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Abstract: It has been increasingly reported that in biological tissues diffusion-weighted MRI signal
attenuation deviates from mono-exponential decay, especially at high b-values. A number of diffusion
models have been proposed to characterize this non-Gaussian diffusion behavior. One of these
models is the continuous-time random-walk (CTRW) model, which introduces two new parameters:
a fractional order time derivative α and a fractional order spatial derivative β. These new parameters
have been linked to intravoxel diffusion heterogeneities in time and space, respectively, and are
believed to depend on diffusion times. Studies on this time dependency are limited, largely because
the diffusion time cannot vary over a board range in a conventional spin-echo echo-planar imaging
sequence due to the accompanying T2 decays. In this study, we investigated the time-dependency
of the CTRW model in Sephadex gel phantoms across a broad diffusion time range by employing
oscillating-gradient spin-echo, pulsed-gradient spin-echo, and pulsed-gradient stimulated echo
sequences. We also performed Monte Carlo simulations to help understand our experimental results.
It was observed that the diffusion process fell into the Gaussian regime at extremely short diffusion
times whereas it exhibited a strong time dependency in the CTRW parameters at longer diffusion
times.

Keywords: continuous-time random-walk; diffusion MRI; diffusion time; Sephadex gel phantom

1. Introduction

Using water diffusion as a probe, diffusion-weighted MRI (DW-MRI) has become
a promising technique to reveal the underlying micrometer-scale structural properties
in millimeter-resolution MR images [1,2]. In DW-MRI, two diffusion gradient lobes are
employed to dephase and rephase spins, respectively. The displacement of water molecules
is quantified over a given time period, known as effective diffusion time (∆eff), which
is constrained by the separation and duration of diffusion gradient lobes. For water
molecules that diffuse during ∆eff, the varying degree of spatial dislocation results in a
phase dispersion (Φ) of the magnetization. The probabilistic distribution function (PDF) of
the net displacement of diffusing water molecules is related to a probability distribution of
Φ, which leads to signal attenuation in an MRI measurement [3,4].

It is widely accepted that the probability distribution of molecular displacement is
Gaussian in an isotropic, homogeneous, and unrestricted medium. In that case, the second
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moment of the distribution, or mean squared displacement (MSD), scales linearly with
diffusion time: 〈x2〉 ~ t [5]. In the presence of restricting barriers in complex materials,
however, the probability distribution of molecular displacement no longer follows Gaussian
distribution. The MSD in the non-Gaussian diffusion case can be characterized as a function
of intrinsic diffusion coefficient, restrictive geometry, and diffusion time [6]. One way of
characterizing the non-Gaussian diffusion behavior is to employ the continuous time
random walk (CTRW) theory, in which the MSD can be expressed by a composite power
law as: 〈x2〉 ~ t2α/β, where α and β are the fractional order time and space derivatives,
respectively, in fractionalized Fick’s second law [7,8]. This generalized description enables
the CTRW model to provide a more realistic description of the complex diffusion pattern
in biological tissues [8].

In parallel to the development of non-Gaussian diffusion models, it has been increas-
ingly recognized that diffusion parameters derived from various diffusion models exhibit
dependence on diffusion time. Pyatigorskaya et al. [9] and Aggarwal et al. [10] observed
substantial time dependency in diffusion kurtosis imaging (DKI) in the mouse brain while
noticeable time dependency of intravoxel incoherent motion (IVIM) model was also re-
ported by Wu et al. [11] in a flow phantom and mouse brain. Varying diffusion time enables
exploration of the interaction between diffusing water molecules and the surrounding
environment at different spatial scales [12], providing a new degree of freedom to estimate
parameters that are related to the underlying tissue microstructures [12,13]. Conventional
spin-echo-based DWI sequences have limited ability to vary diffusion time. On one hand,
a longer diffusion time results in substantial increase in echo time, leading to signal loss
due to T2 decay. On the other hand, a shorter diffusion time reduces the b-value, leading to
inadequate diffusion-weighting. Therefore, investigation of diffusion time dependency in
DWI-MRI over a broad range requires alternative pulse sequences to lengthen or shorten
the effective diffusion time. Although previous studies investigated the time dependency
of the CTRW parameters in the intermediate to long diffusion time range [8,14,15], the time
dependency of the CTRW model at short diffusion time remains unexplored. Furthermore,
the consistency of the CTRW parameters under different pulse sequences has not been well
studied.

Sephadex gels are structurally heterogeneous swollen polymers with relatively uni-
form pore size [16], forming an ideal test bed to mimic the diffusion environment in
complex biological tissues. The multi-compartment Sephadex beads provide different
physical environments, such as restricted diffusion environment within the bead, free
liquid space outside the bead, and open pores for water molecules to diffuse through. In
this complex multi-compartment environment, water molecules move freely at short diffu-
sion times while they experience hinderance or restriction when interacting with polymer
structures at longer diffusion times. Sephadex gel phantoms have been widely used for
validating advanced diffusion models, such as the CTRW model’s predecessor–fractional
order calculus model [7,14,17].

In this study, we investigated the diffusion time dependency of the CTRW model
by employing oscillating-gradient spin-echo (OGSE), pulsed-gradient spin-echo (PGSE),
and pulsed-gradient stimulated echo (PGSTE) pulse sequences. Collectively, these se-
quences enabled investigation of a broad range of diffusion times, spanning from short-,
intermediate-, to long-time regime. Two series of Sephadex gels, each with different pore
size or bead diameters, were selected as the experimental material to mimic the tissue
environment. In addition, Monte Carlo simulations were performed to help understand
the experimental results.
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2. Theory

According to the simple random walk (RW) theory, the one-dimensional Brownian
motion of a diffusing particle in a homogeneous and isotropic environment can be described
by a second-order partial differential equation,

∂P(x, t)
∂t

= D
∂2P(x, t)

∂|x|2
, (1)

where P(x,t) is one-dimensional Brownian motion of a diffusing particle and D is the
diffusion coefficient. The solution to Equation (1) yields Gaussian distribution of the
displacement where the MSD is proportional to diffusion time t, 〈x2(t)〉 ~ t [8].

In the context of the CTRW theory, where jump length and jump waiting time follow
asymptotic power law distributions, the one-dimensional anomalous motion of a diffusing
particle in a heterogenous environment can be described with a dual space-time fractional
order diffusion equation of the form [7,18–20],

C
0 Dα

t P(x, t) = Dα,β
∂βP(x, t)

∂|x|β
, (2)

where Dα,β is the anomalous diffusion coefficient (in mmβ/sα), C
0 Dα

t is the αth (0 < α ≤ 1)
fractional order time derivative in the Caputo form, given as [21]:

C
0 Dα

t f (t) =
1

Γ(n− α)

∫ t

0
(t− τ)n−α−1

(
d

dτ

)n
f (τ)dτ. (3)

∂βP(x,t)
∂|x|β

in Equation (2) is the βth (0 < β ≤ 2) fractional order space derivative in the

Riesz form. For n−1 < β < n and the finite interval 0 ≤ x ≤ L, the Riesz fractional operator
is defined as [22]:

∂βu(x, t)

∂|x|β
= − 1

2 cos
(

πβ
2

)[0Dβ
x + xDβ

L

]
u(x, t), (4)

where

0Dβ
x u(x, t) =

1
Γ(n− β)

∂n

∂xn

∫ x

0

u(ξ, t)dξ

(x− ξ)β+1−n (5)

xDβ
Lu(x, t) =

1
Γ(n− β)

∂n

∂xn

∫ L

x

u(ξ, t)dξ

(x− ξ)β+1−n . (6)

With the representation in Equation (2), the MSD can be represented by 〈x2(t)〉 ~ t(2α/β).
When α = 1 and β = 2, this formalism is reduced to the classical Gaussian expression. In
comparison, when 2α > β or 2α < β, the anomalous diffusion process is referred to as
super-diffusive or sub-diffusive [7,17] respectively, and when 2α = β, the non-Gaussian
dynamics is described as quasi-diffusion [23].

For a Stejskal–Tanner diffusion gradient pulse, the solution to Equation (2) can be
described as:

S
S0

= P
(

q, ∆e f f

)
= Eα

(
−Dα,βqβ∆e f f

α
)

. (7)

In Equation (7), S0 is the signal intensity without diffusion weighting and S is the signal
intensity at q and ∆eff, where q = γGdiffδ and ∆eff = ∆ − δ/3 in which γ is the gyrometric
ratio, Gdiff is the diffusion gradient amplitude, δ is the diffusion gradient pulse width, and
∆ is the diffusion gradient separation. Eα is a single-parameter Mittag–Leffler function [8].
For other diffusion gradient waveforms, expressions analogous to Equation (7) can be
derived in reference of the methods described in [24,25].
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3. Methods
3.1. Sephadex Gel Phantom Preparation

In this study, we used two series of Sephadex gels (GE Healthcare) which were charac-
terized by two numbers (e.g., G25–50), where the first number indicates the macromolecular
exclusion limit (in kDaltons, positively correlated with internal pore size) and the second
denotes the maximum dry bead diameter (in microns). The first series of gels (G25–50,
G50–50, G75–50) had the same dry bead diameter of 50 microns, but with increased macro-
molecular exclusion limit. The second series of gels (G50–50, G50–80, G50–150) had the
same internal pore size of 50 kDaltons, but increased bead diameter. The first series of gels
were designed to mimic varying microstructure permeability while the second series to
simulate varying microstructural scale.

Sephadex gel phantoms were prepared by gently pouring excess distilled water into
the dry power gel in a cylindrical test tube (inner diameter = 13.5 mm) at room temperature;
and mixed evenly by using a vortex shaker. The slurry was allowed to settle under the
influence of gravity; and the residual water was removed by pipette before sealing.

3.2. Data Acquisition

The experiments were performed on an Agilent 9.4 T small animal MRI scanner with
a maximum gradient of 1000 mT/m. Prepared Sephadex gels were scanned on the scanner
at the room temperature of 22 ◦C. As illustrated in Figure 1, three different DW pulse
sequences were employed to investigate the diffusion time dependency of the CTRW
model parameters across a broad range of diffusion times.

(I) Customized cosine-trapezoid OGSE sequence: OGSE sequence enables a short effective
diffusion time by periodically varying the polarity of diffusion encoding gradients. Cosine-
trapezoid OGSE waveforms start and end with a quarter-period lobe. ∆eff and b-value of
the cosine-trapezoid OGSE sequence are given by [26]:

∆eff = δ/(3N) (8)

b =
γ2Gdi f f

2δ3

6N2 (9)

where δ is the total waveform duration and N is the number of half oscillation periods
(Figure 1a). Three OGSE acquisitions were performed with a constant δ of 30 ms while N
was set to 6, 4, and 2, resulting in ∆eff values of 1.67, 2.5, and 5 ms, respectively.

(II) PGSE sequence: The effective diffusion time, ∆eff, under a Stejskal–Tanner diffusion
sensitizing gradient pair in a PGSE sequence is given by [3]:

∆eff = ∆ − δ/3 (10)

b = γ2Gdi f f
2δ2∆e f f (11)

The PGSE experiments were performed with ∆ = 11 ms and 35 ms, and δ = 2.5 ms,
resulting in ∆eff values of 10.17 ms and 34.17 ms, respectively (Figure 1b).

(III) PGSTE sequence: With the same Stejskal–Tanner diffusion sensitizing gradient
pair as in PGSE, a PGSTE sequence achieves long diffusion time by taking advantage of
the slower T1 relaxation rate during mixing time (TM). The DW-MRI data were acquired
with an identical ∆ as in the PGSE sequence (35 ms), and three longer ∆ values (80 ms, 100
ms, and 150 ms). The corresponding ∆eff values were 34.17, 59.17, 99.17, and 149.17 ms,
respectively (Figure 1c).
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Figure 2. DW images acquired by using the PGSE sequence (Δ = 35 ms and b = 0). (a) The first 

Sephadex series: G25–50 (bottom right), G50–50 (bottom left), and G75–50 (top). (b) The second 

Sephadex series: G50–50 (bottom left), G50–80 (bottom right), and G50–150 (top). The rhombus-

shaped ROIs indicate the regions used to calculate the mean parameter values.  

Figure 1. Pulse sequences employed in this study. (a) Cosine-trapezoid OGSE where N is the number
of half oscillation period and δ is the total waveform duration (N = 4 in the sequence diagram). (b)
PGSE where δ is the diffusion lobe duration and ∆ is the diffusion lobe separation. (c) PGSTE where
δ and ∆ are defined similarly as in (b).

At each diffusion time, DW images with 11 b-values (0, 25, 100, 225, 400, 625, 900, 1225,
1600, 2025, and 2500 s/mm2) were acquired from the Sephadex gel phantoms by varying
Gdiff. The other imaging parameters, TR (4000 ms) and TE (75 ms), diffusion gradient
direction = R/L, FOV = 36 × 36 mm2, acquisition matrix = 32 × 32, slice thickness = 2 mm
and number of repetitions (NEX = 4), were kept the same in all sequences.

3.3. Data Analysis

The DW images acquired by OGSE, PGSE, and PGSTE were first normalized by divid-
ing DW signal, S, at each b-value by S0. The CTRW model in Equation (7) was fit to the DW
images voxel-by-voxel by using an iterative non-linear Levenberg–Marquardt algorithm
in MATLAB. To improve the fitting stability and alleviate the degeneracy, Dα,β was first
estimated by a mono-exponential model at lower b-values, followed by a simultaneous
estimation of other parameters with appropriate constraints (0 < α ≤ 1 and 0 < β ≤ 2) by
using all b-values [27]. Measurements were made from each quantitative parameter map
(Dα,β, α, and β) by computing the mean value over a ~16 mm2 region-of-interest (ROI)
within each vial of the Sephadex gel. Representative DW images and ROIs are shown in
Figure 2.
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Figure 2. DW images acquired by using the PGSE sequence (∆ = 35 ms and b = 0). (a) The first
Sephadex series: G25–50 (bottom right), G50–50 (bottom left), and G75–50 (top). (b) The second
Sephadex series: G50–50 (bottom left), G50–80 (bottom right), and G50–150 (top). The rhombus-
shaped ROIs indicate the regions used to calculate the mean parameter values.
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3.4. Monte Carlo Simulations

Monte Carlo simulations of the time-dependent MR signals were performed with
random walkers implemented by using the Monte Carlo Diffusion Simulator of Camino
Diffusion MRI Toolkit (UCL) [28,29]. In our simulations, we modeled Sephadex beads
with permeable pores as the perpendicular sections of parallelly packed, non-overlapping
cylinders with permeable membrane. The permeability was defined as a fixed probability
of a random walker stepping through the membrane. Different Sephadex bead sizes
and macromolecular exclusion limits were simulated by adjusting the circle radius and
permeability as detailed below.

Random walkers were randomly seeded inside and between the hexagonally packed
3D parallel cylinders with permeable membranes; and updated the positions following
the rules described in a previous study [28]. Phase change of each random walker was
calculated under the custom-specific diffusion gradients. The synthetic DWI signals were
then generated by summing the contributions from all random walkers at the echo time.
To investigate the effect of varying microstructure scale and membrane permeability on the
anomalous diffusion signal behavior and its time dependency, two sets of simulation data
were generated to simulate the two Sephadex gel series in the MRI experiments. In the first
simulation dataset, substrates with different permeability (p = 0.1%, 0.2%, and 0.4%) were
chosen with fixed cylinder radius (r = 8 µm). In the second simulation dataset, substrates
with different cylinder radii (r = 6 µm, 7 µm, and 8 µm) were selected with fixed membrane
permeability (p = 0.2%). Synthetic DWI signals were generated with diffusion gradients
that were designed to be perpendicular to the cylinder long axes. For each substrate, three
different synthetic OGSE signals were simulated with the oscillating diffusion gradients at
three ∆eff values (3.33, 5, and 10 ms). Eleven different synthetic PGSE/PGSTE signals were
simulated with Stejskal–Tanner diffusion gradients at eleven ∆eff (25, 30, 35, 40, 45, 50, 60,
70, 80, 90, and 100 ms).

All simulations were performed on an 8-core Intel i7–2600 CPU with 100,000 random
walkers and 20,000 time-steps with intrinsic diffusivity of 2 × 10−3 mm2/s, intracellular
volume ratio of 0.5 and 7 b-values (0, 200, 500, 1000, 1500, 3000, and 6000 s/mm2). The
normalized simulated signal intensities over all b-values were fit to Equation (7) with the
same fitting procedure as for the experimental data.

4. Results

The CTRW parameter, Dα,β, obtained from the first Sephadex gel series was plotted as
a function of ∆eff in Figure 3. Two trends were observed. First, a downward trend reaching
a plateau was seen for all gels, suggesting increased hinderance at longer diffusion times.
Second, the gels with larger pore sizes (G50–50 and G75–50 in Figure 3b,c) exhibited higher
Dα,β values at all diffusion times.
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Figure 3. Plots of Dα,β versus effective diffusion time, ∆eff, for gels G25–50 (a) and G50–50 (b), and
G75–50 (c) with increased macromolecular exclusion limit. The data acquired by using the OGSE,
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In Figures 4 and 5, the fractional order time and space derivatives, α and β, were
plotted against ∆eff, respectively. α and β exhibited a similar trend to each other. For all the
gels, as ∆eff decreased to 0, α and β values approached to 1 and 2, respectively, indicating
that the diffusion signal behavior approaches to the Gaussian regime in the limit of short
diffusion times. The gels with larger pore sizes exhibited higher α and β values (G50–50
and G75–50 in Figures 4a,b and 5a,b), suggesting less deviation from Gaussian diffusion
dynamics.
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In Figure 6, Dα,β is plotted as a function of ∆eff for the second Sephadex gel series,
G50–50, G50–80, and G50–150. Similar to the first Sephadex gel series, Dα,β followed
a downward trend reaching a plateau for all the Sephadex gels. G50–50, G50–80, and
G50–150 in Figure 6a–c show similar Dα,β values at short diffusion times. However, at
longer diffusion times, the gels with larger bead sizes (G50–80 and G50–150 in Figure 6b,c)
exhibited higher Dα,β values, similar to what is shown in Figure 3.
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Figure 6. Plot of Dα,β versus effective diffusion time, ∆eff, for gels G50–50 (a), G50–80 (b), and
G50–150 (c). The data acquired by using the OGSE, PGSE, and PGSTE pulse sequences are marked in
black, red, and blue, respectively.

In Figures 7 and 8, α and β are plotted against ∆eff for gels in the second Sephadex
series (G50–50, G50–80, and G50–150). Similar to the first Sephadex gel series, α and β
showed a decreasing trend against ∆eff in all gels. As the dry bead size increased, higher
α and β values were observed in general. 2α/β < 1 was observed in all Sephadex gels,
indicating the diffusion dynamics fell into sub-diffusion regime.
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Figure 7. Plot of temporal fractional order (α) versus effective diffusion time, ∆eff, for gels G50–50
(a), G50–80 (b), and G50–150 (c). The data acquired by using the OGSE, PGSE, and PGSTE pulse
sequences are marked in black, red, and blue, respectively.
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Figure 8. Plot of spatial fractional order (β) versus effective diffusion time, ∆eff, for gels G50–50
(a), G50–80 (b), and G50–150 (c). The data acquired by using the OGSE, PGSE, and PGSTE pulse
sequences are marked in black, red, and blue, respectively.

Plots in Figures 9 and 10 show the time-dependent changes observed in the CTRW
parameters in the Monte Carlo simulations. In the first simulation dataset (fixed r and
varying p of 0.1%, 0.2%, and 0.4%), the CTRW parameters, Dα,β (Figure 9a), α (Figure 9b),
and β (Figure 9c), yielded higher values in the data with higher permeability. In the second
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simulation dataset (fixed p and varying r of 6, 7, and 8 µm), the simulated data with a
larger cylinder radius yielded higher Dα,β (Figure 10a), α (Figure 10b), and β (Figure 10c).
The simulation results exhibited a good agreement with experimental results. In both
simulations, Dα,β, α, and β exhibited a monotonically decreasing trend.
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Figure 9. Plots of Dα,β (a), α (b), and β (c) versus ∆eff obtained from the Monte Carlo simulations
with fixed r = 8 µm and varying p of 0.1% (red), 0.2% (green) and 0.4% (blue). The rhombi and
circles represent the simulation results with oscillating diffusion gradient (OGSE) and Stejskal–Tanner
diffusion gradient (PGSE/PGSTE), respectively.

Mathematics 2021, 9, x FOR PEER REVIEW 9 of 13 
 

 

larger cylinder radius yielded higher Dα,β (Figure 10a), α (Figure 10b), and β (Figure 10c). 

The simulation results exhibited a good agreement with experimental results. In both 

simulations, Dα,β, α, and β exhibited a monotonically decreasing trend. 

 

Figure 9. Plots of Dα,β (a), α (b), and β (c) versus Δeff obtained from the Monte Carlo simulations with 

fixed r = 8 µm and varying p of 0.1% (red), 0.2% (green) and 0.4% (blue). The rhombi and circles 

represent the simulation results with oscillating diffusion gradient (OGSE) and Stejskal–Tanner 

diffusion gradient (PGSE/PGSTE), respectively. 

 

Figure 10. Plots of Dα,β (a), α (b), and β (c) versus Δeff from Monte Carlo simulation with fixed p = 

0.2% and varying r of 6 µm (red), 7 µm (green) and 8 µm (blue). The rhombi and circles represent 

simulation results with oscillating diffusion gradient (OGSE) and Stejskal–Tanner diffusion 

gradient (PGSE/PGSTE), respectively. 

5. Discussion 

By employing OGSE, PGSE, and PGSTE sequences to span a broad range of diffusion 

times, we investigated the diffusion time dependency of the CTRW parameters in 

Sephadex gel phantoms and correlated our results with Monte Carlo simulations. We 

observed a monotonic decrease in the CTRW parameters, Dα,β, α, and β, as the diffusion 

time increased. Our Monte Carlo simulations exhibited a similar trend with the 

experimental results. To the best of our knowledge, this is the first study which 

investigates the time dependency behavior of the CTRW model over a wide range of 

diffusion times using a multi-sequence acquisition scheme. 

In the classical mono-exponential model, where water molecules diffuse freely 

without hinderance and restriction, the MR signal attenuation function is concisely 

characterized by a commonly used exponential function, exp(-bD). In the CTRW model, 

α and β quantitatively describe the deviation of diffusion dynamics from the mono-

exponential decay [30]. At short diffusion times where MSD is much smaller than the 

obstacle scales, the water molecules can diffuse freely in all directions, leading to a process 

that follows Gaussian dynamics. As expected, at this short diffusion time extreme, α and 

β values approached to 1 and 2, respectively, while Dα,β converged to the diffusion 

coefficient of pure water, D0. These outcomes were clearly observed in our experimental 

data and confirmed in Monte Carlo simulations. In contrast, the long diffusion time 

provides water molecules a greater opportunity to explore the heterogeneity of the 

surrounding environment, resulting in reduced α and β. The increased hinderance and 

restriction experienced by water molecules at long diffusion times yielded reduced Dα,β, 

α, and β values, which allows us to infer information on microstructures and micro-

environment. 
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simulation results with oscillating diffusion gradient (OGSE) and Stejskal–Tanner diffusion gradient
(PGSE/PGSTE), respectively.

5. Discussion

By employing OGSE, PGSE, and PGSTE sequences to span a broad range of diffusion
times, we investigated the diffusion time dependency of the CTRW parameters in Sephadex
gel phantoms and correlated our results with Monte Carlo simulations. We observed a
monotonic decrease in the CTRW parameters, Dα,β, α, and β, as the diffusion time increased.
Our Monte Carlo simulations exhibited a similar trend with the experimental results. To
the best of our knowledge, this is the first study which investigates the time dependency
behavior of the CTRW model over a wide range of diffusion times using a multi-sequence
acquisition scheme.

In the classical mono-exponential model, where water molecules diffuse freely without
hinderance and restriction, the MR signal attenuation function is concisely characterized
by a commonly used exponential function, exp(-bD). In the CTRW model, α and β quantita-
tively describe the deviation of diffusion dynamics from the mono-exponential decay [30].
At short diffusion times where MSD is much smaller than the obstacle scales, the water
molecules can diffuse freely in all directions, leading to a process that follows Gaussian
dynamics. As expected, at this short diffusion time extreme, α and β values approached to
1 and 2, respectively, while Dα,β converged to the diffusion coefficient of pure water, D0.
These outcomes were clearly observed in our experimental data and confirmed in Monte
Carlo simulations. In contrast, the long diffusion time provides water molecules a greater
opportunity to explore the heterogeneity of the surrounding environment, resulting in
reduced α and β. The increased hinderance and restriction experienced by water molecules
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at long diffusion times yielded reduced Dα,β, α, and β values, which allows us to infer
information on microstructures and micro-environment.

The lower Dα,β values observed in the gels with smaller pore sizes in the first Sephadex
gel series (Figure 3a,b) is consistent with the general belief that diffusion coefficient is lower
in materials with increased micro-structural barriers [31]. Sephadex gels with larger dry
bead sizes exhibited similar Dα,β at low diffusion times, but higher Dα,β at long diffusion
times (Figure 6b,c), suggesting that the influence of microstructure scale on diffusion
dynamics is more evident at longer diffusion times.

The CTRW model incorporates temporal and spatial diffusion heterogeneities through
fractional order time and space parameters, α and β, respectively. The α parameter describes
the likelihood of water molecules to be “trapped” or “released” in complex materials, which
reflects temporal heterogeneity of diffusion process. The β parameter is mathematically
equivalent to the heterogeneity parameter in the stretched-exponential model [32], which
has been linked with the non-Gaussian distribution of diffusion displacement and shown
to be related to intravoxel spatial heterogeneity [18]. In our experimental and simulation
results, the lower permeability and smaller microstructural scale of the structural barriers
led to a higher likelihood for water molecules to interact with the surrounding structures.
This explains the lower α and β values observed in Sephadex gels with lower macromolec-
ular exclusion limit (Figures 4a and 5a) and smaller bead diameter (Figures 7a and 8a). The
experimental observations were further reinforced by the simulation results with lower
permeability (Figure 9a) and smaller cylinder radius (Figure 10a).

In this study, some discontinuities were observed in the parameter values when
different pulse sequences were employed. For example, Dα,β values obtained from the
experiments performed with the PGSTE were higher than those observed by the PGSE
at ∆eff = 35 ms (Figures 3 and 6). Also, α and β values estimated from the data acquired
with the PGSE at ∆ = 11 ms were higher than those with the OGSE at ∆eff = 5 ms in the
first Sephadex series, as shown in Figures 4 and 5. The root cause of the discontinuities is
unknown and requires further investigation. Nevertheless, the overall monotonic trend
across a broad diffusion time range is consistent in all CTRW parameters. Two Sephadex
gel series with varying pore size or bead diameter exhibited the same monotonic trend,
which was consistent with the trends revealed by the Monte Carlo simulations.

The accuracy of our simulation depends upon the Monte Carlo Diffusion Simulator of
Camino Diffusion MRI Toolkit. The assumption is that this simulator is capable of simulat-
ing diverse diffusion processes across a broad range of environments (i.e., substrates), from
simple to exceedingly complex. In our simulations, the varying radius and permeability
were employed to mimic the varying dry bead diameter and macromolecular exclusion
limit of the Sephadex gels, respectively. Although we did not attempt to explicitly evaluate
the accuracy and precision of the simulations in this study, a previous study [28] has
illustrated the accuracy of a similar simulation approach. Furthermore, the accuracy was
likely enhanced by the large number of random walkers (100,000) and time steps (20,000)
employed in our study.

Varying diffusion time provides a viable approach to investigating the length scale
of tissue microstructures using water diffusion as a probe [10]. This has a direct impact
on investigating a range of clinical problems. For example, Lemberskiy et al. [33] utilized
time dependent MD and FA for prostate cancer grading while Iima et al. [34] distinguished
malignant from benign head and neck tumors by using time dependent apparent diffusion
coefficient. Several other studies investigated the time dependency of alternative diffusion
models [12,35]. For example, Iima et al. [12] observed significant time dependence of IVIM
and DKI parameters in breast cancer and hepatocellular carcinoma xenograft; and Zhou
et al. [35] reported time-dependence of the parameters in a fractional order calculus model
in the human brain. Although the present study did not focus on a specific clinical problem,
the results from the phantom study provided a useful guide to future investigations
involving pathological tissue specimens, animal models, and clinical patients.
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Our study has several limitations. First, the longest ∆eff in our experiments was
limited to 149.17 ms. This was largely due to the inadequate signal-to-noise ratio in the
PGSTE acquisition. Additionally, a moderate TE of 75 ms was chosen to match the TE in
the OGSE acquisition, thereby mitigating the potential issue with the TE-dependence in
diffusion characterization, which can be particularly evident in a multi-compartmental
environment [36–38]. If the PGSTE sequence is employed alone without the need to match
parameters in other sequences, then studies on diffusion time dependency at long diffusion
time regime can be conducted with a shorter TE. Second, our simulations did not cover the
low diffusion time regime (e.g., <3.33 ms for OGSE and <25 ms for PGSE/PGSTE). This
was because the limited total step size of 20,000 could lead to unstable results at shorter
diffusion times. Optimized algorithms and more powerful computational platforms may
help overcome this limitation. Third, although significant time dependency of CTRW
model parameters was observed in this study, the analytical expressions [39] of this time
dependency in a multi-compartmental environment requires further investigation. Finally,
Sephadex gel phantoms provide a simple diffusion environment with spherical beads and
permeable pores. Although they helped provide valuable insights into understanding of
the complex diffusion processes, their limitations in adequately mimicking actual biological
tissue structures must be recognized.

6. Conclusions

We have investigated time dependency of the CTRW model parameters in Sephadex
gel phantoms across a broad range of diffusion times by using a set of pulse sequences
comprising OGSE, PGSE, and PGSTE. We have experimentally observed monotonic de-
creases in Dα,β, α, and β as the diffusion time increased. These experimental results were
reinforced by the Monte Carlo simulations. The present study provides valuable insights
into probing microstructures by characterizing the time dependency of the CTRW model
parameters, paving the way for future investigations on biological systems.
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