n, |X| = m, |D| = k, fsE, 1 ≤ s ≤ k,
threshold intervals α, β ⊆ I,
where n, m the number of parameters, object, respectively, and k shows the

number of decision makers, and fsE shows the matrix of IVFSs.
Output: Optimal objects and worst objects.
begin
while t = 1, 2, . . . , n, i = 1, 2, . . . m, and s = 1, 2, . . . k do

Step 1. Compute crisp sets U.C.Sα fs(et), L.C.Sβ fs(et) ( see Matrices (1) and (2)).
Step 2. Compute topological (X, τu

et ,α), (X, τl
et ,β

) ( ).

Step 3. Compute Gα(et), Sβ(et), EU
α (et), and EL

β(et)( see (3)–(6)), for all
t = 1, 2, . . . n;

if Gα(et) = IU
m and Sβ(et) = IL

m then
x1 is the optimum decision and xm is the worst one ;

else
if Gα(et) = IL

m and Sβ(et) = IU
m then

xm is the optimum decision and x1 is the worst one;
else

if EU
α (et) = EL

β(et) = Im, where Im is the identiy matrix then
there is no optimal over X;

else
if EU

α (et) = EL
β(et) = Jm, where Jm is the unit matrix then

all objects of X can be selected as an optimal choice;
else

Go to the step 6.
Step 4. Calculate the score function Si∀i( Definition 7).
Step 5.Rank all objects according to the values Si.

Step 6.The optimal alternative is to choose any one of the alternatives xo
such that So = maxi Si.

The alternative xl such that Sl = mini Si should not be selected.
Step 7.if the number of elements that So is maximum is more one then

any one of xo may be chosen.
else
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Step 8 and 9. Then the corresponding object we get, o8 is the best object
(Acceptance region) , while o11 not be selected(Rejection region) and others options
(o7, o10, o6, o12, o5, o9, o15, o13, o1, o14, o4, o2) cannot be judged(Boundary region).

Example 4.3. (Example4.2) let us discuss Example4.2 to existing methods proposed
in [25, 28, 46] according to the ranking of objects.

Yang et at.[25] defined the function score value is just the total of lower and
upper membership degrees of objects concerning each parameter. Ma et al. [46]
applied yang’s Algorithm 1 that given in [25] to solve Example 4.2 and showed the
score value as following: o8 � o6 � o14 � o5 � o4 � o10 � o12 � o3 � o7 � o13 �
o15 � o11 � o9 � o2 � o1.

Ma et al. [46]proposed a new efficient decision-making algorithm by using the
added objects. By using Algorithm 3 Section 4 3 in [46] , solved Example 4.2 and
obtained the score value for all objects the following as o8 � o6 � o14 � o5 � o4 �
o10 � o12 � o3 � o7 � o13 � o15 � o11 � o9 � o2 � o1.

Ma et al.[28] applying a new decision-making algorithm, based on the average
table and the antithesis table, the antithesis the table has symmetry between the
objects. Applying Algorithm in[28], Section 3, to solve the example 4.2, the following
ranking of objects is obtained o8 � o6 � o5 � o14 � o4 � o12 � o10 � o3 � o13 �
o7 � o15 � o11 � o2 � o9 � o1.

The comparison results among present method and methods in [25, 28, 46] are
given in Figs.1

Figure 1: Comparison methods

5 Discussion

According to present method and the methods proposed in [25, 28, 46], to reach
the process consensus, yang et al.[25] use ”AND” operator, while methods [28, 46],

19

Figure 1. Comparison methods.

5. Discussion
According to the present method and the methods proposed in [25,43,44], to reach

the process consensus, Yang et al. [25] use the “AND” operator, while methods in [43,44]
did not discuss the aggregation problem. In addition, Example 2 shows that all the
methods have the same option o8, which is the best object. Consequently, algorithms
in methods [25,43,44] select just one option, which is the optimum, and do not select
the worst option, while the proposed algorithm selects two options—the optimum and
as well as the worst option. However, the methods in [25,43,44], rank the objects based
on a linear ordering system (see Example 3), while the present method ranks the objects
based on preorder relation and a preference relationship, which allows one to have some
incomparable objects (nonlinear ordering system). For example, in the Example 2, the
objects o12 and o5 have the same overall score values, which means that these objects cannot
be compared with all of the others.

This is the same for the objects o13, o1 and o14, o4 (see Figure 2). The comparison results
between the new proposed method and methods in [25,43,44] are also given in Table 11.

Table 11. Comparison of Existing Methods

Methods Output Aggregation Ranking Methodology Rank the ObjectsComparision Methodology

[25] optimal option AND operator fuzzy choice values a linear ordering system

[44] optimal option Not discussed choice values a linear ordering system

[43] optimal option Not discussed
score function computed

a linear ordering systemfrom an average and
an antithesis tables

present method optimal option IVFST A collective preference a nonlinear ordering systemand worst relationship in topological space
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discussed not the aggregation problem. In addition, Example 4.2 shows all the
methods have the same option o8, which is the best object. Consequently, algorithms
in methods[25, 28, 46] select just one option which is the optimum do not select the
worst option, while proposed algorithm selects two options; the optimum and as well
as the worst option. However, the methods in [25, 28, 46], rank the objects based on
a linear ordering system(see Example 4.3), while present method uses ranking the
objects based on preorder relation and a preference relationship which allows one
to have some incomparable objects(nonlinear ordering system). For example, in the
Example 4.2, the objects o12 and o5 have the same overall score values, which means
that these objects cannot be compared with all others, similarly the objects o13, o1
and o14, o4 (see Figs. 2). The comparison results between new proposed method
and methods in [25, 46, 28] are also given in Table 11

Figure 2: Nonlinear ordering system

20

Figure 2. Nonlinear ordering system.

6. Conclusions
The interval-valued soft set is a useful tool to deal with fuzziness and uncertainties in

decision-making problems. In this paper, we constructed two crisp topological spaces over
the set of objects, and then presented two different preorder relations in these topological
spaces. By using a new method for ranking data, we proposed an approach for solving
multi-attribute group decision-making problems by using a new method for ranking data.
Finally, a real-life example has been presented to verify the proposed method approach
and to demonstrate the effectiveness by comparing the results with those of some of the
existing approaches.

For future research, it would be of merit to apply the decision-making methods into
practical applications such as evaluation systems, recommender systems, and
conflict handling.
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