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Abstract: The paper presents a new mathematical model of TCP (Transmission Control Protocol)
link functioning in a heterogeneous (wired/wireless) channel. It represents a controllable, partially
observable stochastic dynamic system. The system state describes the status of the modeled TCP
link and expresses it via an unobservable controllable MJP (Markov jump process) with finite-state
space. Observations are formed by low-frequency counting processes of packet losses and timeouts
and a high-frequency compound Poisson process of packet acknowledgments. The information
transmission through the TCP-equipped channel is considered a stochastic control problem with
incomplete information. The main idea to solve it is to impose the separation principle on the
problem. The paper proposes a mathematical framework and algorithmic support to implement
the solution. It includes a solution to the stochastic control problem with complete information, a
diffusion approximation of the high-frequency observations, a solution to the MJP state filtering
problem given the observations with multiplicative noises, and a numerical scheme of the filtering
algorithm. The paper also contains the results of a comparative study of the proposed state-based
congestion control algorithm with the contemporary TCP versions: Illinois, CUBIC, Compound, and
BBR (Bottleneck Bandwidth and RTT).

Keywords: controllable Markov jump processes; compound Poisson processes; diffusion limits;
stochastic control problem with incomplete information; novel queuing models in applications

1. Introduction

Despite its age of almost 50 years, the Transmission Control Protocol (TCP) [1] is still
an object of permanent modernization and improvement, and this evolution represents a
natural perpetual process. The root of this development lies in incessant challenges caused
by a wide variety of computer networks, impetuous progress in the communication devices
design, and strengthening of requirements to the information transmission [2–4]. Mean-
while, guaranteeing data transfer independent of the hardware platform is the key task of
the TCP algorithm; both the stable functioning and effective use of the available channel
bandwidth are also the performance characteristics of each specific version of TCP. The
congestion control algorithms are responsible for the implementation of all these functions.
They use two characteristics as the control actions. The basic one is the congestion window
size (cwnd), i.e., the number of packets sent without acknowledgment. A less influential
one is the retransmission timeout, i.e., some waiting time for the acknowledgment of the
successful packet reception, which excess is treated by the congestion control algorithm as
a packet loss.
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When most channels were wire channels and had a relatively small capacity and
queue waiting time “Additive Increase–Multiple Decrease” (AIMD) congestion control rule
demonstrated good performance. This presumed a linear growth of the cwnd between two
successive packet losses when the cwnd abruptly decreased in a jump-like manner. The
effectiveness of this strategy for such channels was transparent. First, the small channel
capacity gave a chance to reach a bandwidth limit linearly without losses for a rather short
time. Second, wired hops were so reliable that the fact of a sudden packet loss presumed
congestion at some “bottleneck” almost surely. Therefore, the loss indicated the necessity to
reduce the sending rate. This simple reason was a base to develop such loss-based versions
of TCP as Tahoe, New Reno, etc. [5].

In the case of the “long fat” channels (ones with huge capacity and long queue waiting
times), AIMD-based versions of TCP turned out to be ineffective: they underused the
channel bandwidth significantly. In the case of the channels with high capacity, the linear
growth does not allow for the congestion window to quickly achieve values close to the
available bandwidth. Plus, a loss of at least one packet decreases the data transferring
speed even more. In addition, if a channel includes a wireless hop, facts of single packet
losses are not an explicit congestion indicator. The round-trip time (RTT) parameter starts to
play a remarkable role in the congestion control algorithm, and this brings to the variety of
the TCP versions: delay-sensitive, hybrid loss-delay, bandwidth estimation-based, etc. [2].
All the modifications make the congestion control algorithm more tolerant to packet losses:
after each loss, it decreases cwnd not multiplicative but more sparingly. At the same
time, the cwnd growth speed is more aggressive to reach the channel bandwidth faster.
The bandwidth value is unknown but estimated given all past statistics of the channel
functioning. The algorithm probes more or less gentle cwnd enlargement to give a chance
to use all channel resources. Hence, the typical cwnd curve between two packet losses
demonstrates a concave [6] or mixed concave-convex character [7].

The ubiquitous application of wireless technologies in computer networks is a chal-
lenge to TCP protocol performance and claims its subsequent enhancement. Jitter and
periodical signal fading in the wireless channel hops are extra sources of uncertainty of
the channel real throughput. These physical phenomena affect both the new mathematical
models of the channel functioning and the congestion control algorithms.

Mathematical models of computer network traffic are also developed intensively.
With no goal to present a comprehensive overview of these models, we only mention their
major classes

• Markov and hidden Markov models [8–11],
• queuing systems [12,13],
• models, based on the fluid or diffusion approximation of jump processes [14–16],
• network calculus models [17–19],
• models involving selfsimilar processes [20–22],
• concurrent models and games [23–25], etc.

Generally speaking, a prospective mathematical model of a channel should satisfy the
conditions below.

1. A model should describe the data transferring process adequately.
2. A model should represent a trade-off between a complicated object with many pa-

rameters, their uncertainty along with the uncertainty introduced by the external
disturbances, and simplicity.

3. A model should operate with the same collection of statistical information as the one
available in the real channel.

4. A model should provide a possibility to simulate the collection of recent “concurrent”
versions of TCP.

5. The chosen model presumes the presence of the developed mathematical framework
for the solution to the complex of all the analysis, estimation/identification and
optimization/control problems. Availability of both the theoretical solution to the
problems above and their efficient numerical realization is strongly encouraged.
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The aim of the paper is two-fold. First, this is a presentation of a new mathematical
model of the TCP link functioning based on the heterogeneous (wired/wireless) channel.
It represents a controllable, partially observable stochastic dynamic system. The system
state describes the status of the modeled TCP link and expresses it via the controllable
Markov jump process (MJP) with a finite-state space. This space can be chosen arbitrarily
depending on the desired detailing of the link description. Below in this paper, we consider
four possible channel states:

• e1: the channel is idle,
• e2: the channel is loaded moderately,
• e3: congestion in the wired segment,
• e4: signal fading in the wireless hop.

Looking rather simple, this model admits successful description of such a problematic
link phenomenon as congestion in a channel “bottleneck” and the carrier radio signal fading.

The observations included into the model correspond to those available to a TCP
control algorithm on the sending side. Two observable processes describe the flow of
packet losses and the flow of timeouts. They are represented by controllable Cox processes
with intensity that depends both on the control and unobserved link state. The third
observation is a flow of the acknowledgments concerning the successful packet reception
on the receiving node. The flow is expressed in terms of a compound Poisson processes (CPP).
Its first component represents a counting process of acknowledgment reception moments,
and the second one registers corresponding individual values of the Round-Trip Time (RTT).

In the paper, we control the TCP varying the cwnd value only; however, the proposed
model allows other control parameters, e.g., RTO (retransmission timeout). We also demon-
strate how the proposed mathematical model can describe various contemporary versions
of the TCP: Illinois, CUBIC, BBR, and Compound.

The second aim of the paper is presentation of a new TCP prototype version. Its
mathematical background is both the solution to the optimal MJP state control under
complete information, and the solution to the optimal MJP state filtering given the diffusion
and counting observations. The performance of the proposed prototype is demonstrated
on the complex of the numerical experiments.

The paper is organized as follows. Section 2 contains a detailed description of the TCP
link mathematical model in terms of the controllable stochastic observation system, along
with the optimization problem of data transmission through this link.

One can enhance the use of the channel resources in terms of the optimal stochastic
control with incomplete information. However, this approach promises complications
during its realization: starting from the proof of the optimal solution existence and conclud-
ing by bulky numerical algorithms of its realization. Hence, we propose a rather simple
suboptimal solution to the problem along with its effective numerical implementation.

To develop the TCP prototype, we need a substantial mathematical framework, which
is introduced in Section 3:

• Section 3.1 contains the solution to the optimal MJP control problem with instant
geometric control constraints and complete information [26],

• Section 3.2 introduces a diffusion approximation for the high-frequency CPP describ-
ing the packet acknowledgment flow [27],

• Section 3.3 presents a solution to the optimal MJP state filtering problem given both
counting and diffusion observations with state-dependent noise [28],

• Section 3.4 contains a numerical algorithm for the optimal filtering realization [28].

In general, the articles [26–28] represent a formal, detailed mathematical background
of all applied inferences presented in this paper. We use it in Section 4 to develop a
new congestion control algorithm as follows. At the first stage, we calculate a high-
precision channel state estimate based on the available observations discretized by time.
At the second stage, we apply a separation principle: the obtained filtering estimate
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replaces the actual MJP state during the process of the optimal control synthesis with the
complete information.

The aim of Section 5 is two-fold. First, it demonstrates the potential of the proposed
mathematical model to describe various versions of the TCP: classic AIMD congestion
control scheme and TCP Illinois (Section 5.1), TCP CUBIC (Section 5.2), TCP Compound
(Section 5.3), TCP BBR (Section 5.4).

Second, the section contains the comparison of the proposed state-based TCP with
versions mentioned above: Section 5.5 highlights some details of the numerical realization
of the proposed TCP version, and Section 5.6 represents the summary of the performed
numerical experiments. Section 6 contains concluding remarks.

2. Problem of Optimal Data Transmission through TCP Channel

On the canonical Wiener-Poisson space with filtration (Ω,F,P, {Ft}) [29,30] we con-
sider the following controllable stochastic system, describing the TCP link functioning

Xt = X0 +
∫ t

0
A(us)Xsds + αt, (1)

Yt =
∫ t

0
B(us)Xsds + βt, (2)

Zt =
∫ t

0
C(us)Xsds + γt, (3)

{(τn, Vn)}n∈N. (4)

Here the TCP link state Xt is a controllable finite-state MJP with values in the set
SN , {e1, ..., en} formed by unit coordinate vectors of the Euclidean space RN . The initial
value X0 has a known distribution π, A(u) = ‖Aij(u)‖i,j=1,N is a controllable transition
intensity matrix and αt is a Ft-adapted martingale with the quadratic characteristic [31]

〈α, α〉t =
∫ t

0

(
diag(A(us)Xs)− A(us)diag(Xs)− diag(Xs)A>(us)

)
ds.

The link state is unobservable, and the complex of observations (Yt, Zt, {(τn, Vt)})
includes three components.

• Yt is a counting process (flow) of packet losses described by its martingale representa-
tion (2): βt is an Ft-adapted martingale with the quadratic characteristic

〈β, β〉t =
∫ t

0
B(us)Xsds,

B(u) , row(B1(u), . . . , BN(u)) represents the collection of the loss intensities of the
flow given the conditions Xt = en, n = 1, N.

• Zt is a counting process (flow) of packet timeouts described by its martingale repre-
sentation (3): γt is an Ft-adapted martingale with the quadratic characteristic

〈γ, γ〉t =
∫ t

0
C(us)Xsds,

C(u) , row(C1(u), . . . , CN(u)) represents the collection of the timeout intensities of
the flow given the conditions Xt = en, n = 1, N.

• {(τn, Vt)} is a flow of successful packet acknowledgments: here τn stands for the time
instant of the n-th acknowledgment arrival and Vt does for the specific RTT of the
n-th acknowledgment. It represents controllable compound Poisson process (CPP) with
the intensity driven by the Markov state Xt: the predictable measure generated by
{(τn, Vt)} conditioned by the MJP state X takes the form
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µp(ω, dt, dv) = λ(ut)diag(Xt−)Λ(ut, v)dtdv.

Here λ(ut) , row(λ1(ut), . . . , λN(ut)) is a vector-valued function with continuous
positive components, its nth component represent conditional intensity of acknowl-
edgment arrivals given Xt = en; Λ(ut, v) , col(Λ1(ut, v), . . . , ΛN(ut, v)) is a vector-
valued function with continuous components, its nth component represent conditional
probability density function (pdf) with respect to v given Xt = en for each fixed ut.

All martingale terms in the processes X, Y, Z and (τ, V) are strongly orthogonal.
The control ut represents a current size of the congestion window, i.e., portion of

packets which can be instantly transmitted. The set of admissible control contains all Ot-
predictable processes (Ot , σ{Ys, Zs, (τn, Vn) : s, τn ∈ [0, t]} stands for a natural filtration
induced by all observations available up to the moment t) with the geometric constraint:

us ∈ U , [u, u] ⊂ R+ P-a.s. for all s > 0. (5)

The intensity of acknowledgment arrivals is much more than all the state transition,
packet loss and timeout ones:

min
n,u

λn(u)� max
n,u

(|An(u)|, Bn(u), Cn(u)).

The performance criterion

J(U) , E

{
ψXT +

∫ T

0
(φ(us)− usξ)Xsds

}
→ max

U
(6)

represents an average profit for the transmitted information, which should be maxi-
mized. Here

• ψ , row(ψ1, . . . , ψN) is a vector of conditional gains given the terminal state XT ,
• φ(us) , row(φ1(us), . . . , φN(us)) includes strictly concave components, which repre-

sent conditional instant gains for the transmitted information given the current link
state Xs,

• ξ , row(ξ1, . . . , ξN) is a vector of specific transmission expenses per information unit
in each link state.

The problem under consideration is challenging. First, in general, optimal control
problems of stochastic jump processes with incomplete information are rather compli-
cated [31–34]. Their proper statement and solution depends on the answer to several
auxiliary questions/problems: the martingale one [35], the one of strong solution existence
and uniqueness and the one of measurable control selection (see [36] and references within).
Without positive answers to the questions, we cannot use the martingale theory [35,37] to
express optimal control in terms of either variation inequalities (dynamic programming
equation as the preferable outcome) or stochastic maximum principle. Please note that
negative answers presumes only impossibility to use the mathematical tools mentioned
above. Apparently, the control problem can be modified slightly to provide its solution
existence which can be found involving other still undiscovered frameworks.

Second, both the dynamic programming equation and stochastic maximum principle
have forward-backward form which complicates synthesis of the optimal control in the
explicit form. The authors of [36] have solved the analogous problem of the MJP state
(1) control observing the flow of packet losses (2) only. The theoretical optimal solution
has been characterized both via the dynamic programming equation and the maximum
principle. At the same time, the authors have presented a numerical realization of the
obtained result only for the case when the transition intensity matrix of the MJP is inde-
pendent of the control (i.e., the state is uncontrollable), and control affects the intensity
of the losses only. Despite the restrictive conditions the obtained practical results have
looked rather prospective: the optimal policy has demonstrated piecewise concave nature
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similar to the modern versions of TCP: Illinois [6], CUBIC without probe phase [38,39],
Compound [40,41] etc.

Third, the essential weak points of the optimal control implementation are its poor
robustness relating to the imprecise knowledge of the control system characteristics and
small perturbations of the synthesized control to its performance. This means that either
control system parameters slightly misspecified towards its unknown nominal, or “instru-
mental errors” in control caused by imperfection of its numerical realization could nullify
gain of the sophisticated optimal control in comparison with a stable suboptimal algorithm.

Fourth, the flow of packet acknowledgments has high intensity and hence leads to a
high-frequency control, which is resource intensive.

Keeping in mind all arguments above we avoid the direct solution to the optimal
stochastic control problem (6) of the MJP (1) state given the observations (2), (3) and (4)
including the martingale problem and the ones of the solution existence and uniqueness.
Instead of this we use solutions to a complex of adjacent problems and propose a suboptimal
control algorithm of high performance.

3. Mathematical Background

As a basis of the proposed suboptimal control algorithm, we use the following ar-
guments and mathematical results. We derive the algorithm basing on the following
mathematical results and reasons.

1. The solution to the optimal stochastic control of the MJP (1) state with the complete
information does exist and can be defined as a solution to the equation of dynamic
programming [26].

2. The high frequency allows us to approximate the observable controlled CPP (4) by a
drifting Brownian motion [42] with the parameters modulated by the MJP state [27].
We can describe the distribution of the diffusion approximation via some moment
characteristics only, and this fact leads to robustness of the subsequent state filtering
algorithm towards the imprecise knowledge of the specific distribution of compound
Poisson process jumps.

3. The conversion of high-frequency acknowledgment flow to a diffusion process gives a
possibility to use the solution to the optimal MJP (1) state filtering problem given the
“diffusion” and counting observations [43]. This is extension of the Wonham filter [44]
to the case of the diffusion observations with state-dependent noises. Under rather
mild identifiability conditions the optimal filtering estimate coincides with the exact
MJP state.

4. The dynamic programming equation corresponding to the control problem with
complete information mentioned at item 1, represents the system of ordinary differen-
tial equations with well-developed methods of numerical solution. By contrast, the
equations of the generalized Wonham filter [43] require design of special numerical
procedures similar to [28].

5. To complete the control synthesis, we postulate a separation principle. This means we
put the state filtering estimate mentioned at items 3, 4 into the control strategy defined
at item 1.

3.1. Optimal Control Strategy with Complete Information

Let us consider the controllable MJP (1) which should be optimized with respect
to the optimality criterion (6) where the set U of all admissible controls U includes all
Ot-predictable processes with the geometric constraint (5).

Let us define the Bellman function V(t, x) : [0, T]× SN → R:

B(t, x) , sup
U∈U

E

{
ψXT +

∫ T

t
(φ(us)− usξ(s))Xsds

∣∣∣Xt = x
}

. (7)
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Obviously, the function B(t, x) can be presented in the form B(t, x) = η>(t)x, where
η(t) , col(η1(t), . . . , ηN(t)) = col(B(t, e1), . . . , B(t, eN)) is a vector-valued function.

Theorem 1. The assertions below are true [26].

1. The function η(t) is the unique solution to the Cauchy problem





η̇n(t) = max
u∈U

[
N

∑
j=1

Ajn(u)η j(t) + ξn(u)

]
, n = 1, N, 0 6 t < T,

ηn(T) = ψn, n = 1, N.

(8)

2. There exists a Borel function ût(x) : [0, T]× SN → U, such that

ût(x) ∈ Argmax
u∈U

[
N

∑
n=1

(
N

∑
j=1

Ajn(u)η j(t) + ξn(u)

)
xn

]
(9)

for any (t, s) ∈ [0, T]× SN .
3. The random process Ût , ût(Xt−) is an optimal control strategy for the problem (1), (6).
4. The optimal value of criterion (6) has the form maxU∈U J(U) = J(Û) = η>(0)π; moreover,

supremum in (7) is attained for any (t, x) ∈ [0, T]× SN at the strategy {Ûs, s ∈ [t, T]}.

The theorem establishes the base of the practical control realization. Indeed, all
variants of possible optimal controls (9) can be calculated and stored in advance via
solution to (8), before the control synthesis. The synthesis itself represents the selection of
suitable control from the set of possible ones using the “current” MJP state Xt−.

3.2. Diffusion Approximation of High-Frequency Counting Observations

Use of the “genuine” acknowledgments flow (4) to synthesize the control leads to
discontinuous one with high frequency. Its calculation may be resource intensive: each new-
coming acknowledgment triggers the control recalculation algorithm. The contemporary
TCP versions are exactly like this, but they are relatively simple, so not too “costly”.

Once we consider (4) discretized by time with some appropriate time increment, we
can see the probability distribution of the observation increments look like mixtures of
some Gaussians due to the central limit theorem for renewal-reward processes (CLTRRP). In
this subsection we answer two questions. First, we determine characteristics of these mix-
tures. Second, we form recommendations how to choose time increment value to provide
appropriate closeness of the real discretized observation distribution to the theoretical
mixture above.

First, to perceive the nature of diffusion approximation, we investigate the CPPs with
a fixed control u ∈ U. We consider a collection of the CPPs {(τ j

n, V j
n)} n∈N,j=1,N,

u∈U
with the

predictable measures {µj
p(dt, dv)} s>0,

u∈U
:

µ
j
p(dt, dv) , λj(u)Λj(u, v)dsdv.

Probabilistically they correspond to initial CPP {(τn, Vn)} staying in the “single mode”:
Xt ≡ ej and a fixed control value ut ≡ u. Each CPP generates a stochastic measure

µj(ω, dt, dv) , ∑
n∈N

δ
(τ

j
n(ω),V j

n(ω))
(dt, dv).

Keeping in mind the specific form of the predictable measures µ
j
p, we can compute

the moment characteristics for one jump of the CPPs:
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mj
τ , E

{
τ

j
1

}
=

1
λj(u)

, mj
V , E

{
V j

1

}
=
∫

R
vΛj(u, v)dv, (10)

σ
j
τ ,

√
var(τ j

1) =
1

λj(u)
, σ

j
V ,

√
var(V j

1) =

√∫

R
v2Λj(u, v)dv−

(
mj

V

)2
,

κ j , cov(τ j
1, V j

1) = 0.

We investigate the asymptotic behavior of the distribution of the two-dimensional
random process

Θj
t ,




∫

[0,t]×R
µj(ds, dv)

∫

[0,t]×R
vµj(ds, dv)


 =




∑
n∈N

I(t− τ
j
n)

∑
n∈N

VnI(t− τ
j
n)


 (11)

when t → ∞. The first component represents the total number of acknowledgments
received at the sender over the time interval [0, t], the second component, in turn, stands for
the corresponding cumulative RTT value. The author of [42] proved a version of CLTRRP:

1√
λj(u)t

(
Θj

t −
[

λj(u)t
mj

Vλj(u)t

])
Law−→ N

([
0
0

]
,

[
1 mj

V
mj

V (mj
V)

2 + (σ
j
V)

2

])
(12)

as t→ ∞. In other words, for rather huge t

1√
t
Θj

t ' N
([

(λj(u))
3
2
√

t
mj

V(λ
j(u))

3
2
√

t

]
,

[
λj(u) λj(u)mj

V

λj(u)mj
V λj(u)

[
(mj

V)
2 + (σ

j
V)

2
]
])

.

Let us complicate the model, mixing the CPPs {(τ j
n, V j

n)} n∈N,j=1,N,
u∈U

above with probabil-

ities π = col(π1, . . . , πN) [
τn
Vn

]
=

N

∑
j=1

X j
0

[
τ

j
n

V j
n

]
. (13)

Here X0 , col(X1
0 , . . . , XN

0 ) ∈ SN is an F0-measurable random vector, independent of
{(τ j

n, V j
n)} n∈N,j=1,N,

u∈U
; X0 ∼ π0. It is easy to verify that the predictable measure generated by

{(τn, Vn)}, conditioned by X0, takes the form

µp(ω, dt, dv) = λ(ut)diag(X0)Λ(ut, v)dtdv.

Please note that the mixed CPP (13) represents a specific case of the observations (4)
with “single mode” MJP X: A(u) ≡ 0, X0 ∼ π.

Making inferences as above we can conclude that for rather huge t

1√
t




∑
k∈N

I(t− τk)

∑
k∈N

VkI(t−Vk)




'
N

∑
j=1

π jN
([

(λj(u))
3
2
√

t
mj

V(λ
j(u))

3
2
√

t

]
,

[
λj(u) λj(u)mj

V

λj(u)mj
V λj(u)

[
(mj

V)
2 + (σ

j
V)

2
]
])

.

(14)

Therefore, given some MJP state Xs distribution (conditional or unconditional) at
the time instant s and a constant control uq ≡ u ∈ U, q ∈ [s, s + h) we assume that the
cumulative observation increment over the interval [s, s + h) is distributed approximately
in the following way
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1√
h




∑
k∈N

I(t− τk)I(τk − s)

∑
k∈N

VkI(t− τk)I(τk − s)




'
N

∑
j=1

X̂ j
sN
([

(λj(u))
3
2
√

t
mj

V(λ
j(u))

3
2
√

t

]
,

[
λj(u) λj(u)mj

V

λj(u)mj
V λj(u)

[
(mj

V)
2 + (σ

j
V)

2
]
])

.

(15)

By analogy with (15) for the cumulative process, corresponding to the acknowledg-
ment flow (4)

Qt ,




∑
k∈N

I(t− τk)

∑
k∈N

VkI(t− τk)


 (16)

we propose the following approximate diffusion model

Qt =
∫ t

0
D(us)Xsds +

∫ t

0

N

∑
n=1

e>n XsE
1
2
n (us)dWs, (17)

where

D(u) ,

[
(λ1(u))

3
2 (λ2(u))

3
2 . . . (λN(u))

3
2

m1
V(λ

1(u))
3
2 m2

V(λ
2(u))

3
2 . . . mN

V (λN(u))
3
2

]
,

En(u) ,
[

λn(u) λn(u)mu,n
V

λn(u)mu,n
V λn(u)

(
(mu,n

V )2 + (σu,n
V )2)

]

Model (17) gives a chance both to solve the MJP state filtering problem given the dif-
fusion and counting observations and develop corresponding algorithms of the numerical
solution to the filtering problem.

By contrast with weak convergence in (12), any convergence in (15) is absent. First,
the right-hand side (RHS) of (15) contains the mathematical expectation which is increas-
ing function of t. Second, we determine (15) under hypothesis that the MJP state X
remains unchanged over the discretization interval: Xq ≡ Xs, q ∈ [s, s + t). In the gen-
eral case, the probability of MJP state transition increases to 1 when the interval length t
increases infinitely.

Use of the time-discretized observations (4) at the first stage of the control synthesis–
MJP state filtering–presumes calculation of likelihood ratios for the single Gaussian modes
and their mixtures. Therefore, the filtering performance depends on both the “theoretical”
pdf (15) and the closeness of real distribution of the observation increments to (15).

We form recommendations for appropriate choice of the time interval for discretiza-
tion of (4). On the one hand, the length should provide the appropriate performance of
the diffusion approximation (15), when there is no MJP state transitions over the time
interval. On the other hand, the interval length should be small enough to guarantee small
probability of those state transitions.

In the CLT the closeness of the limit distribution and the pre-limit one is described
by the Berry–Esseen inequality in terms of either the uniform metric or the total variation
one [45–47]. By contrast, we are interested in closeness of the corresponding PDFs, and the
appropriated results are valid for the case of the “classic” CLT, not for CLTRRP.

We propose some heuristic technique choose the discretization interval length, basing
on a performance criterion of the distribution approximation.

We refer to the “single mode” processes Θj
t and construct the processes

Θj
h ,

(√
Θj,1

h

)+ 1

σ
j
V

(
Θj,2

h −mj
VΘj,1

h

)
. (18)
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From the definition one can conclude that Θj
h represents the normalized sum of the

random number of independent equally distributed normalized random summands. We
investigate closedness of its distribution to the standard Gaussian one depending on time h.

Below in the filtering algorithm we operate with various likelihood ratios calculated
via the pdfs, hence we need to characterize a distance between the pre-limit pdf and its
limit one. The precise distance is difficult to calculate, and we must turn to some upper
bound of this quantity.

Let µ(dx) be some positive measure on (R,B(R)), and there exist both the pdf dPa
dµ of

the pre-limit distribution and the limit one dP`
dµ . Then the relative approximation error takes

the form

∆(x) ,

∣∣∣ dPa
dµ −

dP`
dµ

∣∣∣
dP`
dµ

(x),

and its average
∫

∆(x)
dP`
dµ

(x)µ(dx) = Var(Pa, P`)

coincides with the total variation distance (TVD) between Pa and P`.
We use the notation Pj(x, h) , P

{
Θj

h 6 x
}

for the pre-limit distribution function,

Pj
n(x) stands for the distribution function of the normalized sum of n independent equally

distributed normalized random summands with the pdf Λj(u), and Φ(x) ,
∫ x
−∞

1√
2π

e−
z2
2 dz

does for the distribution function of the standard Gaussian random value. From the total
probability formula, it follows that

Pj(x, h) = e−λj(u)h

(
I(x) + ∑

n∈N

(λj(u)h)n

n!
Pj

n(x)

)
, (19)

where I(x) is the Heaviside function.

Proposition 1. For λj(u)h > 3+
√

13
2 an approximate upper bound of Var(Pj, Φ) can be written as

J j(h) = e−λj(u)h


2 + C1


2Φ(−3) +




1√
1− 3√

λj(u)h

+
1√

1 + 3√
λj(u)h








, (20)

where C1 = C1(Λj(u, ·)) is some parameter.

Proof. From (19) and the results of [48] (Theorem 1.1) and [49] (Theorem 2.6) the following
inequalities are true

Var(Pj, Φ) 6 e−λj(u)h
(

2 + ∑n∈N
(λj(u)h)2

n! Var(Pj
n, Φ)

)
6 e−λj(u)h

(
2 + C1 ∑n∈N

(λj(u)h)2
√

nn!

)
, (21)

where C1 = C1(Λj(u, ·)) is some parameter (see [48,49] for details).
Under the Proposition conditions the approximation of the Poisson distribution by

the Gaussian one is valid
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∑
n∈N

(λj(u)h)2
√

nn!
≈
∫ ∞

1

1√
x

1√
2πλj(u)h

e

(x− λj(u)h)2

2λj(u)h dx

6 2Φ(−3) +

λj(u)h+3
√

λj(u)h∫

λj(u)h−3
√

λj(u)h

(ax + b)
1√
x

1√
2πλj(u)h

e

(x− λj(u)h)2

2λj(u)h dx,

(22)
where 




a ,

√
λj(u)h−3

√
λj(u)h−

√
λj(u)h+3

√
λj(u)h

6
√

λj(u)h
√

(λj(u)h)2−9λj(u)h
,

b , 1√
λj(u)h−3

√
λj(u)h

− λj(u)h−3
√

λj(u)h−
√

λj(u)h−9

6
√

λj(u)h+3
√

λj(u)h
.

(23)

Coefficients a and b above correspond to a piecewise linear majorant for y(x) = 1√
x

over the interval [1,+∞) (see Figure 1).
We can calculate the last integral analytically

∑
n∈N

(λj(u)h)2
√

nn!
. 2Φ(−3) + (1− 2Φ(−3))(aλj(u)h + b) 6 2Φ(−3) + aλj(u)h + b

= 2Φ(−3) +
1

2
√

λj(u)h




1√√√√√1−
3√

λj(u)h

+ 1√√√√√1+
3√

λj(u)h




.
(24)

Using the RHS of (24) in (21) we obtain the approximate upper bound (20). This ends the sketch
of the proof of the Proposition.

To characterize the distance between the Qt (16) increment distribution and its dif-
fusion approximation (17) we should take into account the chance of the MJP transition
during the discretization interval. Let us suppose Xu

t = ej, then, taking into account (20),
the upper bound of Var(Pu, Φ|Xt = ej) can be obtained by the total probability formula:

Var(P, Φ|Xt = ej) 6 J j(u, h) ,

, e(Ajj(u)−λj(u))h




2 + C1




2Φ(−3) +




1√√√√√1−
3√

λj(u)h

+ 1√√√√√1+
3√

λj(u)h










+ 2
(

1− eAjj(u)h
)

.
(25)

The second summand in (25) answers the chance the MJP can leave the state ej during

the time interval with probability 1− eAjj(u)h, and the multiplier 2 is the upper bound of
the TVD for any distributions.

To take into account the statistical uncertainty of the current state Xu
t , we must consider

the following averaged criterion:

J(u, p1, . . . , pN , h) ,
N

∑
j=1

pjJ j(u, h), (26)

which describes the guaranteeing estimate of distribution distance for the case of the fixed
control u ∈ U and Xu

t ∼ col(p1, . . . , pN).
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From the practical point of view, the “rational” value of the time increment h can be
chosen following to the one of policies:

1. Numerical analysis of the values J j(u, h) for various (j, u, h) for the choice of an
appropriate value for h.

2. Solution to the individual minimax problems

J j(u, h)→ min
h:λj(u)h> 3+

√
13

2 , u∈U
max
u∈U

, j = 1, N

with subsequent choice of the maximal h from the set of the individual solutions.
3. Solution to the general minimax problem

J(u, p1, . . . , pN , h))→ min
h:λj(u)h> 3+

√
13

2 , u∈U, j=1,N
max
u∈U,

(p1,...,pN )∈Π

.

In this paper, we use the first policy as the most economical one.

0 1 λj(u)t− 3
√
λj(u)t λj(u)t λj(u)t+ 3

√
λj(u)t x

1

y

y = 1

y = ax+ b

y = 1√
x

y = 1√
2πλj(u)t

exp

{
− (x− λj(u)t)2

2λj(u)t

}

Figure 1. The function y = 1√
x and its piecewise linear majorant against the Gaussian.

3.3. Optimal Filtering of MJP State Given Counting and Diffusion Observations

In this section, we investigate MJP state (1) filtering problem given counting (2), (3)
and diffusion observations (17). Without loss of generality to simplify the presentation and
subsequent analysis of the solution to the MJP filtering problem we must introduce below
the additional assumptions.

1. The control ut represents an observable nonrandom cádlág-process.
2. The noises in Qt are uniformly nondegenerate [50], i.e., min

16n6N,
u∈U

En(u) > αI for some α > 0.

3. The processes Kij(ut) , I{0}(Ei(ut) − Ej(ut)), i, j = 1, N has a finite local varia-
tion (here and below 0 stands for a zero matrix of appropriate dimensionality);
K(ut) , ‖Kij(ut)‖i,j=1,N is the corresponding N× N-dimensional matrix-valued function.
The optimal filtering problem is to find a Conditional Mathematical Expectation (CME)
X̂u

t , E{Xu
t |Ot+}, where Ot , σ{Ys, Zs, Qs, s ∈ [0, t]} is a natural flow of σ-algebras

generated by the observations (2), (3) and (17).

The noise intensity in the observations (17) depends on the estimated state X, and this
fact prevents to apply the known results of the optimal nonlinear filtering [37]. To overcome
this obstacle, we use a special transformation of available diffusion observations [28]. Here
we present a sketch of this transformation.
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The Ito rule gives a possibility to obtain the observable quadratic characteristics of Q:

〈Q, Q〉t =
∫ t

0

N

∑
n=1

e>n XsEn(us)ds. (27)

We use the normalized diffusion observations

Qt ,
∫ t

0

(
d〈Q, Q〉s

ds

)− 1
2
dQs. (28)

as the first block component of the transformed observations. The model of this process is
the following

Qt =
∫ t

0
D(us)Xsds + Ws, (29)

where D(u) , ∑N
n=1 E−

1
2

n (u)D(u)diag en, and Wt is a standard Wiener process of appro-
priate dimensionality.

The quadratic characteristics 〈Q, Q〉 contains essential statistical information which
should be included in the estimation algorithm. This process is a linear transformation of
the estimated MJP state.

It is easy to verify that

F(ut, Xt) ,
d〈Q, Q〉s

ds

∣∣∣
s=t+

=
N

∑
n=1

e>n XtEn(ut),

however, result of the direct derivation is a matrix-valued function with the excess dimen-
sionality. All its statistical information is included in the complete preimage of F:

F = F(u, x) F−1
−−→ {en ∈ SN : En(u) = F}.

In [28] we explain in detail how to reduce the “rough” process F to the N-dimensional
“compressed” process Ht, which has the model

Ht = L(ut)Xt, (30)

where L(ut) is an N × N-dimensional matrix-valued function with cádlág components; its
rows are orthogonal and contains 0 or 1 only.

One can rewrite the process Ht as a cumulative sum of the jumps occurred at some
nonrandom (or Ot-predictable) moments τ (the term HD

t ) and one, which accumulates
jumps at the random (totally inaccessible) moments (the term HR

t ):

Ht = L(u0)X0 + ∑
τ6t

∆L(uτ)Xτ

︸ ︷︷ ︸
,HD

t

+
∫ t

0
L(us)dXs

︸ ︷︷ ︸
,HR

t

.

The process HD
t represents the second block component of the transformed diffusion

observations. To obtain the third component we must express HR
t through the equivalent

complex of the counting processes Gt = col(G1
t , . . . , GN

t ):

Gt ,
∫ t

0
(I − diag Hs−)dHs − HD

t .

The components of the process have the following properties.

1. Each component Gn
t has the martingale representation

Gn
t =

∫ t

0
1Γn(us)Xsds +

∫ t

0
(1− Ln(us)Xs−)Ln(us)dαu

s , (31)
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where αu
t is the martingale from the state representation (1), Ln(u) , e>n L(u) and

Γn(u) , diag(Ln(u))Λ>(u)(I − diag(Ln(u))).

2. [Gn, Gm]t ≡ 0 for any n 6= m, and 〈Gn, Gn〉t =
∫ t

0 1Γn(us)Xsds.

Below we present a stochastic system for the CME X̂t along with its properties.

Proposition 2. The following assertions are true.

1. The CME X̂ is the unique strong solution to the stochastic system

X̂t =
(
(HD

0 )>L(u0)π0

)+
diag(HD

0 )L(u0)π0 +
∫ t

0
Λ>(us)X̂sds +

∫ t

0
k̂sD>(us)dωs

+
N

∑
n=1

∫ t

0

(
Γn(us)− 1Γn(us)X̂s− I

)
X̂s−

(
1Γn(us)X̂s−

)+
dνn

s

+
∫ t

0
k̂sB>(us)(B(us)X̂s−)+dβ̂s +

∫ t

0
k̂sC>(us)(C(us)X̂s−)+dγ̂s

+ ∑
τ6t

((
(∆HD

τ )>∆L(uτ)X̂τ−
)+

diag(∆HD
τ )L(uτ)− I

)
X̂τ−,

(32)

where
k̂t , diag X̂t − X̂t(X̂t)> = E

{
(X̂t − Xt)(X̂t − Xt)>|Ot+

}
,

ωt ,
∫ t

0
(dQs − D(us)X̂sds),

νn
t ,

∫ t

0
(dGn

s − 1Γn(us)X̂s−ds), n = 1, N,

β̂t ,
∫ t

0
(dYs − B(us)X̂s−ds),

γ̂t ,
∫ t

0
(dZs − C(us)X̂s−ds).

2. The estimate of the maximum a posteriori probability (MAP) X̃t = en: n ∈ Argmax
16m6N

e>m X̂t

minimizes the L1-criterion, i.e., X̃t ∈ Argmin
Xt

E
{
‖Xt − Xt‖1

}
.

3. If En(u) 6= Em(u) for any n 6= m almost everywhere on [0, t], then X̂t = Xt P-a.s.

The validity of items 1 and 3 in Proposition 2 can be proved by complete analogy
with [28] (Theorem 1, Corollary 1), meanwhile the one of item 2 is proved in [51].

The theoretical assertions above are also meaningful from the practical point of view
for subsequent design of the suboptimal control of MJP state under incomplete information.
First, the CME X̂t represents a solution to some closed finite-dimensional stochastic system,
by contrast with the general case of the optimal filtering problem [37]. Second, the paths of
the CME X̂t usually are piecewise continuous functions with values in Π, meanwhile the
MJP X state trajectories are P-a.s. piecewise constant functions with values in SN . Therefore,
we cannot directly substitute the state X by its estimate X̂, imposing the separation principle
to this control problem. The CME X̂ can be easily transformed into the MAP estimate
X̃ with the paths with the same properties as the ones of X. Assertion 2 of Proposition
indicates that the proposed MAP estimate is also L1-optimal. Third, if the observation
system satisfies the identifiability conditions (see Assertion 3 of Proposition) then the MJP
state can be restored exactly given the indirect noisy observations. This crucial property
gives a chance to reduce the initial control problem with incomplete information to the one
with complete information. Obviously, any numerical realization of the filtering estimate
leads to some approximation errors, nevertheless Assertion 3 allows one to hope that the
small filtering errors cause acceptable control performance.

At the same time, results of Proposition 2 are difficult for the direct application. First,
due to the approximation of the acknowledgment flow (4) by the diffusion model (17), the
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former one is valid and can be effectively applied only for the observation increments over
the time interval of significant length (see Section 3.2). Second, the process Ht, playing
the key role in the estimation, is not observable directly, and represents a result of some
stochastic limit passage since it is based on the quadratic characteristic 〈Q, Q〉. Due to the
boundedness from below of the diffusion observation time increment, direct calculation
of Ht looks impossible. In the next subsection, basing on the time-discretized diffusion
observations we present a special numerical algorithm of the nonlinear filtering together
with its performance characteristics.

3.4. Numerical Realization of Filtering Algorithm

To construct the numerical algorithm of the MJP state filtering given the combination
of both the diffusion and counting observations we consider a time-invariant version of
the observation system (1), (3), (2), (17) given the observations discretized by time with the
time increment h > 0 (tr , rh, r ∈ N):

Xt = X0 +
∫ t

0
AXsds + αt, (33)

Yr =
∫ tr

tr−1

BXsds + (βtr−1 − βtr ), (34)

Zr =
∫ tr

tr−1

CXsds + (γtr−1 − γtr−1), (35)

Qr =
∫ tr

tr−1

DXsds +
∫ tr

tr−1

N

∑
n=1

e>n XsE
1
2
n dWs, (36)

and Or , σ{Yn,Zn,Qn, n 6 r} is a natural filtration generated by the discretized observations.
An assumption that coefficients A, B, C, D and E are constant, is not too restrictive in

practice because below we will construct the MJP control which will be constant during the
time discretization intervals. Please note that the discretized observations Yr,Zr and Qr
are conditionally independent given FX

tr
∨Or−1 due to the properties of the Wiener-Poisson

canonical space and the result of [50] (Lemma 7.5). Specifically, the distribution of Yr,Zr

and Qr depends on the random vector ηr = col(η1
r , . . . , ηN

r ) =
∫ tr

tr−1
Xsds is a random

vector composed of the occupation times of the state X in each state en during the interval
[tr−1, tr]. Then

• conditional distribution of Yr given FX
tr
∨Or−1 is the Poisson one with the parame-

ter Bηr,
• conditional distribution of Zr given FX

tr
∨Or−1 is the Poisson one with the parame-

ter Cηr,
• conditional distribution of Qr given FX

tr
∨ Or−1 is the Gaussian one with the mean

Dηr and covariance matrix ∑N
n=1 ηn

r En.

Below in the presentation we use the following notations:

• A , maxn=1,N |Ann|;
• D , {u = col(u1, . . . , uN) : un > 0, ∑N

n=1 un = h} is an (N− 1)-dimensional simplex
in the space RM; D is a distribution support of the vector υr;

• Π , {π = col(π1, . . . , πN) : πn > 0, ∑N
n=1 πn = 1} is a “probabilistic simplex”

formed by the possible values of π;
• NX

r is a random number of the state Xt transitions, occurred on the interval [tr−1, tr],
• ρk,`,q(du) is a conditional distribution of the vector X`

tr
I{q}(NX

r )υr given Xtr−1 = ek,
i.e., for any G ∈ B(RM) the following equality is true:

E
{

IG(υr)I{q}(NX
r )X`

tr |Xtr−1 = ek

}
=
∫

G
ρk,`,q(du);
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• ‖α‖2
K , α>Kα, 〈α, β〉K , α>Kβ;

• N (q, m, K) , (2π)−M/2det−1/2K exp
{
− 1

2‖y−m)‖2
K−1

}
is an M-dimensional Gaus-

sian probability density function (pdf) with the expectation m and nondegenerate co-
variance matrix K;

• P(n, a) , e−a an

n!
is a Poisson distribution with the parameter a;

• Υk,j,s(y, z, q) ,
∫

D
P(y, Bv)P(z, Cv)N (q, Dv,

N

∑
i=1

viEi)ρ
k,j,s(dv).

Below is an assertion introducing the calculation algorithm of the MJP state given the
discretized observations X̂r , E{Xtr |Or}.

Proposition 3. The filtering estimate X̂r can be calculated be the following recursive algorithm

X̂ j
r =

N

∑
n1=1
X̂ n1

r

∞

∑
s1=0

Υn1,j,s1(Yr,Zr,Qr)

N

∑
n2,j2=1

X̂ n2
r

∞

∑
s2=0

Υn2,j2,s2(Yr,Zr,Qr)

, j = 1, N, (37)

and initial condition
X̂0 = π0. (38)

Proof of Proposition 3 can be performed similarly to [28] (Lemma 3).
To construct a numerically realizable algorithm we must restrict the sums both in the

numerator and denominator of (37)

X j
r(S) =

N

∑
n1=1
X n1

r

S

∑
s1=0

Υn1,j,s1(Yr,Zr,Qr)

N

∑
n2,j2=1

X n2
r

S

∑
s2=0

Υn2,j2,s2(Yr,Zr,Qr)

, j = 1, N, (39)

and obtain the analytical approximation of the Sth order.
We present some summands Υ of the low order s:

Υk,j,0(y, z, q) = δkjeAkkhP(y, Bkh)P(y, Ckh)N (q, hDk, hEk),

Υk,j,1(y, z, q) = (1− δkj)AjkeAjjh

×
∫ h

0
e(Akk−Ajj)vP(y, Bkv + Bj(h− v))P(z, Ckv + Cj(h− v))

×N (q, vDk + (h− v)Dj, vEk + (h− v)Ej)dv,

Υk,j,2(y, z, q)

= ∑
i:i 6=k,i 6=j

Aik Ajie
Ajjh

∫ h

0

∫ h−vk

0
e(Akk−Aii)vk+(Aii−Ajj)vjP(y, Bkvi + Bivi + Bj(h− vk − vj))

×P(z, Ckvi + Civi + Cj(h− vk − vj))

×N (q, vkDk + viDi + (h− vk − vi)Dj, vkEk + viEi + (h− vk − vi)Ej)dvidvk,

where Dk is the kth column of the matrix D. Other summands are also determined by
the total probability formula and have complicated form. Obviously, the integrals above
cannot be calculated analytically, and we approximate them by some integral sums
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Υ̃k,j,s(y, z, q) ,
L

∑
`

P(y, Bv`)P(z, Cv`)N (q, Dv`,
N

∑
i=1

vi
`Ei)$

kj
` , (40)

where {v`}`=1,L ⊂ D is a collection of points, and {$kj
` }`=1,L are corresponding weights,

such that ∑N
j=1 ∑L

`=1 $
kj
` 6 1. Therefore, we calculate the filtering estimate by the recursion

X̃ j
r (S) =

N

∑
n1=1
X̃ n1

r

S

∑
s1=0

Υn1,j,s1(Yr,Zr,Qr)

N

∑
n2,j2=1

X̃ n2
r

S

∑
s2=0

Υn2,j2,s2(Yr,Zr,Qr)

, j = 1, N, (41)

and refer it as the numerical approximation of the Sth order, corresponding to a chosen numerical
integration scheme.

Let us fix a time instant t, and consider the asymptotic performance of approximation (41)
as h → 0. The performance index is supπ∈Π Eπ

{
‖X̃r − X̂r‖1

}
, i.e., an average of the L1-

norm of the filtering error calculated at the step r for the worst initial distribution of
the MJP.

Proposition 4. If the condition

max
k=1,N,(y,z)∈Z2

+

N

∑
j=1

∫

R2

∣∣∣∣∣
S

∑
s=0

Υ̃n1,j,s1(y, z, q)− Υn1,j,s1(y, z, q)

∣∣∣∣∣dq < δ,

holds, then for small enough h

sup
π∈Π

Eπ

{
‖X̃t/h − X̂t/h‖1

}
6 2t

(
2A

(Ah)S

(S + 1)!
+

δ

h

)
. (42)

Proof of Proposition 4 can be performed similarly to [28] (Lemma 4, Theorem 2). The
first term in (42) characterizes the error of the analytical approximation: formula (39) takes
into account at most S possible state transitions occurred during the time discretization
interval [tr−1, tr]. The second term in (42) describes an impact of numerical integration
error to the overall performance of the filtering approximation. We can deduce that the
effective choice of the integration scheme should provide the equal contribution of both
summands in (42).

For the numerical study we choose the analytical approximation of the 1st order
realized by the middle-point scheme:

Υ̃k,j,0(y, z, q) = Υk,j,0(y, z, q),

Υ̃k,j,1(y, z, q) = (1− δkj)Ajke
h
2 (Ajj+Ajj)hP(y, h

2 (Bk + Bj))P(z, h
2 (C

k + Cj))N (q, h
2 (Dk + Dj), h

2 (Ek + Ej)).

4. State-Based Modification of TCP

In this section, we describe a TCP channel mathematical model we later use for
simulation of some modern TCP versions and their comparison with the state-based
optimal control policy. The model we use here is in general following the one of [52].
The main distinctive characteristic of this model is the channel state allocation: we use
three states to describe the wire channel condition and add one extra state to cover the
issues of the wireless connection. This allocation presents a reasonable trade-off between a
comprehensive connection state model taking into account all possible features (including
the data flows from every channel user, the current packet distribution in all the channel



Mathematics 2021, 9, 1632 18 of 31

hops and buffers’ queues, and signal quality in the wireless channel segment) and the
feasibility of the mathematical modeling.

Thus, we suppose that the link state from a sender to a receiver is described by a
controllable MJP Xt (1) with four possible states:

• e1 is assigned for low channel load,
• e2 is for moderate load,
• e3 is for wired segment congestion,
• e4 is for signal fading in the wireless segment.

The intensity matrix A(u) = ‖Aij(u)‖i,j=1,4 is defined based on the following assump-
tions: the link has a single bottleneck device, which remains the same during the whole
transmission, this bottleneck device uses Random Early Detection (RED) queuing disci-
pline [53], its buffer capacity is Q, and the RED threshold of guaranteed packet rejection is
W ′′ (W ′′ 6 Q).

We also assume that the wireless connection quality does not dependent on the data
flow, hence the intensities A·4 and A4· corresponding to the transitions from/into the state
e4 are independent of the control us. Furthermore, the direct transitions between the e1 and
e3 without passing through the e2 are assumed impossible, i.e., A13 = A31 ≡ 0.

The controllable components of A(ut) have the form

A21(ut) =





A21
0 + C21

Ubdp − ut
, if ut < Ubdp,

A, otherwise;
A12(ut) = A12

0 + C12 max(Ubdp − ut, 0);

A32(ut) =





A32
0 + C32

W ′′ − ut
, if ut < W ′′,

A, otherwise;
A23(ut) = A23

0 + C23 max(W ′′ − ut, 0),

where Ubdp is the control, which corresponds to the bandwidth-delay product (BDP), in
other words—the maximum window size yielding throughput equal to channel bandwidth.
The constant A is a level of intensity which guarantees the state transition during the
forthcoming RTT.

The dependence of Aji(ut) on control ut is straightforward. In the state e1, the number
of packets in the link is less than Ubdp; and in the state e2 the “bottleneck” buffer begins to
fill. The inverse proportionality of A21(ut) on ut and guaranteeing intensity A provides the
increasing probability of e1 → e2 transition as ut approaches to Ubdp and guarantees the
transition when the threshold Ubdp is reached. The constant additive term A21

0 stands for a
chance of the e1 → e2 transition under low control values u < Ubdp, which are probable
due to the external flows. When ut decreases to levels less than Ubdp, the probability of
backward transition e2 → e1 increases linearly due to the constant flow processing rate. The
transition intensities e2 � e3 act the same way, but with a different threshold, namely W ′′.

The conditional intensities of the acknowledgment arrivals λj(u) depend on the
control u and, according to (10), are inversely proportional to the average time between the
acknowledgment arrivals:

λj(u) =
1

mj
τ(u)

.

We assume that if no packets are lost, then during each RTT cycle, the sender receives
back the acknowledgments for all the packets currently being sent into the network; hence
we assume that the following relation is valid:

mj
τ(u) =

mj
V(u)
u

.
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The average RTT for each state mj
V(u) is assumed to be a sum of the following components:

• constant propagation delay, δ0,

• average queuing delay caused by external data, flows mj
V, ext,

• average queuing delay caused by the data flow under control, u ·mj
V, sel f .

Summing up the assumptions, we have the following relation for the conditional
intensity of the acknowledgment arrivals:

λj(u) =
u

δ0 + mj
V, ext + umj

V, sel f

. (43)

The counting processes for loss (2) and timeouts (3) can now be defined as thinned
versions of the acknowledgment flow with following conditional intensities:

Bj(u) = Bj
0 + λj(u)Pl(u),

Cj(u) = λj(u)Pj
to.

(44)

Here Pj
to denotes the conditional probabilities of a timeout in the corresponding states.

For the states e1,2,3, which are related to the wired part of the link, we assume that the
only cause for a timeout is a temporary communication hardware fault; and hence the
probabilities for these states are constant and equal to each other: P1

to = P2
to = P3

to. In the
state e4, the timeouts follow the wireless carrier signal fading; hence the probability of a
timeout P4

to is different but still independent of the control u.
The packet loss conditional probabilities, on the contrary, are the functions of the

control u. If the control value is less than the RED threshold u < W ′′, then

P1
l (u) = P0, P2

l (u) = P0 + max
(

Ut −W ′

W ′′ −W ′
(P1 − P0), 0

)
, P3

l (u) = 1, P4
l (Ut) = P4

l ,

where P0 is the probability of a packet loss in the wired segment during its propagation
through the media, W ′ is the lower RED threshold (W ′ < W ′′). If the threshold of guar-
anteed packet loss is exceeded, then the loss is inevitable, thus Pj(u) = 1 for any j, if
u ≥W ′′.

To conclude the definition of the loss and timeout intensities, it remains to mention
that the additive terms Bj

0 in the loss intensity B(u) stand for the losses caused by the
external flows.

5. Comparative Study with Modern Versions of TCP

We have completely described the observation system (1)–(4) and its parameters’
dependence on the control u. Let Ot , {Ys, Zs, Qs, 0 6 s 6 t} be the natural filtration
generated by the observations available up to the moment t. Generally speaking, any
Ot-predictable nonnegative control Ut is admissible to (1)–(4).

In this section, we present the control processes, which describe the modern versions
of TCP in terms of the presented model of channel state and observations. We also present
here a state-based TCP control modification, which is based on the optimal state filtering
and optimal control strategy. The section will be concluded by a comparative analysis of
the TCP versions’ performance.

In what follows we will assume that the constant values Ubdp, W ′′, δ0 and mj
V, sel f are

selected so as to comply with the link of C = 100 Mbps capacity, propagation delay of
δ0 = 0.1 s, bottleneck queue limit of Q = 100 packets, and MSS = 1000 bytes:

Ubdp =
106 C δ0

8 MSS
= 1250, W ′′ = Ubdp + Q = 1350, mj

V, sel f =
8 MSS
106 C

= 8 · 10−5.
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5.1. AIMD Scheme and TCP Illinois

In [52] we presented an AIMD type control ut policy, which remains the same for the
present channel model:





ut = u0 +
∫ t

0
I[W,Wth

t )(us−)
us−
rs−

ds +
∫ t

0
I[Wth

t ,+∞)(us−)
αs

rs−
ds−

∫ t

0
βsus−dYs +

∫ t

0
(W − us−)dZs,

Wth
t = Wth

0 +
∫ t

0

(
1
2

us− −Wth
s−

)
dYs,

(45)

where

• IS(u) is an indicator function equal to one, if u ∈ S, and zero otherwise,
• W is the minimal window size,
• Wth

t is a threshold actuating congestion avoidance phase,
• rt is the exponential smoothing estimate of RTT,
• αt and βt are Ot-predictable coefficients of additive increase and multiplicative decrease.

The first term in (45) describes the slow start mode, the second and the third stand for
the linear increase and the multiplicative decrease in the congestion avoidance phase, and
the fourth provides the window rollback to the minimal value W and return to the slow
start mode when a timeout event occurs.

In the case αt ≡ 1 and βt ≡ 0.5 Equation (45) represents the New Reno algorithm. The
Illinois concave control policy is defined by convex αt and increasing linear βt functions of

the average queuing delay da =
4
∑

j=1
(mj

V, ext + umj
V, sel f )e

T
j Xt:

αt(da) =

{
αmax if da 6 d1

κ1
κ2 + da

otherwise,

βt(da) =





βmin if da 6 d2
κ3 + κ4da if d2 < da < d3
βmax otherwise,

(46)

The parameters κi and di and other details of the Illinois control scheme can be found
in [6]. It should be noted that the most important parameters are the maximum and
minimum additive increase and multiplicative decrease coefficients, which for the standard
implementation are set to [αmin, αmax] = [0.3, 10], [βmin, βmax] = [0.125, 0.5]. In Figure 2,
we present the simulation results for the Illinois TCP control policy for these standard
parameters. The upper plot presents the channel parameters’ dynamics, including RTT
(in red), losses (black triangles), and timeouts (red crosses). The filling color indicates
the channel states: white for idle, green for moderate load, red for congestion in the
wired segment, and grey for the wireless segment signal fading. The lower plot shows
the control dynamics and the critical thresholds: Ubdp, which corresponds to the channel
bandwidth-delay product and buffer overflow low bound Ubdp + W ′′.

One can notice that by processing only the RTT information, the algorithm succeeds in
the determination of the Ubdp and becomes much more prudent once the bottleneck buffer
starts to fill. This results in long periods of relatively high transmission rates without buffer
overflows and rare losses. Nevertheless, during the intervals, when the channel is idle,
the control values growth speed is insufficient, which results in underuse of the channel
resources and, in the end, in lower average transmission rate.
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Figure 2. TCP channel simulation example for Illinois control algorithm.

5.2. TCP CUBIC

In contrast with TCP Illinois, this version of TCP does not rely on RTT observations
most of the time. Instead, it considers the control value, at which a loss occurred last time,

Wmax
t =

t∫

0

(us− −Wmax
s− ) dYs,

as the highest network use control and tends to form a plateau in the close region to this
point. To that end, it keeps counting the time since the last loss or timeout,

Tloss
t = t−

t∫

0

t dYs −
t∫

0

t dZs,

and sets the control according to a cubic function of Tloss
t forming two regions: a concave

region to reach the last maximum control value of Wmax
t , and then a convex region of

network probing, where the control growth speed becomes higher as the time without loss
increases. Upon the loss event, the control is reduced according to a constant multiplicative
decrease coefficient β, and when a timeout occurs, the control is reset to a minimal window
size W. Summing up, the TCP CUBIC control can be represented as follows:

u(t) = Wmax
t + C

(
Tloss

t −
(

Wmax
t (1− β)

C

) 1
3
)3

−
t∫

0

βus−dYs +
∫ t

0
(W − us−) dZs, (47)

where C is a constant fixed to determine the aggressiveness of control growth: with higher
C values (for example, C = 4.0), CUBIC tends to be more aggressive, which can be quite
useful in high BDP networks.

In Figure 3, we present the simulation results for the TCP CUBIC control with multi-
plicative decrease coefficient β = 0.9 and scale constant C = 4.0. It should be noted that
this simulation is based on a more precise model of the protocol described in [38] and takes
into account such details as TCP-friendly region and fast convergence heuristics. These
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details were not reflected in Equation (47) to avoid unnecessary complications. As in the
previous Figure, the upper plot presents the channel dynamics (RTT, losses, timeouts, and
state), and the lower plot shows the dynamics of the control.

One can see that TCP CUBIC manages to keep the control close to the desired Ubdp
value, allowing fast recovery after losses. At the same time, the probing phase, which is
symmetrical to the recovery phase, is too aggressive, and the average throughput would
benefit from longer “plateau” periods. Another advantage, which must be mentioned, is
the ability to adjust to dramatic changes in the media: in contrast with TCP Illinois, the
CUBIC protocol keeps the control at low values throughout the whole period of wireless
signal degradation, which results in fewer losses.
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Figure 3. TCP channel simulation example for CUBIC control algorithm.

5.3. TCP Compound

The TCP Compound algorithm tries to benefit both from the loss-based and congestion-
based approach. To that end, the authors enhance the standard AIMD congestion avoidance
scheme with an additional component, which allows faster growth on an idle channel when
standard AIMD control underuses the resources [40]. When the congestion is detected, the
window is adjusted to avoid packet losses. To estimate the congestion, the TCP Compound
scheme compares the estimated number of backlogged packets (bottleneck queue size) dt
with a known threshold value γ. The estimate of the queue size is computed as follows:

dt = ut

(
1− Vmin

t
Vt

)
,

where Vt is current, and Vmin
t is a minimum registered RTT value.

The entire TCP Compound control scheme can be represented by the following expression:

ut = u0 +
∫ t

0
I[W,Wth

t )(us−)
us−
rs−

ds

+
∫ t

0
I[Wth

t ,+∞)(us−)
(

I[0,γ)(ds−)uκ
t

α

rs−
− I[γ,+∞)(ds−)ζds−

)
ds

−
∫ t

0
βus−dYs +

∫ t

0
(W − us−)dZs,

(48)
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where

• I[W,Wth
t )(us−) is the slow start indicator,

• I[0,γ)(ds−) is the congestion indicators,
• α, β, κ, ζ are tunable protocol parameters.

In (48), the first term describes the slow start mode, the second term reflects the growth
phase and correction upon congestion detection, the third stands for the multiplicative
decrease, and the fourth provides the window rollback and return to the slow start mode
when a timeout event occurs.

In Figure 4, we present the simulation results for the TCP Compound protocol with
standard parameter values: α = β = 0.125, κ = 0.75, ζ = 1.0. The backlog estimate
threshold value for congestion indication is set to γ = 80. The upper plot presents the
channel dynamics (RTT, losses, timeouts, and state), and the lower plot shows the dynamics
of the control (in black) and the estimated backlog size dt (in blue). The figure illustrates
the correction of the control when the backlog size estimate reaches the threshold and high
control values when the bottleneck buffer queue is assumed empty. It should be noted
that TCP Compound, such as the Illinois version, fails to quickly adapt to the wireless
signal degradation, demonstrating high instability and a big number of losses during this
channel state.
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Figure 4. TCP channel simulation example for Compound control algorithm.

5.4. TCP BBR

The TCP BBR algorithm is purely delay-based [54]. It is designed with the idea of
maintaining the total data in the channel equal to the BDP. At this load, a connection runs
with the highest throughput and lowest delay. The BDP value is estimated as a product of
RTprop—round-trip propagation time and BtlBw—bottleneck bandwidth or delivery rate.
An estimate for the propagation time is the minimum registered RTT over a long time:

RTpropt = min{RTTs}, s ∈ [t−WR, t],

where WR typically varies from tens of seconds to minutes. To estimate the delivery rate,
BBR calculates the ratio of the portion of data delivered to the time elapsed from the
delivery start. Since this ratio is calculated for every acknowledgment received, it is natural
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to take the data “inflight” at the moment the packet was sent as a portion and the RTT of
this acknowledgment as the time elapsed from the delivery start. The estimated delivery
rate then is a maximum of such ratios taken over a period WB equal to 6–10 RTTs:

BtlBwt = max
{

u(t− RTTt)

RTTt

}
, s ∈ [t−WB, t].

The main problem of this approach is that the propagation time and the delivery
rate cannot be observed at the same time. Indeed, the bottleneck buffer must be empty
to observe RTT values close to the propagation time and, to observe the capacity of the
channel, it must be overfilled. This problem is solved by two modes of the steady-state
regime: ProbeBW and ProbeRTT. In ProbeBW, the algorithm cycles through eight phases
with the following pacing gain values: pt = (5/4, 3/4, 1, 1, 1, 1, 1, 1). The length of each
phase is equal to the current estimate of the propagation time RTpropt. Thus, the capacity
of the channel is achieved by a periodical increase of the sending rate followed by a rollback
for the queue drain. ProbRTT is turned on when the value of RTpropt is not updated for a
long time. In this mode, the transmission barely stops for a short time to fully drain the
queue. Simulation experiments show that in the present model, the last mode is redundant
since BBR manages to maintain a very precise estimate of the propagation delay spending
the whole time in ProbBW mode. Plus, we excluded from consideration the Startup and
Drain modes since they are usually very short.

Thus, finally, the BBR control is defined as follows:

ut = RTpropt · BtlBwt · pT
t e[(t/RTpropt)% 8 + 1], (49)

where e[k] ∈ R8 is a vector with unity on k-th place and zeros on all others, and % is the
modulo operator.

In Figure 5, we present the simulation results for the TCP BBR protocol. The upper
plot presents the channel dynamics (RTT, losses, timeouts, and state), and the lower plot
shows the dynamics of the control (in black) and the estimate of the BDP control equal to
RTpropt · BtlBwt (in blue). One can notice that this estimate is quite precise, nevertheless,
the channel is congested almost the whole time. This means that the BBR algorithm is too
aggressive for the channel at hand parameters: the bottleneck buffer size is not enough to
accommodate the periodical 25% sending rate increase.
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Figure 5. TCP channel simulation example for BBR control algorithm.
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5.5. State-Based TCP

To obtain the state-based TCP control strategy, the optimization problem (6) needs to be
solved for some predefined gains (instantaneous and terminal) and transmission expenses.

It is natural to bind the transmission expense function ξ = (ξ1, . . . , ξ4)T with the
intensity of losses, which we aim to minimize, hence set

ξ j(u) = kjBj(u), (50)

where k1, . . . , k4 are coefficients, which reflect the gravity of losses in particular chan-
nel states.

We take the same instantaneous gain, as in [36]:

φj(u) = − aj

mj
V(u) u

= − aj

δ0 + mj
V, ext + umj

V, sel f

, (51)

where a1, . . . , a4 are coefficients, which define the utility of the traffic, depending on the
channel state.

Analyzing the behavior of the TCP versions described earlier in the present paper,
we may conclude that the most beneficial in terms of the throughput and losses is the
state e2 (moderate load). Hence, it is natural to design the state-based version with the
goal of spending most of the time in this state. Terminal gains ψj, satisfying the condition
max{ψj} = ψ2, would reflect this idea.

In Figure 6 (left), we present a solution to the problem (6) with transmission expenses and
instantaneous gains given by (50)–(51) with k = (10−4, 10, 102, 1)T and a = (100, 100, 1, 100)T .
The terminal gains are ψ = −106 · (2, 1, 2, 4)T , and the right bound of the observation
interval is set to a rather small value of the propagation delay T = δ0 = 0.1 so that the
impact of the terminal gains on the criterion would be more valuable. The controls for the
states e1 (idle), e2 (moderate load), e3 (congestion), e4 (wireless signal fading) are given in
grey, green, red, and black colors, respectively.

One can observe that the optimal control we obtained is almost constant. This is a
very useful property in terms of the scalability of the results. Indeed, the control strategy
equal to the mean of the optimal controls

ut =
1
T

T∫

0

us ds, (52)

does not depend on the interval, where the original optimization problem (6) was defined.
In Figure 6 (right), we present three plots, which illustrate the behavior of state

occupation probabilities of the channel Xt with constant controls (52) given three different
initial states: X0 = e1, X0 = e2, X0 = e3. The color scheme is the same: grey, green, red, and
black lines show the occupation probabilities for respectively e1, e2, e3, e4 states. With solid
lines, we show the probabilities obtained as a result of the Kolmogorov equation solution,
and with dotted lines, we show the same probabilities obtained through the Monte-Carlo
sampling (with 1000 trajectories). One can see that even on a bigger time interval (T = 5 s),
the goal of the state-based control is achieved: from any given initial condition, the channel
manages to revert to (or maintain) the most favorable state e2.

In Figure 7, we present the simulation results for the state-based control policy. The
upper plot presents the channel dynamics (RTT, losses, timeouts, and state), and the lower
plot shows the optimal channel estimate X̂t in the form of a stack plot: the height of
the white/green/red/grey area at a certain point of time corresponds to the conditional
probability of state idle/moderate load/congestion/wireless signal fading. This plot
demonstrates that the quality of the estimates is good and that the hidden channel state
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may be adequately revealed based on the available information. In the lower plot of
Figure 7, we also show the dynamic of the control

ût = uT
t X̂t,

where ut is given by (52). One can see that even on a larger interval, the main property of
the proposed control strategy remains: the channel spends most of the time in the state e2,
which results in better throughput and fewer losses.
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Figure 6. State-based control (left) and state occupation probabilities for three initial states: X0 = e1, X0 = e2, X0 = e3

(right).
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Figure 7. TCP channel simulation example for state-based control algorithm.

5.6. Comparison

To compare the performance of the TCP control schemes discussed above, we use
statistical modeling. The performance metrics, namely the average throughput (a measure
of bandwidth usage effectiveness) and the loss percentage (a measure of predisposition
to congestions, which affect other users), are calculated on samples long enough to make
the variance negligible. This way is preferable in comparison with taking the average on
a bunch of short-term samples since it diminishes the effect of transient phases: initial
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probing for available channel characteristics, which is implemented differently but is an
essential part of all TCP protocol versions.

On samples of 106 seconds, we compare the state-based control with TCP Illinois, CU-
BIC, Compound, and BBR versions. To make the comparison fairer, we variate, where
available, the parameters of TCP control algorithms to achieve better performance. For
TCP Cubic, we take three values of multiplicative decrease coefficient β ∈ {0.7, 0.8, 0.9};
for TCP Compound, we consider nine values of the backlog estimate threshold
γ ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90}. Other parameters of the protocol are the same as they
were defined in Sections 5.2 and 5.3 since they have little or negative effect on the performance.

For the state-based version described in Section 5.5, one can tune the protocol be-
havior by choosing different optimization criteria (6). Nevertheless, since, in our case,
the optimal control is constant, instead of the variation of the coefficients of the transmis-
sion expenses (50) and instantaneous gain (51), we can directly manipulate these constant
values assigned for the channel states. The experiments show that changing controls for
states e1, e2, e3, which correspond to the wired part of the transmission channel, makes the
performance worse. At the same time, the variation of the control for the state e4 (wireless
signal fading) can bring value; hence we consider four cases: u4

t ∈ {20, 50, 100, 200}.
The simulation results are summarized in Figure 8, where we present the average

throughput and loss percentage and are detailed in Table 1, where one can also find the
control algorithm parameters and state occupation times.

One can immediately observe the same occupation time value for the state e4, which
is an indirect indicator of the sufficiency of the chosen simulation sample length: since the
transition to and from the state of wireless signal fading does not depend on the control
values, the limit probability for the corresponding state should be the same.

The highest occupation time for the state e2 of moderate channel load is demonstrated
by the state-based control. In addition, it can be confirmed that this allows this control
algorithm to demonstrate better performance: for the case of u4

t = 20, the losses are
minimal, and the average throughput is second best. It should be noted that the best
throughput value demonstrated by the BBR protocol is only possible at the cost of huge
losses. This is a characteristic feature of this control algorithm on shallow buffers [55]:
it is too aggressive for a channel with chosen characteristics, and a small buffer cannot
accommodate frequent 25% speed jumps.

The last thing, which is worth mentioning, is the ability of the state-based protocol to
be tuned specifically for the cases of wireless channel issues. Depending on the application,
it may try to maintain the maximal possible transmission rate at a cost of huge losses, or,
vice versa, drop the speed and wait for the connection to restore to the full speed.
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Table 1. Performance metrics.

Protocol Parameter Throughput % loss e1 e2 e3 e4
Illinois 63.97 0.011 15.3% 37.7% 24.8% 22.2%

CUBIC β = 0.7 59.85 0.005 25.7% 31.2% 20.9% 22.2%
CUBIC β = 0.8 63.99 0.006 17.7% 30.8% 29.3% 22.2%
CUBIC β = 0.9 68.74 0.007 8.9% 24.2% 44.7% 22.2%

Compound γ = 10 61.81 0.021 14.3% 42.6% 20.9% 22.2%
Compound γ = 20 65.63 0.019 10.7% 43.4% 23.7% 22.2%
Compound γ = 30 66.61 0.019 9.6% 39.9% 28.3% 22.2%
Compound γ = 40 67.02 0.021 9.0% 31.1% 37.7% 22.2%
Compound γ = 50 68.08 0.022 8.5% 26.8% 42.5% 22.2%
Compound γ = 60 68.63 0.022 8.3% 24.1% 45.4% 22.2%
Compound γ = 70 68.68 0.023 8.3% 22.8% 46.7% 22.2%
Compound γ = 80 68.76 0.024 8.3% 22.9% 46.6% 22.2%
Compound γ = 90 68.77 0.024 8.3% 22.8% 46.7% 22.2%

BBR 88.65 1.219 0.7% 8.2% 68.9% 22.2%

State-based u4
t = 20 76.15 0.004 1.9% 74.2% 1.7% 22.2%

State-based u4
t = 50 76.68 0.007 1.8% 74.3% 1.7% 22.2%

State-based u4
t = 100 77.64 0.012 1.7% 74.4% 1.7% 22.2%

State-based u4
t = 200 79.29 0.022 1.6% 74.5% 1.7% 22.2%

6. Conclusions

The class of controllable Markov jump processes equipped by the stochastic analysis
framework represents an effective tool for the description of a TCP governed communica-
tion connection. The hidden channel state is described by a Markov jump process with a
finite-state space, characterizing both the current channel load and physical “health status”.
The state equation admits both to include various types of existing congestion control
algorithms (Illinois, CUBIC, Compound, BBR, etc.) and to incorporate some novelties.

The available observations represent the Markov jump processes, namely the Cox
processes of the packet losses and timeouts and compound Poisson processes of the packet
reception acknowledgments.

The available mathematical framework admits designing the complete technological
chain of the TCP congestion control optimization, namely:

• to describe properly the congestion control problem as the stochastic control one,
• to solve the problem above in the case of complete information under the admissible

controls with geometric constraints,
• to simplify the mathematical model of available observations, replacing the high-

frequency packet acknowledgments flow by its diffusion limit,
• to solve the connection state filtering by the available observations and obtain high-

precision state estimates,
• to design effective numerical algorithms for the filtering and control problems solution,
• to apply the separation principle and the loop of congestion control synthesis, using

the connection state estimates instead of their exact values.

The result of this optimization represents the proposed state-based version of TCP.
The paper contains a comparative analysis of the proposed algorithm against the other
contemporary TCP versions and demonstrates its advantages.

The potential of the controllable Markov jump processes for the description of the
transport and applied layer communication protocols is far from being exhausted. In
perspective, one can use it both for the enhancement of the existing protocols (see, e.g.,
multi-path TCP [56]) and for the development of new ones (see, e.g., “TCP-free” protocols
such as QUIC [57]).
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In conclusion, we should also note that the mathematical potential of Markov chains/
Markov jump processes allows designing complete technological chains “mathematical
model-properly formulated mathematical problem-theoretical solution-efficient numerical
algorithm” to solve many applied problems of the analysis, estimation, and control in
such areas as biology [58–60], epidemiology [61–63], inventory control [64], mathematical
finance [65], insurance [66,67], etc.

Author Contributions: Conceptualization, A.B. (Andrey Borisov), I.S.; methodology, A.B. (Andrey
Borisov), G.M.; software, G.M.; validation, A.B. (Alexey Bosov); formal analysis and investigation,
A.B. (Andrey Borisov), G.M.; writing—original draft preparation, A.B. (Andrey Borisov), G.M.;
writing—review and editing, A.B. (Alexey Bosov), I.S.; visualization, G.M.; supervision, A.B. (Alexey
Bosov), I.S. All authors have read and agreed to the published version of the manuscript.

Funding: The work of Andrey Borisov, Alexey Bosov, and Gregory Miller was partially supported
by the Russian Foundation of Basic Research (RFBR Grant No. 19-07-00187-A).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
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BBR Bottleneck Bandwidth and RTT
BDP bandwidth-delay product
CLTRRP central limit theorem
CLTRRP central limit theorem for renewal-reward processes
CME conditional mathematical expectation
CPP compound Poisson process
cwnd congestion window size
MAP maximum a posteriori probability
MJP Markov jump process
pdf probability density function
RHS right-hand side
RTO retransmission timeout
RTT round-trip time
TCP Transmission Control Protocol
TVD the total variation distance
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