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Abstract: In this paper, we propose a new calculation method for the regularization factor in sparse
recursive least squares (SRLS) with l1-norm penalty. The proposed regularization factor requires no
prior knowledge of the actual system impulse response, and it also reduces computational complexity
by about half. In the simulation, we use Mean Square Deviation (MSD) to evaluate the performance
of SRLS, using the proposed regularization factor. The simulation results demonstrate that SRLS
using the proposed regularization factor calculation shows a difference of less than 2 dB in MSD from
SRLS, using the conventional regularization factor with a true system impulse response. Therefore,
it is confirmed that the performance of the proposed method is very similar to that of the existing
method, even with half the computational complexity.

Keywords: sparse impulse response system; sparse system estimation; l1-RLS; regularization factor

1. Introduction

The sparse channel system refers to a model characterized by only a few numbers
of non-zero taps when modeling the impulse response of the channel system, using the
tapped-delay-line model. We can experience such channels in TV channels [1], wide-band
radio communication [2], underwater sound channels [3], etc. [4]. There have been many
recent works on the use of adaptive estimation for sparse channel estimation; subsequently,
various LMS-type algorithms [5,6] such as sparse LMF algorithms [7,8] and sparse LMS/F
algorithms [9,10] have been proposed for sparse channel estimation. The RLS algorithm
is better suited to fast convergence rates than the LMS-type algorithm. Hence, the RLS-
based sparse adaptive filtering algorithm is considered one of the most promising fast
algorithms in many system estimation applications, such as channel estimation. There
are some algorithms based on sparse RLS [11–14] as well as the Total Least Squares (TLS)-
based algorithm [15,16]. Many sparse RLS algorithms are algorithmically comparable
to the plain RLS algorithm; however, the updated equations in most sparse RLS (SRLS)
algorithms are not intrinsically recursive, as in the plain RLS algorithm. Eksioglu and
Tanc [13] proposed a fully recursive SRLS algorithm that is comparable to the plain RLS
algorithm. The sparse RLS algorithms handle the sparsity with l1-norm. Therefore, it is
essential to properly select the regularization factor for l1-norm. Many researchers have
developed as well as proposed a proper selection for the regularization factor. The authors
in [13] also proposed a regularization factor calculation method for the SRLS algorithm.
Similar recursive regularization factor selection methods were used in [15–19]. However,
the algorithm from [15–18] is not practical because the regularization factor in [15–17]
assumed that the true system impulse response is known in advance and set the true
system response in part to an arbitrary constant in [18]. The regularization factor selection
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method in [19] needs no true system impulse response. However, the regularization factor
is recursively updated. Therefore, errors in updating the regularization factor are likely to
propagate and accumulate. In [20], Lim proposed the regularization factor by estimating
the sparsity of the estimated system. Although the regularization factor required no true
system information, it added error to the system. Then Lim in [20] utilized it only to TLS-
based system modeling. In [21], l1-IWF (iterative Wiener filter) was proposed, which was a
kind of a steepest descent method. l1-IWF had a regularization factor without requiring
a priori knowledge of the true system response. However, it did not show whether the
regularization factor converges to the optimal regularization factor.

In this paper, the major contribution is that we propose a new regularization factor for
the SRLS algorithm in [13] and show that it converges to the scaled optimal regularization
factor. The proposed regularization factor does not require a priori knowledge of the true
system response. The minor contribution is that the proposed regularization factor requires
less computation complexity than the regularization in [13].

The remainder of the paper is organized as follows. In Section 2, we reformulate
the sparse RLS. In Section 3, a new regularization factor is proposed. In this section, we
show that the regularization factor in [13] requires a priori knowledge of the true system
impulse response. We also show the calculation complexity of the proposed regularization
factor. The simulation condition and results are described and illustrated in Section 4, and
a discussion of the results follows in Section 5. We conclude in Section 6.

2. Problem Formulation

In this section, we reformulate the SRLS in [13]. Consider a sparse weight vector
wo ∈ RN , which represents the channel by a delay line with N taps. By sparsity, the number
of significant factors in wo, S, is much lower than its total dimensionality (that is, S� N).
The goal is to derive the sparse vector wo based on the input signal vector x(n) ∈ RN and
the received signal y(n), which is assumed to be generated by a linear system, such as (1).

y(n) = wT
o x(n) + η(n) , (1)

where η(n) is the additive noise. Consider the following standard RLS optimization problem,
subject to a sparsity constraint.

minimize(ŵ(n)) =
1
2

n

∑
m=0

λn−me(m)2, s.t. ‖ŵ(n)‖1 ≤ c , (2)

where e(m) = y(m) − ŵ(n)Tx(m), ŵ(n) = [ŵ1(n), · · · , ŵN(n)]
T , x(m) = [x(m), x(m −

1), · · · , x(m − N + 1)]T , λ is a forgetting factor, and ‖ŵ(n)‖1 = ∑N−1
k=0 |ŵk(n)|. As the

reformulation in [22], (2) becomes the following:

J(ŵ(n), γ(n)) =
1
2

ζ(ŵ(n)) + γ(n)(‖ŵ(n)‖1 − c), (3)

where γ(n) is a real-valued Lagrangian multiplier. We can find the optimal vector by
minimizing the regularized cost function (3). The regularized cost function is convex and
nondifferentiable; therefore, subgradient analysis is used instead of the normal gradient.
When representing a subgradient of f at ŵ with ∇s f (ŵ), the subgradient of J(ŵ(n), γ(n))
with respect to ŵ(n) is as follows.

∇s J(ŵ(n), γ(n)) =
1
2
∇ζ(ŵ(n)) + γ(n)∇s(‖ŵ(n)‖1), (4)

where ∇s(‖ŵ(n)‖1) = sgn(ŵ(n)) [13]. Here, sgn(·) means the element-wise sign func-
tion. Hence, for the optimal ŵ(n) for J(ŵ(n), γ(n)), we set (4) to 0 at the optimal point.
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After evaluating the gradient ∇ζ(ŵ(n)), (4) can be written as normal equations in matrix
form as follows [13].

Φ(n)ŵ(n) = r(n)− γ(n)∇s(‖ŵ(n)‖1), (5)

where Φ(n) =
n
∑

m=0
λn−mx(m)x(m)T = λΦ(n− 1) + x(n)x(n)T and r(n) =

n
∑

m=0
λn−my(m)

x(m) = λr(n− 1) + y(n)x(n). With P(n) = Φ−1(n) =
(
λΦ(n− 1) + x(n)x(n)T)−1 and

using the matrix inversion lemma, we obtain the following:

P(n) = λ−1
(

P(n− 1)− k(n)x(n)TP(n− 1)
)

, (6)

where k(n) = P(n− 1)x(n)/
(
λ + x(n)TP(n− 1)x(n)

)
is the gain vector. Assuming that

γ(n− 1) and ∇s‖ŵ(n− 1)‖1 do not change considerably over a single time step, the up-
dated equation of ŵ(n) can be approximately written as follows [13]:

ŵ(n) ∼= ŵ(n− 1) + k(n)ξ(n)− (1− λ)γ(n− 1)P(n)∇s‖ŵ(n− 1)‖1
= ŵ(n− 1) + k(n)ξ(n) + (1− λ)γ̂(n− 1)P(n)∇s‖ŵ(n− 1)‖1 ,

(7)

where γ̂(n) = −γ(n) and ξ(n) = y(n)− ŵ(n− 1)Tx(n).
Algorithm 1 summarizes the conventional RLS algorithm and Algorithm 2 summa-

rizes the l1-norm sparse RLS algorithm.

Algorithm 1 conventional RLS algorithm

1: Initialize: λ, x(0), y(0), wRLS(0) = 0, η, P(0) = η−1I
2: for n = 1, 2, . . . do
3: k(n) = P(n− 1)x(n)/

(
λ + x(n)TP(n− 1)x(n)

)
4: e(n) = y(n)−wRLS(n− 1)Tx(n)
5: P(n) = λ−1(P(n− 1)− k(n)x(n)TP(n− 1)

)
6: wRLS(n) = wRLS(n− 1) + k(n)e(n)
7: end for

Algorithm 2 l1-norm sparse RLS algorithm

1: Initialize: λ, x(0), y(0), ŵ(0) = 0, η, P(0) = η−1I
2: for n = 1, 2, . . . do
3: k(n) = P(n− 1)x(n)/

(
λ + x(n)TP(n− 1)x(n)

)
4: ξ(n) = y(n)− ŵ(n− 1)Tx(n)
5: P(n) = λ−1(P(n− 1)− k(n)x(n)TP(n− 1)

)
6: calculate γ̂(n− 1)
7: ŵ(n) = ŵ(n− 1) + k(n)ξ(n) + (1− λ)γ̂(n− 1)P(n)∇s‖ŵ(n− 1)‖1
8: end for

3. Proposed Recursive Regularization Factor for Sparse RLS Algorithm

In this section, we derive the regularization factor, γ̂(n− 1), such that ‖ŵ(n− 1)‖1 = c,
which means that the l1-norm of ŵ(n) is preserved for all the time steps in n. This property
yields the time invariance in ŵ(n) [23].

d ‖ŵ(n)‖1
dn =

(
∂ ‖ŵ(n)‖1

∂ŵ(n)

)T dŵ(n)
dn = (∇s ‖ŵ(n)‖1)

T
(
(ŵ(n)−ŵ(n−Ts))

Ts

)
' (∇s ‖ŵ(n− 1)‖1)

T
(
(ŵ(n)−ŵ(n−Ts))

Ts

)
= 0 .

(8)

By referring to (7) and assuming a normalized sample time Ts to 1 [24], (8) is as follows.

(∇s ‖ŵ(n− 1)‖1)
T(k(n)ξ(n) + (1− λ)γ̂(n− 1)P(n)∇s ‖ŵ(n− 1)‖1) = 0 . (9)
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Hence, γ̂(n− 1) in (9) becomes the following:

γ̂(n− 1) = − (∇s‖ŵ(n− 1)‖1)
Tk(n)ξ(n)

(1− λ)(∇s‖ŵ(n− 1)‖1)
TP(n)∇s‖ŵ(n− 1)‖1

. (10)

Eksioglu derived the upper bound of the regularization parameter γ̂(n) in [13] as follows:

γ̄(n) = 2
(∇s‖ŵ(n)‖1)

TP(n)ε̃(n)

‖P(n)∇s‖ŵ(n)‖1‖
2
2

, (11)

where ε̃(n) = w̃(n)−wo and w̃(n) is the solution to the conventional non-regularized
normal equation as w̃(n) = P(n)r(n) [25]. In (11), the true system impulse response, wo,
must be known in advance for ε̃(n) = w̃(n)−wo.

If we assume that x(n) is a white noise process, its autocorrelation matrix, Φ(n),
asymptotically becomes σ2

x I and then P(n) = Φ(n)−1 ∼= σ−2
x (1− λ)I [25]. Therefore, (11)

asymptotically becomes the following:

γ̄(n) ∼=
2σ2

x
(1− λ)

(∇s‖ŵ(n)‖1)
T ε̃(n)

‖∇s‖ŵ(n)‖1‖
2
2

. (12)

Eksioglu also showed that, if the regularization parameter γ̂(n) is 0 ≤ γ̂(n) ≤ γ̄(n),
the following inequality is satisfied.

‖ŵ(n)−wo‖2
2 ≤ ‖w̃(n)−wo‖2

2. (13)

This means that the estimation error with regularization is lower than the estimation
error without regularization.

In order to review the asymptotic meaning of the proposed regularization in (10), we
also assume x(n) is a white noise process whose autocorrelation matrix, Φ(n), asymptoti-
cally becomes σ2

x I and then P(n) = Φ(n)−1 ∼= σ−2
x (1− λ)I [25]. We use the simplified gain

vector k(n) in [25].
k(n) = P(n)x(n), (14)

and approximate the error, ξ(n), in high SNR,

ξ(n) = y(n)− xT(n)ŵ(n− 1) ∼= xT(n)wo − xT(n)ŵ(n− 1)
= −xT(n)(ŵ(n− 1)−wo) ∼= −xT(n)(w̃(n− 1)−wo).

(15)

When we substitute (10) with (14) and (15), we can rewrite the proposed regularization
in (10) as follows:

γ̂(n− 1) =
(∇s‖ŵ(n− 1)‖1)

TP(n)x(n)xT(n)(ŵ(n− 1)−wo)

(1− λ)(∇s‖ŵ(n− 1)‖1)
TP(n)∇s‖ŵ(n− 1)‖1

. (16)

In (16), P(n)x(n)xT(n) can be asymptotically approximated as the expected value of
(17) in [26].

E
(

P(n)x(n)xT(n)
)
∼=

(1− λ)(
1− λk+1

) I ∼= (1− λ)I. (17)

Substituting (16) with (17) and P(n) ∼= σ−2
x (1− λ)I, the variable regularization factor

in (16) becomes the following:

γ̂(n− 1) ∼=
σ2

x
1− λ

(‖ŵ(n− 1)‖1)
T ε̃(n− 1)

‖∇s‖ŵ(n− 1)‖1‖
2
2

=
1
2

γ̄(n− 1), (18)
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γ̂(n− 1) =
1
2

γ̄(n− 1). (19)

In (19), the proposed regularization parameter is approximately converse to the scaled
optimal regularization parameter in [13]. Therefore, the newly derived regularization
parameter γ̂(n) in (19) satisfies 0 ≤ γ̂(n) ≤ γ̄(n). Therefore, the proposed regularization
parameter can be used as a regularization parameter on behalf of the optimal regularization
parameter. In addition, the proposed regularization parameter needs no true system
parameter wo.

In terms of computational complexity, the difference between SRLS in [13] and the
proposed algorithm lies only in the computational complexity of the regularization factor.
Therefore, we can compare the computational complexity between the proposed regulariza-
tion factor in (10) and the regularization factor in (11) from [13]. Actually, the regularization
factor used in [13] is (20), which is an approximation of (11).

γ̂(n− 1) = 2

(
tr(P(n−1))

N ( f (ŵ(n− 1))−wo)
‖P(n−1)∇s f (ŵ(n−1))‖2

2
+∇

s f (ŵ(n−1))P(n−1)(ŵ(n)−ŵRLS(n−1))
‖P(n−1)∇s f (ŵ(n−1))‖2

2

)
= 2

(
tr(P(n−1))

N (‖ŵ(n− 1)‖1 − ‖wo‖1)

‖P(n−1)sgn(ŵ(n−1))‖2
2

+
sgn(ŵ(n−1))P(n−1)(ŵ(n)−ŵRLS(n−1))

‖P(n−1)sgn(ŵ(n−1))‖2
2

)
,

(20)

where wo is the true system response, f (ŵ(n)) = ‖ŵ(n)‖1,∇s ‖ŵ‖1 = sgn(ŵ) and ŵRLS(n)
is a solution from the conventional RLS algorithm [13]. And applying∇s ‖ŵ‖1 = sgn(ŵ) to
the proposed regularization factor (10), it becomes as follows:

γ̂(n− 1) = − ∇s f (ŵ(n−1))Tk(n)ζ(n)
(1−λ)∇s f (ŵ(n−1))TP(n−1)∇s f (ŵ(n−1))

= − sgn(ŵ(n−1))Tk(n)ζ(n)
(1−λ)sgn(ŵ(n−1))TP(n−1)sgn(ŵ(n−1))

.
(21)

The regularization factor is calculated in line 6 in Algorithm 2. When calculating the
complexity of the regularization factor, it should be taken into account that the regularization
factor uses the elements calculated before line 6. Taking this into account and calculating the
complexity, (20) requires 2N + 3 multiplications, whereas (21) requires N + 1 multiplications.

4. Simulation Results

For the simulation in this section, we set the same experimental conditions as in [13]
(code is available at https://web.itu.edu.tr/eksioglue/pubs.htm accessed on 16 March
2021). We assume two system parameters, wo, with N = 64 taps and 256 taps, respectively.
Out of the N coefficients, the only S coefficients are not zero. We generate the values of
coefficients from an N(0, 1/S) distribution and randomly place the non-zero coefficients.

In the simulation, we show the system estimation results, using the proposed regular-
ization factor that does not require the true system response information. We compare the
l1-RLS using the true system response [13], the l1-RLS in [19], l1-IWF in [21] and the l1-RLS,
using the proposed regularization factor selection method. In addition, we compare the
estimation result from the conventional RLS. We simulate these algorithms in the sparse
impulse response for S = 2, 4, 8, and 16 for the performance evaluation. Figure 1 shows
the Mean Square Deviation (MSD) comparison results in the case of an order N = 64
at SNR = 20 dB, where MSD(ŵ(n)) = E

{
‖wo − ŵ(n)‖2

}
. Figure 2 also shows the MSD

comparison results in the case of an order N = 256 at SNR = 20 dB. In addition, the MSD
comparison results are summarized in Table 1 at SNR = 20 dB, 10 dB and 0 dB, respectively.

https://web.itu.edu.tr/eksioglue/pubs.htm 
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Figure 1. MSD comparison in N = 64 for S = 2, 4, 8, and 16 when applying the proposed regularization
factor to the l1-RLS: (a) MSD at S = 2 (b) MSD at S = 4 (c) MSD at S = 8 (d) MSD at S = 16 (-.-: l1-RLS
using the proposed regularization factor without the true system impulse response, -×-: l1-RLS using
the conventional regularization factor with the true system impulse response, -◦-: l1-RLS from [19],
-�-: conventional RLS without considering sparsity, -O-: l1-IWF from [21]).
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Figure 2. MSD comparison in N = 256 for S = 2, 4, 8, and 16 when applying the proposed regular-
ization factor to the l1-RLS: (a) MSD at S = 2 (b) MSD at S = 4 (c) MSD at S = 8 (d) MSD at S = 16
(-.-: l1-RLS using the proposed regularization factor without the true system impulse response,
-×-: l1-RLS using the conventional regularization factor with the true system impulse response, -◦-:
l1-RLS from [19], -�-: conventional RLS without considering sparsity, -O-: l1-IWF from [21]).

Table 1. MSD comparison in various SNR.

Channel Length No. of Non-Zero Coefficients SNR 20 dB 10 dB 0 dB

L = 64

S = 4

proposed method −30.0 −20.2 −10.2

l1-RLS with true impulse response −30.8 −20.6 −11.0

l1-RLS from [19] −28.7 −18.7 −8.7

l1-IWF from [21] −29.5 −19.7 −9.0

conventional RLS −27.7 −17.5 −7.8

S = 16

proposed method −28.4 −18.6 −9.1

l1-RLS with true impulse response −28.5 −18.5 −9.3

l1-RLS from [19] −28.5 −18.4 −8.6

l1-IWF from [21] −29.0 −18.8 −9.2

conventional RLS −27.6 −17.7 −7.8

L = 256

S = 4

proposed method −24.4 −14.3 −4.2

l1-RLS with true impulse response −25.3 −15.5 −5.5

l1-RLS from [19] −22.7 −12.7 −2.6

l1-IWF from [21] −25.2 −15.2 −3.6

conventional RLS −21.2 −11.2 −1.4

S = 16

proposed method −24.2 −14.3 −4.4

l1-RLS with true impulse response −24.6 −14.6 −5.0

l1-RLS from [19] −22.7 −12.5 −2.6

l1-IWF from [21] −24.8 −14.8 −3.4

conventional RLS −21.1 −11.1 −1.4

5. Discussion

The MSD comparison results in Figure 1 show that the estimation performance of
l1-RLS, using the regularization factor of the proposed method, is almost the same as the
l1-RLS, using the regularization factor with the true system impulse response. l1-IWF
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also performs almost the same as the l1-RLS with the true system information as the
results in [21]. The results from the proposed algorithm are even better than those of the
l1-RLS in [19]. Predictably, the conventional RLS has the worst MSD in all cases. Figure 1
confirms that, despite having no prior knowledge of the true system response, the proposed
regularization factor is comparable to the conventional regularization factor with the true
system impulse response.

Figure 2 shows the MSD results for a longer-order system: N = 256. We can see that
Figure 2 has very similar results to those in Figure 1. Therefore, it can be confirmed that the
proposed regularization factor calculation method works well, regardless of the system dimension.

Table 1 shows the performance of sparse RLS, using the proposed regularization factor
calculation method, compared with other algorithms in various SNR situations. The perfor-
mance of l1-IWF is also similar to that of the proposed algorithm, but the performance of the
proposed algorithm is better at low SNR. The results of Table 1 shows that, although SRLS
using the proposed regularization factor does not actually utilize the impulse response of
the true system, the MSD difference between SRLS with the regularization factor using
information on the actual impulse response of the target system, and SRLS with the proposed
regularization factor, is less than 2 dB. Therefore, it can be said that the performance of the
two SRLS is very similar. In addition, as mentioned in Section 3, it is also remarkable that the
computational complexity of the regularization factor can be reduced by about half of the
conventional regularization factor.

6. Conclusions

In this paper, we proposed a new calculation method for a regularization factor in
l1-RLS, requiring no prior knowledge of the true system response. We also showed that
the proposed regularization factor converges to the scaled optimal regularization factor.
Therefore, we have shown that the proposed regularization factor can be used on behalf
of the optimal regularization factor. The simulation results confirmed that the proposed
regularization factor behaves almost the same as the conventional regularization factor
with the true system response.
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