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Abstract: The average kappa coefficient of a binary diagnostic test is a measure of the beyond-chance
average agreement between the binary diagnostic test and the gold standard, and it depends on the
sensitivity and specificity of the diagnostic test and on disease prevalence. In this manuscript the
estimation of the average kappa coefficient of a diagnostic test in the presence of verification bias is
studied. Confidence intervals for the average kappa coefficient are studied applying the methods of
maximum likelihood and multiple imputation by chained equations. Simulation experiments have
been carried out to study the asymptotic behaviors of the proposed intervals, given some application
rules. The results obtained in our simulation experiments have shown that the multiple imputation by
chained equations method provides better results than the maximum likelihood method. A function
has been written in R to estimate the average kappa coefficient by applying multiple imputation. The
results have been applied to the diagnosis of liver disease.

Keywords: average kappa coefficient; missing data; multiple imputation by chained equations;
partial verification

1. Introduction

A binary diagnostic test (BDT) is a medical test used to determine whether or not a
patient has a certain disease. Scintigraphy for the diagnosis of liver disease is an example of
BDT. Sensitivity and specificity are the fundamental parameters to assess the effectiveness
of a BDT. Sensitivity (Se) is the probability of a positive result for the BDT when the patient
has the disease, and specificity (Sp) is the probability of a negative result for the BDT
when the patient does not have the disease. When considering the losses associated with a
misclassification with the BDT, the effectiveness of a BDT is measured with the weighted
kappa coefficient [1,2], which depends on Se and Sp of the BDT, on the disease’s prevalence
and on a weighting index, which is a measure of the relative loss between the false positives
and the false negatives and it is a value set by the clinician and takes a value between 0.5
and 1 when the BDT is used as a screening test, and the weighting index takes a value
between 0 and 0.5 when the BDT is used as a confirmatory test. Therefore, the investigator
must assign a value to the weighting index according to the utility of the BDT (screening
test or confirmatory test). Roldán-Nofuentes and Olvera-Porcel [3] have defined a new
measure to evaluate the effectiveness of a BDT based on the weighted kappa coefficient:
the average kappa coefficient. The average kappa coefficient depends on the Se and Sp of
the BDT and on the disease prevalence, but it does not depend on the weighting index; the
average kappa coefficient solves the problem of assigning values to the weighting index.

In order to obtain unbiased estimators of the parameters of a BDT it is necessary to
know the disease status of each patient in a random sample. The medical test through
which the disease status of a patient is known is called gold standard (GS), and therefore
the effectiveness of a BDT is assessed in relation to a GS. A biopsy for the diagnosis of
liver disease is an example of GS. The most common sampling design to evaluate the
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effectiveness of a BDT is cross-sectional sampling. This design consists of applying the
BDT and the GS to all patients in a random sample. In this situation the true disease
state (disease present or disease absent) is known for all patients in the sample. In the
cross-sectional sample there are no missing data and therefore corresponds to a complete
data situation.

In clinical practice, it is common that when evaluating a BDT, the GS is not applied
to all patients in the sample, giving rise to a problem called partial verification of the
disease [4]. If the GS is an expensive medical test or a medical test that involves risks for
the patient, then the GS is not applied to all the patients in the sample. In this situation, if
Se and Sp are estimated without considering the patients for whom the GS is unknown, the
estimators are affected by so-called verification bias [4,5]. Begg and Greenes [4] deduced
the maximum likelihood estimators of Se and Sp when the missing data mechanism is
missing at random (MAR). The MAR assumption holds that the selection of a patient to
verify their disease status with the GS depends only on the result of the BDT. Therefore, the
true disease state (disease present or disease absent) is unknown for a subset of patients;
the missing information is the true disease status for this subset of patients in the sample.
Harel and Zhou [6] have studied the estimation of Se and Sp of a BDT through multiple
imputation, assuming the MAR assumption, and they have shown through simulation
experiments that multiple imputation provides better results than the method of Begg and
Greenes [4]. A review of the impact of verification bias in estimating the accuracy of a BDT
(and a continuous test) can be seen in Alonzo [7]. Roldán-Nofuentes and Luna [8] have
studied the estimation of the weighted kappa coefficient in the presence of partial disease
verification.

In this manuscript we study the estimation of the average kappa coefficient in the
presence of verification bias. The manuscript is structured as follows: in Section 2, the
weighted kappa coefficient and the average kappa coefficient of a BDT are presented. In
Section 3 we study the estimation of the average kappa coefficient with complete data.
In Section 4 we study the estimation of the average kappa coefficient when there are
missing data, applying the maximum likelihood method and the multiple imputation by
chained equations method. In Section 5, simulation experiments are carried out to study
the asymptotic behaviors of the confidence intervals proposed in Section 3. In Section 6, we
present a function written in R to estimate the average kappa coefficient in the presence of
missing data. In Section 7, the results obtained are applied to an example on the diagnosis
of liver disease, and in Section 8 the results are discussed.

2. Weighted Kappa Coefficient and Average Kappa Coefficient

Let us consider a BDT whose performance is assessed in relation to a GS. Let L be the
loss that occurs when the BDT gives a negative result for a diseased patient, and let L’ be
the loss that occurs when the BDT gives a positive result for a non-diseased patient. Losses
are assumed to be zero when BDT correctly classifies a diseased patient or a non-diseased
patient. Loss L is associated with a false negative and loss L’ with false positive. For
example, let us consider the diagnosis of liver disease using scintigraphy as a diagnostic
test. If the scintigraphy is positive for a non-disease patient (false positive), the patient
will undergo a biopsy which will finally be negative. Loss L’ will be determined from the
economic costs of the diagnosis, taking into account the risks, stress and anxiety caused for
the patient. If the scintigraphy is negative for a disease patient (false negative), the patient
may be diagnosed later. In this situation the disease can progress or get worse, decreasing
the chance of successful treatment for the disease. Loss L will be determined from these
considerations. Therefore, losses L and L’ are not only measured in economic terms but
also in terms of risk, stress, anxiety, etc. Therefore, in practice it is not possible to determine
the values of the losses L and L’. Finally, we examine the weighted kappa coefficient and
the average kappa coefficient.
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2.1. Weighted Kappa Coefficient

The weighted kappa coefficient κ(c) is a measure of the beyond chance agreement
between the BDT and the GS, and it is expressed [1,2] as

κ(c) =
pqY

pc(1−Q) + q(1− c)Q
, 0 ≤ c ≤ 1

where p is the disease prevalence, q = 1− p, Y = Se + Sp− 1 is the Youden index [9],
Q = pSe + q(1− Sp) = P(T = 1), and c = L/(L′ + L) is the weighting index. The
weighted kappa coefficient can also be written as

κ(c) =
κ(0)κ(1)

cκ(0) + (1− c)κ(1)
, 0 ≤ c ≤ 1. (1)

The value of the weighting index is assumed depending on the clinician’s knowledge
about false positives and false negatives [1,2]. If the clinician is more concerned about
false positives, as is the case in which the BDT is used as a confirmatory test prior to
the application of a risk treatment (for example a surgical operation), then L′ > L and
0 ≤ c < 0.5. For example, if the clinician decides that a false positive is three times more
important than a false negative then L′ = 3L and c = 1/(1 + 3) = 0.25. If the clinician is
more concerned about false negatives, as is the case in which the BDT is used as a screening
test, then L > L′ and 0.5 < c ≤ 1. For example, if the clinician decides that a false negative
is five times more important than a false positive then L = 5L′ and c = 5/(5 + 1) = 5/6.
Value c = 0.5 is used for a simple diagnosis (false positives and false negatives have the
same importance), being κ(0.5) the Cohen kappa coefficient.

The weighted kappa coefficient can be classified in the following scale of values [10]:
0–0.20, the agreement is slight; 0.21–0.40, the agreement is fair; 0.41–0.60, the agreement
is moderate; 0.61–0.80, the agreement is substantial; and 0.81–1, the agreement is al-
most perfect. Another scale based on levels of clinical significance is [11]: <0.40, poor;
0.40–0.59, fair; 0.60–0.74, good; and 0.75–1, excellent. The weighted kappa coefficient
has the following properties: (a) if c = 0 then κ(0) = {Sp− (1−Q)}/Q and if c = 1
then κ(1) = (Se−Q)/(1−Q); (b) if Se = Sp = 1 then κ(c) = 1, and the agreement
between BDT and GS is perfect; (c) if the sensitivity and the specificity are complementary
(Se = 1− Sp) then κ(c) = 0, and the BDT and the GS are independent (the BDT is random
and therefore not informative); (d) the weighted kappa coefficient is a function of the index
c, which is increasing if Q > p, decreasing if Q < p, or equal to the Youden index if Q = p.

2.2. Average Kappa Coefficient

From the weighted kappa coefficient, Roldán-Nofuentes and Olvera-Porcel [3] have
defined a new measure to evaluate the performance of a BDT with respect to a GS: the
average kappa coefficient. For fixed values of Se, Sp and p, the weighted kappa coefficient
is a continuous function of the index c. If the clinician considers that L′ > L, and therefore
0 ≤ c < 0.5, the average kappa coefficient is [3]

κ1 =
1

0.5

∫ 0.5

0
κ(c)dc =

{
2κ(0)κ(1)
κ(0)−κ(1) ln

{
κ(0)+κ(1)

2κ(1)

}
, p 6= Q

Y, p = Q,
(2)

i.e., the average kappa coefficient (κ1) is the average value of κ(c) when 0 ≤ c < 0.5. If the
clinician considers that L > L′, and therefore 0.5 < c ≤ 1, the average kappa coefficient
is [3]

κ2 =
1

0.5

∫ 1

0.5
κ(c)dc =

{
2κ(0)κ(1)
κ(0)−κ(1) ln

{
2κ(0)

κ(0)+κ(1)

}
, p 6= Q

Y, p = Q,
(3)
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i.e., the average kappa coefficient (κ2) is the average value of κ(c) when 0.5 < c ≤ 1, where

κ(0) =
Sp− (1−Q)

Q
and κ(1) =

Se−Q
1−Q

.

As the weighted kappa coefficient is a measure of the beyond-chance agreement
between the BDT and the GS, the average kappa coefficient is a measure of the beyond-
chance average agreement between the BDT and the GS, and does not depend on the
weighting index c. The values of the average kappa coefficient can be classified on the
same scales [10,11] as the values of the weighted kappa coefficient. The average kappa
coefficients κ1 and κ2 have the following properties [3]:

If Se = Sp = 1 then κ1 = κ2 = 1, and if Se = 1− Sp then κ1 = κ2 = 0. Therefore
0 ≤ κi ≤ 1, i = 1, 2.
Coefficient κ1 is greater than κ2 if p > Q, and κ1 is lower than κ2 if Q > p.

κ1 minimizes the expression 2
∫ 0.5

0 {κ(c)− x}2dc and κ2 minimizes the expression

2
∫ 1

0.5 {κ(c)− x}2dc. Therefore, when x = κ1 (x = κ2) the first (second) expression is
the variance of the weighted kappa coefficients around κ1 (κ2).
For fixed values of κ(0) and κ(1) (or Se, Sp and p), the weighted kappa coefficient is a
function of c which is continuous in the interval [0, 1]. Therefore, the average kappa
coefficient κi coincides with a value of the weighted kappa coefficient in the interval
[0, 1]. This value of the weighted coefficient kappa has a value of weighting index
c. So, as κi = κ(c) for some value of c, from Equation (1) and for a specific sample it
is possible to calculate a value of the weighting index c associated to the estimated
average kappa coefficient. Thus, the estimation of the average kappa coefficient
allows us to estimate how much greater (or smaller) the loss due to the false negatives
is than the loss due to the false positives.

3. Estimation with Complete Data

When the BDT and the GS are applied to all patients in a random sample sized m, the
observed frequencies in Table 1 are obtained, where the variable T models the result of the
BDT (T = 1 when the result is positive and T = 0 when it is negative) and the variable D
models the result of the GS (D = 1 when the patient has the disease and D = 0 when the
patient does not have the disease). In Table 1, each observed frequency xi (yi) is the number
of diseased (non-diseased) patients in which T = i, x = x1 + x0, y = y1 + y0, mi = xi + yi
and n = x + y = m1 + m0, with i = 0, 1. In this situation the disease status (disease present
or disease absent) of all patients is verified by applying the GS, and it corresponds to a
cross-sectional sampling.

Table 1. Observed frequencies in the presence of complete data.

Observed Frequencies of the 2 × 2 Table

T = 1 T = 0 Total

D = 1 x1 x0 x
D = 0 y1 y0 y
Total m1 m0 m

In this situation, the maximum likelihood estimator (MLE) of the weighted kappa
coefficient [1,2] is

κ̂(c) =
x1y0 − x0y1

m0xc + m1y(1− c)
, 0 ≤ c ≤ 1,

and that the MLEs of κ(0) and κ(1) are

κ̂(0) =
x1y0 − x0y1

m1y
and κ̂(1) =

x1y0 − x0y1

m0x
.



Mathematics 2021, 9, 1694 5 of 17

Finally, the MLEs of the average kappa coefficients κ1 and κ2 are [3]

κ̂1 =


2(x1y0−x0y1)

m0x−m1y ln
{

m1y+m0x
2m1y

}
, x0 6= y1

x1y0−x0y1
xy , x0 = y1,

and

κ̂2 =


2(x1y0−x0y1)

m0x−m1y ln
{

2m0x
m1y+m0x

}
, x0 6= y1

x1y0−x0y1
xy , x0 = y1,

respectively.
If x0 = y1 = 0 then κi cannot be estimated. If x1y0 = x0y1 then κ̂i = 0. If x1y0 < x0y1,

or if x1 = 0 or y0 = 0, then Ŷ < 0 and it is necessary to interchange the results of the
BDT (the positive result should be T = 0 and the negative result should be T = 1). A
fundamental analysis in inference statistics is formign a confidence interval (CI) for an
unknown parameter. In this context and with respect to the average kappa coefficient,
Roldán-Nofuentes and Olvera-Porcel [3] have studied various CIs for κ1 and κ2. These CIs
are approximate and their asymptotic behaviors have been studied through simulation
experiments. Following this work, two confidence intervals (CIs) for κ1 and κ2 studied by
Roldán-Nofuentes and Olvera Porcel (Wald CI and logit CI) are summarized and a new CI
(arcsine CI) is also presented.

3.1. Wald CI

Based on the asymptotic normality of (κ̂i − κi)/
√

V̂ar(κ̂i), i.e., (κ̂i − κi)/√
V̂ar(κ̂i)→ N(0, 1) when m is large, the 100(1− α)% Wald CI for κi is [3]

κi ∈ κ̂i ± z1−α/2

√
V̂ar(κ̂i), i = 1, 2,

where z1−α/2 is the 100(1− α/2)th percentile of the normal standard distribution. Expres-
sions of the estimated variances are shown in Appendix A.

3.2. Logit CI

Based on the logit transformation of κ̂i, ln[κ̂i/(1− κ̂i)], is closer to a normal distribu-
tion with mean ln[κi/(1− κi)], the 100(1− α)% CI for the logit of κi is

logit(κ̂i)± z1−α/2

√
V̂ar[logit(κ̂i)], i = 1, 2,

Taking exponential in this expression, the 100(1− α)% logit CI for κi is [3]

κi ∈
(

exp
{

logit(κ̂i)−z1−α/2

√
V̂ar(logit(κ̂i))

}
1+exp

{
logit(κ̂i)−z1−α/2

√
V̂ar(logit(κ̂i))

} ,
exp

{
logit(κ̂i)+z1−α/2

√
V̂ar(logit(κ̂i))

}
1+exp

{
logit(κ̂i)+z1−α/2

√
V̂ar(logit(κ̂i))

}
)

, i = 1, 2,

where the estimated variance is obtained by applying the delta method, i.e.,

V̂ar(logit(κ̂i)) =
V̂ar(κ̂i)

κ̂2
i (1− κ̂i)

2 , i = 1, 2.

3.3. Arcsine CI

The arcsine is a transformation that has been used to estimate parameters, for example,
see the work of Martín-Andrés et al. [12] on the estimation of a binomial proportion. A new
CI for κi can be obtained by applying this transformation. Based on the asymptotic normal-
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ity of
(

sin−1√κ̂i − sin−1√κi

)
/
√

V̂ar
(

sin−1√κ̂i

)
, i.e.,

(
sin−1√κ̂i − sin−1√κi

)
/
√

V̂ar
(

sin−1√κ̂i

)
→ N(0, 1)

when m is large, the 100(1− α)% CI for sin−1√κi is

sin−1√κi ∈ sin−1
√

κ̂i ± z1−α/2

√
V̂ar

(
sin−1

√
κ̂i

)
, i = 1, 2,

where the variance V̂ar
(

sin−1√κ̂i

)
is easily obtained by applying the delta method, i.e.,

V̂ar
(

sin−1
√

κ̂i

)
=

V̂ar(κ̂i)

4κ̂i(1− κ̂i)
, i = 1, 2.

Finally, undoing the transformation, the 100(1− α)% arcsine CI for κi is

κi ∈ sin2

{
sin−1

√
κ̂i ±

z1−α/2

2
√

κ̂i(1− κ̂i)

√
V̂ar(κ̂i)

}
, i = 1, 2.

4. Estimation in the Presence of Partial Verification

The evaluation of a BDT in the presence of partial verification gives the frequencies
in Table 2, where the variables T and D are the same as in Section 3, and the variable V
models the verification process, i.e., V = 1 when the disease status of a patient is verified
with the GS and V = 0 when it is not.

Table 2. Observed frequencies in the presence of partial verification.

Observed Frequencies of the 3 × 2 Table

T = 1 T = 0 Total

V = 1
D = 1 s1 s0 s
D = 0 r1 r0 r
V = 0 u1 u0 u

Total n1 n0 n

Let λij be the probability of verifying the disease status of a patient with the GS in
which T = i and D = j, i.e.,

λij = P(V = 1|T = i, D = j ), i, j = 0, 1.

Assuming that the missing data mechanism is missing at random (MAR) [13], then

λij = λi = P(V = 1|T = i ), i, j = 0, 1.

The MAR assumption takes that the verification process only depends on the result of
the BDT and not the GS. This circumstance obtains in two-phase studies: in the first phase,
the BDT is applied to all patients in the sample; in the second phase, the GS is applied to
only a subset of patients in the sample, depending only on the result of the BDT. Subject
to the MAR assumption, the observed frequencies (s1, r1, u1, s0, r0, u0) are the product of a
multinomial distribution whose probabilities are:

ξi = P(V = 1, D = 1, T = i) = pλiSei(1− Se)1−i

ψi = P(V = 1, D = 0, T = i) = qλiSp1−i(1− Sp)i

ζi = P(V = 0, T = i) = 1−λi
λi

(ξi + ψi).
(4)

Next, estimation of the average kappa coefficient applying the maximum likelihood
(ML) method and applying multiple imputation (MI) is studied.
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4.1. Maximum Likelihood

Assuming that the missing data mechanism is MAR the MLEs of sensitivity, specificity
and prevalence in the presence of partial verification are [4,5]

Ŝepv =
s1n1/(s1 + r1)

s1n1/(s1 + r1) + s0n0/(s0 + r0)
, Ŝppv =

r0n0/(s0 + r0)

r1n1/(s1 + r1) + r0n0/(s0 + r0)
,

and

p̂pv =
s1n1/(s1 + r1) + s0n0/(s0 + r0)

n
.

Substituting in Equations (2) and (3) parameters with their MLEs in the presence of
partial verification, the MLEs of κ1 and κ2 in the presence of partial verification are

κ̂1pv =
2p̂pv q̂pvŶpv

p̂pv−Q̂pv
ln
(

p̂pv+Q̂pv−2p̂pvQ̂pv

2q̂pvQ̂pv

)
and κ̂2pv =

2p̂pv q̂pvŶpv

p̂pv−Q̂pv
ln
(

2p̂pvQ̂pv

p̂pv+Q̂pv−2p̂pvQ̂pv

)
when p̂pv 6= Q̂pv, and

κ̂1pv = κ̂2pv = Ŷpv =
n1n0(s1 + r1)(s0 + r0)(s1r0 − s0r1)

{n1r1(s0 + r0) + n0r0(s1 + r1)}{n1s1(s0 + r0) + n0s0(s1 + r1)}

when p̂pv = Q̂pv, where Q̂pv = n1/n. The expressions of the estimators κ̂1pv and κ̂2pv are
long and complicated when p̂pv 6= Q̂, so statistical software is necessary to calculate them
(see Section 6). Next, three asymptotic CIs for κi in the presence of partial verification are
proposed.

4.1.1. Wald CI

Based on the asymptotic normality of
(
κ̂ipv − κi

)
/
√

V̂ar
(
κ̂ipv

)
, the 100(1− α)% Wald

CI for κi is

κi ∈ κ̂ipv ± z1−α/2

√
V̂ar

(
κ̂ipv

)
, i = 1, 2.

The expressions of the estimated variances are shown in Appendix B. These expres-
sions are long and complicated, so it is necessary to use a statistical program to calculate
them (see Section 6).

4.1.2. Logit CI

The logit CI is based on the asymptotic normality of the logit of{
logit

(
κ̂ipv

)
− logit(κi)

}
/
√

V̂ar
{

logit
(
κ̂ipv

)}
. The logit CI for κi has a general expression

similar to that obtained in Section 3.2, although the expressions for the estimators and the
variances are different. The expressions of the variances are shown in Appendix B, and it is
necessary to use a statistical program to calculate them.

4.1.3. Arcsine CI

The arcsine CI is also based on the asymptotic normality of(
sin−1√κ̂ipv − sin−1√κi

)
/
√

V̂ar
(

sin−1√κ̂ipv

)
and its general expression is similar to

that given in Section 3.3, where the variances are shown in Appendix B.

4.2. Multiple Imputation

Multiple imputation (MI) [14–17] is a computational method used to solve estimation
problems with missing data. MI consists of constructing M complete data sets, obtained
by replacing the missing data with M independent imputed sets. In each complete data
set, the estimators of the parameters and their standard errors are calculated, and these
are combined appropriately to calculate the global estimators, their standard errors and
their confidence intervals. Harel and Zhou [6] have applied MI to estimate the sensitivity
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(specificity) of a BDT in the presence of partial verification and have shown that this method
provides CIs with better asymptotic behavior than the CIs obtained by applying the ML
method. Montero-Alonso and Roldán-Nofuentes [18] have studied the estimation of the
likelihood ratios of two BDTs in the presence of partial verification using the MI by chained
equations (MICE) method and have also shown that this method provides CIs with better
asymptotic behavior.

In our context, from the 3× 2 table given in Table 2, M 2× 2 tables are imputed (as
in Table 1), and from each one of these M tables the estimator of κi, its standard error and
the CIs given in Section 3 are calculated. The M results are then combined by applying
the Rubin rules [14] and, in this way, the CI for κi is calculated. Regarding the imputation
of missing data, MICE method was used. MICE method requires the MAR assumption
and can be used with different types of variables. In the problem posed in this article
there are two binary random variables: variable T and variable D. The work by White
et al. [19] explains in detail the imputation of binary variables using the MICE method. For
variable T there are no missing data since BDT is applied to all patients. However, variable
D is not observed in all patients and therefore this variable has missing data. Firstly, all
missing values are filled in at random. Variable D is then regressed on the variable T
through a logistic regression. The estimation is thus restricted to individuals with observed
T. Missing values in D are then replaced by simulated draws from the posterior predictive
distribution of variable D. This process is called a cycle, and in order to stabilize the
results the process is repeated for a determined number of cycles in order to obtain a set
of imputed data. Applying multiple imputation, the estimator of κi is the mean of the
estimators obtained in M complete data sets, and their standard errors are calculated by
applying the Rubin rules [14]. In the situation studied in this article, the application MICE
requires that si > 0 and ri > 0.

5. Simulation Experiments

Monte Carlo simulation experiments have been carried out to study the asymptotic
behavior (coverage probability and average length) of the CIs studied in Section 4. The
relative biases of the estimators of the average kappa coefficients obtained through ML
and through MI have also been studied. These experiments consisted of the generation
of 10,000 random samples of multinomial distributions sized n = {50, 100, 200, 500, 1000},
and whose probabilities have been calculated from equations. These probabilities have
been calculated in the following way: with respect to verification probabilities, we have
taken two sets of values, (λ1 = 0.70, λ0 = 0.25) and (λ1 = 0.95, λ0 = 0.40), which can be
considered low and high verification probability values. As values of disease prevalence
we took the values p = {10%, 30%, 50%, 70%} and as values of κ1 and κ2 we took the
values {0.20, 0.40, 0.60, 0.80}. Once we have set the values of κ1 and κ2, the values of κ(0)
and κ(1) are obtained solving with the Newton-Raphson method the system made by
Equations (1) and (2), only considering those values whose solutions are between 0 and 1.
Once we have obtained the values of κ(0) and κ(1), as the value prevalence p has been set
previously, the values of Se and Sp are calculated solving the system made by equations
κ(0) = {Sp− (1−Q)}/Q and κ(1) = (Se−Q)/(1−Q), and then the probabilities of the
multinomial distributions are calculated. Therefore, the samples have been generated by
fixing κ1 and κ2. The random samples have been generated in such a way that κ1 and κ2
and their standard errors can be estimated in all of them, and also verifying that κ̂i > 0
(and, in this way, to be able to calculate all CIs). For example, if, in a sample, a frequency
si or ri is equal to 0, then MICE cannot be applied; in this situation this sample has been
ruled out and another one has been generated instead until we have obtained 10,000
samples. The simulation experiments have been carried out using the R program [20] and
the “mice” library [21]. Regarding MICE, this has been carried out using M = 20 data
sets and performing 100 cycles. The M = 20 complete data sets are generated in such a
way that κ1 and κ2 (and their standard errors) can be estimated in all of them. Thus, for
example, if, in a complete data set κ̂i < 0, then that complete data set is neglected and
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another is generated in its place, and so on until obtaining 20 complete data sets. In a
first phase of these experiments, we have considered M = 20 and M = 50 complete data
sets and we have also considered 100 and 200 cycles in each case, obtaining very similar
results. Therefore, we have considered M = 20 and 100 cycles to save computation time
and stabilize the results. These 20 complete data sets have been generated in such a way
that κ1 and κ2 and their standard errors can be estimated in all of them, verifying that each
estimate of κi is greater than 0. In each sample generated, we have calculated the three CIs
(95% confidence) given in Section 3 along with the MICE method and the three CIs given in
Section 4.1. Finally, we have calculated the coverage probabilities and the average lengths
of the CIs in each scenario. The relative biases of the estimators of κ1 and κ2 obtained
through ML and through MICE have also been calculated.

Tables 3 and 4 show some of the results obtained for κ1 = {0.2, 0.4, 0.6, 0.8}, indicating
in each case the values of Se, Sp and p.

Table 3. Coverage probabilities and average lengths of CIs for κ1 = {0.2, 0.4}.

κ1 = 0.2 Se = 0.7773 Sp = 0.7308 p = 10%

λ1 = 0.70 λ0 = 0.25
Maximum Likelihood Method MICE Method

n Relative
Bias (%)

Wald CI Logit CI Arcsine CI Relative
Bias (%)

Wald CI Logit CI Arcsine CI
CP AL CP AL CP AL CP AL CP AL CP AL

50 −13.6 0.998 0.492 0.994 0.721 0.875 0.527 −16.7 0.998 0.481 0.999 0.831 0.946 0.577
100 −11.4 0.982 0.372 0.989 0.486 0.973 0.394 −14.3 0.982 0.372 0.996 0.649 0.979 0.437
200 −7.5 0.960 0.276 0.988 0.302 0.985 0.277 −10.6 0.954 0.293 0.996 0.413 0.993 0.315
500 −3.5 0.942 0.173 0.972 0.174 0.957 0.172 −6.1 0.948 0.187 0.978 0.199 0.965 0.189
1000 −1.8 0.948 0.121 0.963 0.122 0.956 0.121 −2.4 0.948 0.128 0.971 0.131 0.962 0.129

λ1 = 0.95 λ0 = 0.40
Maximum Likelihood Method MICE Method

n Relative
Bias (%)

Wald CI Logit CI Arcsine CI Relative
Bias (%)

Wald CI Logit CI Arcsine CI
CP AL CP AL CP AL CP AL CP AL CP AL

50 −13.5 0.988 0.425 0.993 0.602 0.946 0.460 −15.3 0.988 0.420 0.995 0.751 0.952 0.503
100 −9.2 0.960 0.322 0.984 0.380 0.979 0.330 −11.7 0.953 0.329 0.991 0.509 0.980 0.367
200 −5.6 0.953 0.232 0.988 0.239 0.981 0.230 −7.8 0.948 0.242 0.993 0.279 0.987 0.246
500 −2.7 0.951 0.146 0.962 0.146 0.954 0.145 −3.9 0.950 0.151 0.971 0.153 0.962 0.150
1000 −0.5 0.947 0.102 0.956 0.102 0.953 0.102 −1.1 0.951 0.104 0.956 0.105 0.953 0.104

κ1 = 0.4 Se = 0.7413 Sp = 0.7441 p = 30%

λ1 = 0.70 λ0 = 0.25
Maximum Likelihood Method MICE Method

n Relative
Bias (%)

Wald CI Logit CI Arcsine CI Relative
Bias (%)

Wald CI Logit CI Arcsine CI
CP AL CP AL CP AL CP AL CP AL CP AL

50 −18.1 0.979 0.630 0.996 0.655 0.973 0.618 −20.9 0.979 0.624 0.997 0.740 0.965 0.653
100 −10.1 0.963 0.476 0.994 0.470 0.988 0.464 −13.8 0.952 0.499 0.995 0.554 0.973 0.509
200 −4.5 0.961 0.340 0.989 0.330 0.977 0.333 −6.2 0.947 0.365 0.984 0.373 0.970 0.364
500 −1.5 0.952 0.213 0.961 0.210 0.956 0.211 −2.6 0.949 0.225 0.960 0.224 0.955 0.224
1000 −1.1 0.954 0.150 0.959 0.149 0.958 0.149 −1.5 0.950 0.158 0.955 0.158 0.951 0.158

λ1 = 0.95 λ0 = 0.40
Maximum Likelihood Method MICE Method

n Relative
Bias (%)

Wald CI Logit CI Arcsine CI Relative
Bias (%)

Wald CI Logit CI Arcsine CI
CP AL CP AL CP AL CP AL CP AL CP AL

50 −15.5 0.960 0.550 0.993 0.561 0.982 0.539 −18.4 0.955 0.559 0.996 0.638 0.989 0.575
100 −8.2 0.955 0.405 0.985 0.393 0.980 0.395 −10.9 0.950 0.421 0.991 0.431 0.985 0.418
200 −3.4 0.956 0.283 0.974 0.277 0.967 0.279 −5.1 0.956 0.294 0.980 0.290 0.967 0.290
500 −1.1 0.947 0.178 0.957 0.176 0.952 0.177 −1.3 0.950 0.182 0.963 0.181 0.957 0.181
1000 −0.6 0.955 0.125 0.958 0.125 0.957 0.125 −0.7 0.951 0.128 0.958 0.128 0.955 0.128

CP: coverage probability. AL: average length.
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Table 4. Coverage probabilities and average lengths of CIs for κ1 = {0.6, 0.8}.

κ1 = 0.6 Se = 0.6816 Sp = 0.8624 p = 50%

λ1 = 0.70 λ0 = 0.25
Maximum Likelihood Method MICE Method

n Relative
Bias (%)

Wald CI Logit CI Arcsine CI Relative
Bias (%)

Wald CI Logit CI Arcsine CI
CP AL CP AL CP AL CP AL CP AL CP AL

50 −17.4 0.984 0.701 1 0.638 0.997 0.658 −20.3 0.989 0.714 1 0.694 0.977 0.692
100 −8.9 0.969 0.508 0.994 0.471 0.987 0.485 −11.5 0.963 0.539 0.993 0.514 0.981 0.521
200 −4.9 0.963 0.358 0.974 0.343 0.968 0.349 −6.3 0.955 0.384 0.973 0.371 0.964 0.376
500 −2.0 0.946 0.224 0.952 0.221 0.950 0.222 −2.7 0.950 0.238 0.956 0.235 0.954 0.237
1000 −0.6 0.953 0.157 0.954 0.156 0.954 0.156 −0.8 0.951 0.165 0.953 0.165 0.953 0.166

λ1 = 0.95 λ0 = 0.40
Maximum Likelihood Method MICE Method

n Relative
Bias (%)

Wald CI Logit CI Arcsine CI Relative
Bias (%)

Wald CI Logit CI Arcsine CI
CP AL CP AL CP AL CP AL CP AL CP AL

50 −13.5 0.973 0.600 1 0.555 0.991 0.568 −15.2 0.973 0.608 1 0.587 0.971 0.593
100 −6.7 0.958 0.420 0.980 0.398 0.967 0.407 −7.2 0.952 0.433 0.986 0.414 0.968 0.421
200 −3.1 0.960 0.293 0.968 0.285 0.962 0.289 −3.6 0.954 0.303 0.968 0.295 0.963 0.299
500 −1.5 0.954 0.184 0.958 0.182 0.956 0.183 −1.7 0.950 0.187 0.951 0.187 0.950 0.188
1000 −0.4 0.952 0.130 0.953 0.130 0.953 0.130 −0.5 0.950 0.133 0.953 0.133 0.953 0.133

κ1 = 0.8 Se = 0.7969 Sp = 0.9707 p = 70%

λ1 = 0.70 λ0 = 0.25
Maximum Likelihood Method MICE Method

n Relative
Bias (%)

Wald CI Logit CI Arcsine CI Relative
Bias (%)

Wald CI Logit CI Arcsine CI
CP AL CP AL CP AL CP AL CP AL CP AL

50 −17.9 0.990 0.646 0.987 0.596 0.994 0.612 −20.2 0.987 0.682 0.978 0.640 0.976 0.652
100 −9.2 0.979 0.434 0.948 0.418 0.970 0.417 −10.7 0.978 0.471 0.947 0.455 0.964 0.453
200 −4.7 0.969 0.291 0.949 0.288 0.959 0.285 −5.8 0.971 0.322 0.952 0.316 0.961 0.313
500 −1.8 0.961 0.179 0.964 0.180 0.964 0.180 −2.1 0.961 0.186 0.954 0.187 0.957 0.187
1000 −0.6 0.959 0.123 0.952 0.122 0.956 0.122 −0.7 0.957 0.134 0.951 0.134 0.954 0.133

λ1 = 0.95 λ0 = 0.40
Maximum Likelihood Method MICE Method

n Relative
Bias (%)

Wald CI Logit CI Arcsine CI Relative
Bias (%)

Wald CI Logit CI Arcsine CI
CP AL CP AL CP AL CP AL CP AL CP AL

50 −13.2 0.997 0.535 0.949 0.504 0.965 0.509 −14.8 0.971 0.551 0.957 0.523 0.968 0.527
100 −6.9 0.973 0.349 0.946 0.341 0.961 0.339 −7.5 0.968 0.363 0.944 0.355 0.963 0.352
200 −3.3 0.965 0.231 0.949 0.230 0.961 0.227 −3.6 0.967 0.240 0.953 0.241 0.959 0.239
500 −1.4 0.961 0.141 0.952 0.141 0.959 0.140 −1.5 0.956 0.148 0.945 0.147 0.950 0.147
1000 −0.6 0.953 0.099 0.951 0.099 0.952 0.099 −0.6 0.950 0.102 0.945 0.102 0.946 0.102

CP: coverage probability. AL: average length.

From the results of these experiments we reach the following conclusions:

(a) With respect to ML, the verification probabilities do not have a clear effect on the
coverage probabilities (CPs) of the CIs. With respect to the CIs, in general terms their
CPs far exceed 95% when the sample size is small (n = 50) or moderate (n = 100–200),
fluctuating around 95% when the sample size is large (n = 500–1000). The Wald CI
has a CP that fluctuates around 95% when the sample size is moderate or large. The
logit CI has a higher CP than that of the Wald CI, especially when the sample size is
small or moderate. The arcsine CI can have a CP of less than 90% when the sample
size is small and κ1 is small (κ1 = 0.2) and fluctuates around 95% when the sample
size is large. In general terms, the Wald CI is the interval with the best performance
when the sample size is small or moderate, while all three CIs have a very similar
asymptotic behavior when the sample size is large.

(b) With respect to MICE, the verification probabilities do not have a clear effect on the
CPs of the CIs. The Wald CI has a coverage probability that exceeds 95% when the
sample size is small or moderate and the value of κ1 is small (κ1 = 0.2), fluctuating
around 95% in the other situations and sample sizes. The logit CI has a CP that is
slightly higher than that of the Wald CI, especially when the sample size is small or
moderate. The arcsine CI has a CP closer to 95% when the sample size is small, and in
the rest of sample size its CP is slightly higher than that of the Wald CI.
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(c) Comparing the CIs obtained by ML and those obtained by MICE, MICE along with
the Wald CI presents, in general terms, better fluctuations around 95% than any of
the CIs obtained by ML; once MICE, along with the Wald CI, reaches a CP of 95%,
it fluctuates very slightly around 95%. Furthermore, in general terms, MICE along
with the Wald CI begins to fluctuate around 95% with a sample size smaller than the
CIs by ML. Regarding the average lengths, the CIs obtained by ML have an average
length slightly less than that of the CIs obtained by applying MICE when the sample
size is small or moderate, although the latter show better fluctuations around 95%.
The average lengths are very similar when the sample size is large.

(d) Regarding the comparison of the estimators obtained by ML and MICE, relative
biases are very similar. Difference (in absolute value) is small (less than 5%) when the
sample size is small, and the difference is very small (less than 1%) when the sample
size is large. Therefore, ML and MICE provide estimators of κ1 that are, on average,
very similar.

Tables 5 and 6 show some of the results obtained for κ2 = {0.2, 0.4, 0.6, 0.8}. In very
general terms, very similar conclusions are obtained to those obtained for the ICs of κ1.

Table 5. Coverage probabilities and average lengths of CIs for κ2 = {0.2, 0.4}.

κ2 = 0.2 Se = 0.5904 Sp = 0.6901 p = 70%

λ1 = 0.70 λ0 = 0.25
Maximum Likelihood Method MICE Method

n Relative
Bias (%)

Wald CI Logit CI Arcsine CI Relative
Bias (%)

Wald CI Logit CI Arcsine CI
CP AL CP AL CP AL CP AL CP AL CP AL

50 −15.8 0.984 0.597 0.976 0.744 0.883 0.610 −19.4 0.981 0.616 0.978 0.795 0.947 0.662
100 −7.3 0.985 0.465 0.971 0.583 0.943 0.486 −10.7 0.971 0.490 0.976 0.663 0.972 0.529
200 −2.9 0.958 0.357 0.960 0.418 0.967 0.365 −5.1 0.953 0.381 0.967 0.500 0.967 0.401
500 −1.7 0.945 0.241 0.960 0.248 0.963 0.239 −1.9 0.949 0.260 0.963 0.281 0.962 0.261
1000 −0.7 0.949 0.172 0.968 0.173 0.955 0.171 −0.8 0.950 0.180 0.960 0.185 0.957 0.182

λ1 = 0.95 λ0 = 0.40
Maximum Likelihood Method MICE Method

n Relative
Bias (%)

Wald CI Logit CI Arcsine CI Relative
Bias (%)

Wald CI Logit CI Arcsine CI
CP AL CP AL CP AL CP AL CP AL CP AL

50 −11.1 0.979 0.511 0.970 0.662 0.907 0.530 −13.6 0.980 0.530 0.973 0.728 0.953 0.577
100 −6.1 0.971 0.395 0.968 0.485 0.960 0.409 −8.2 0.966 0.412 0.972 0.560 0.967 0.440
200 −2.3 0.955 0.299 0.961 0.326 0.974 0.301 −4.1 0.953 0.312 0.971 0.375 0.977 0.321
500 −1.1 0.937 0.196 0.961 0.197 0.951 0.194 −1.4 0.947 0.206 0.965 0.214 0.962 0.206
1000 −0.5 0.956 0.138 0.962 0.139 0.959 0.138 −0.6 0.951 0.147 0.959 0.148 0.957 0.146

κ2 = 0.4 Se = 0.7773 Sp = 0.7308 p = 10%

λ1 = 0.70 λ0 = 0.25
Maximum Likelihood Method MICE Method

n Relative
Bias (%)

Wald CI Logit CI Arcsine CI Relative
Bias (%)

Wald CI Logit CI Arcsine CI
CP AL CP AL CP AL CP AL CP AL CP AL

50 −36.5 0.999 0.743 1 0.842 0.891 0.701 −38.8 0.999 0.683 1 0.892 0.967 0.738
100 −26.1 0.981 0.630 1 0.680 0.983 0.631 −29.3 0.963 0.598 1 0.778 0.991 0.649
200 −16.3 0.964 0.496 0.998 0.493 0.995 0.486 −19.2 0.943 0.516 0.995 0.597 0.997 0.534
500 −7.2 0.954 0.320 0.984 0.312 0.969 0.315 −9.5 0.949 0.356 0.989 0.361 0.968 0.354
1000 −3.9 0.957 0.226 0.966 0.223 0.962 0.224 −4.4 0.951 0.247 0.971 0.247 0.958 0.247

λ1 = 0.95 λ0 = 0.40
Maximum Likelihood Method MICE Method

n Relative
Bias (%)

Wald CI Logit CI Arcsine CI Relative
Bias (%)

Wald CI Logit CI Arcsine CI
CP AL CP AL CP AL CP AL CP AL CP AL

50 −31.5 0.999 0.684 0.999 0.762 0.984 0.678 −35.3 0.999 0.652 1.000 0.847 0.976 0.702
100 −19.7 0.969 0.556 0.999 0.571 0.992 0.548 −23.2 0.951 0.559 1.000 0.674 0.992 0.586
200 −10.9 0.964 0.415 0.996 0.402 0.994 0.404 −13.4 0.951 0.437 0.999 0.458 0.992 0.437
500 −5.3 0.954 0.261 0.970 0.256 0.962 0.258 −7.6 0.952 0.278 0.978 0.277 0.966 0.277
1000 −1.9 0.945 0.184 0.954 0.182 0.949 0.183 −2.3 0.951 0.193 0.961 0.191 0.959 0.193

CP: coverage probability. AL: average length.
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Table 6. Coverage probabilities and average lengths of CIs for κ2 = {0.6, 0.8}.

κ2 = 0.6 Se = 0.8864 Sp = 0.6746 p = 30%

λ1 = 0.70 λ0 = 0.25
Maximum likelihood method MICE Method

n Relative
Bias (%)

Wald CI logit CI Arcsine CI Relative
Bias (%)

Wald CI logit CI Arcsine CI
CP AL CP AL CP AL CP AL CP AL CP AL

50 −32.9 0.97 0.799 1 0.74 0.987 0.742 −35.6 0.973 0.767 1 0.794 0.968 0.762
100 −18.1 0.971 0.61 1 0.555 0.996 0.576 −21.9 0.944 0.649 0.997 0.629 0.972 0.629
200 −9.8 0.970 0.417 0.984 0.394 0.976 0.404 −12.3 0.955 0.470 0.981 0.450 0.966 0.458
500 −3.8 0.960 0.254 0.966 0.248 0.964 0.251 −4.9 0.956 0.278 0.960 0.278 0.958 0.281
1000 −2.2 0.945 0.177 0.949 0.176 0.949 0.176 −2.9 0.948 0.187 0.951 0.187 0.949 0.187

λ1 = 0.95 λ0 = 0.40
Maximum likelihood method MICE Method

n Relative
Bias (%)

Wald CI Logit CI Arcsine CI Relative
Bias (%)

Wald CI Logit CI Arcsine CI
CP AL CP AL CP AL CP AL CP AL CP AL

50 −22.9 0.978 0.694 1 0.633 0.996 0.652 −26.4 0.967 0.709 1 0.701 0.973 0.692
100 −12.6 0.966 0.487 0.996 0.454 0.978 0.468 −16.1 0.956 0.531 0.995 0.507 0.969 0.514
200 −6.2 0.967 0.331 0.976 0.319 0.969 0.324 −8.8 0.959 0.360 0.972 0.348 0.971 0.350
500 −2.4 0.956 0.203 0.960 0.200 0.959 0.201 −3.3 0.955 0.216 0.956 0.212 0.957 0.215
1000 −1.3 0.960 0.142 0.957 0.142 0.956 0.142 −1.5 0.956 0.150 0.957 0.150 0.957 0.150

κ2 = 0.8 Se = 0.8644 Sp = 0.9817 p = 50%

λ1 = 0.70 λ0 = 0.25
Maximum likelihood method MICE Method

n Relative
Bias (%)

Wald CI Logit CI Arcsine CI Relative
Bias (%)

Wald CI Logit CI Arcsine CI
CP AL CP AL CP AL CP AL CP AL CP AL

50 −20.6 0.938 0.688 0.933 0.644 0.931 0.662 −23.8 0.935 0.711 0.933 0.672 0.942 0.695
100 −10.6 0.956 0.495 0.912 0.492 0.942 0.485 −13.1 0.949 0.531 0.922 0.525 0.941 0.519
200 −5.5 0.958 0.356 0.936 0.356 0.954 0.348 −7.2 0.951 0.392 0.942 0.391 0.954 0.382
500 −2.3 0.960 0.228 0.954 0.228 0.959 0.228 −3.0 0.953 0.235 0.946 0.234 0.950 0.233
1000 −1.1 0.953 0.158 0.956 0.158 0.953 0.157 −1.5 0.949 0.175 0.950 0.175 0.949 0.174

λ1 = 0.95 λ0 = 0.40
Maximum likelihood method MICE Method

n Relative
Bias (%)

Wald CI Logit CI Arcsine CI Relative
Bias (%)

Wald CI Logit CI Arcsine CI
CP AL CP AL CP AL CP AL CP AL CP AL

50 −13.8 0.957 0.567 0.915 0.553 0.938 0.553 −16.1 0.965 0.59 0.924 0.537 0.943 0.573
100 −6.7 0.963 0.399 0.933 0.401 0.958 0.392 −7.9 0.952 0.422 0.933 0.423 0.945 0.418
200 −3.6 0.943 0.285 0.935 0.285 0.942 0.279 −4.4 0.947 0.301 0.937 0.302 0.943 0.296
500 −1.3 0.954 0.178 0.944 0.179 0.949 0.177 −1.6 0.950 0.190 0.945 0.191 0.946 0.188
1000 −0.7 0.949 0.126 0.949 0.126 0.947 0.126 −0.8 0.950 0.132 0.953 0.132 0.950 0.132

CP: coverage probability. AL: average length.

6. Function Eakcpv

We have written a function in R [20], called “eakcpv” (Estimation of the Average Kappa
Coefficient in the presence of Partial Verification), to estimate the average kappa coefficient
of a BDT in the presence of partial disease verification. The command to run the “eakcpv”
function is “eakcpv(s1, r1, u1, s0, r0, u0, con f , imp, cycl)”, where (s1, r1, u1, s0, r0, u0) are the
observed frequencies, “conf” is the confidence level, “imp” is the number of complete data
sets and “cycl” is the number of cycles. The complete data sets are generated in such a way
that κ1 and κ2 (and their standard errors) can be estimated in all of them. Thus, for example,
if, in a complete data, set κ̂i < 0, then that complete data set is neglected and another is
generated in its place, and so on until obtaining “imp” complete data sets. The function
always checks that the values are valid and that the analysis can be performed (e.g., no
frequency si or ri is equal to 0, etc.). The function estimates κ1 and κ2 applying MICE,
along with the Wald and arcsine CIs. The function estimates the relative loss between
false positives and false negatives, and also estimates how much greater (or less) the loss
associated with a false positive is than the loss associated with a false negative. The results
obtained are recorded in a file called “results_eakcpv.txt” in the same folder from which
the function is run. The function “eakcpv” is available as Supplementary Materials of
this manuscript.
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7. Example

The results obtained have been applied to the study of Drum and Christacopoulos [22]
on the diagnosis of liver disease. Drum and Christacopoulos [22] have studied the diagnosis
of liver disease using a hepatic scintigraphy as BDT and a biopsy as GS. In Table 7, we show
the observed frequencies, where variable T models the result of the hepatic scintigraphy,
variable V models the verification process and variable D models the result of the biopsy.

Table 7. Diagnosis of liver disease.

Observed Frequencies of the Study of Drum and Christacopoulos

T = 1 T = 0

V = 1
D = 1 231 27
D = 0 32 54
V = 0 166 140
Total 429 221

Running the “eakcpv” function with the command

eakcpv(231, 32, 166, 27, 54, 140, 0.95, 20, 100),

it is obtained that κ̂pv(0) = 0.597 and κ̂pv(1) = 0.507. With respect to κ1, it is obtained that
κ̂1mice = 0.572, its standard error is 0.059 and the 95% Wald CI for κ1 is (0.452 , 0.691). The
estimated relative loss between the false positives and the false negatives is ĉ = 0.252, and
the loss associated with the false positives (L’) is 2.97 times greater than the loss associated
with the false negatives (L). With respect to κ2, it is obtained that κ̂2mice = 0.526, its standard
error is 0.066 and the 95% Wald CI for κ2 is (0.393 , 0.660). Estimated relative loss between
the false positives and the false negatives is ĉ = 0.752, and the loss associated with the false
negatives (L) is 3.03 times greater than the loss associated with the false positives (L’).

When hepatic scintigraphy is to be used as a confirmatory test prior to risky treatment
(L′ > L and 0 ≤ c < 0.5), the beyond-chance average agreement between the hepatic scintig-
raphy and the biopsy is moderate (κ̂1mice = 0.572), and in terms of the Wald CI, the beyond-
chance average agreement between the hepatic scintigraphy and the biopsy is a value
between moderate and substantial (95% confidence). Estimated relative loss between the
false positives and the false negatives is 0.252. As c = L/(L + L′) = (L/L′)/{1 + (L/L′)},
it is possible to calculate which loss (L or L’) is greater. Loss associated with the false
positives (L’) is 2.97 times greater than the loss associated with the false negatives (L).
Therefore, if the clinician considers that L′ > L, then the beyond-chance average agreement
between the hepatic scintigraphy and the biopsy is moderate (κ̂1 = 0.572), and the loss that
occurs when erroneously classifying a non-diseased patient with the hepatic scintigraphy is
2.97 times greater than the loss that occurs when erroneously classifying a diseased patient
with the hepatic scintigraphy.

When hepatic scintigraphy is to be used as a screening test (L > L′ and 0.5 < c ≤ 1),
the beyond-chance average agreement between the hepatic scintigraphy and the biopsy is
moderate (κ̂2mice = 0.526). In terms of the Wald CI, the beyond-chance average agreement
between the hepatic scintigraphy and the biopsy is a value between fair and substantial
(95% confidence). Estimated relative loss between the false positives and the false negatives
is 0.752, so that the loss associated with the false negatives (L) is 3.03 times greater than the
loss associated with the false positives (L’). Therefore, if the clinician considers that L > L′,
then the loss that occurs when erroneously classifying a diseased patient with the hepatic
scintigraphy is 3.03 times greater than the loss committed when erroneously classifying a
non-diseased patient with the hepatic scintigraphy.
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8. Discussion

The average kappa coefficient is a measure of the beyond-chance average agreement
between the BDT and the GS, and depends only on the Se and Sp of the BDT and on
disease prevalence. The average kappa coefficient solves the problem of assigning values
to the weighting index of the weighted kappa coefficient. In this manuscript we study
the estimation of the average kappa coefficient when the gold standard is not applied to
all patients in a sample. We study the estimation of the average kappa coefficient when
the gold standard is not applied to all patients in a sample, a situation known as partial
verification of the disease. The estimation of the average kappa coefficient has been carried
out by applying two methods: the maximum likelihood method and the MICE method.
As both methods require that the verification process be MAR, it therefore follows the
verification process does not depend on disease status.

We have carried out simulation experiments to study the asymptotic behavior of the
proposed ICs, both using the maximum likelihood approach and MICE. The relative biases
of the two estimators (maximum likelihood and MICE) of the average kappa coefficient
have also been calculated. MICE method along with the arcsine CI is the interval that has
been shown to have a better coverage probability when the sample size is small, while
MICE method along the Wald CI has shown to have a better coverage probability when
the sample size is moderate or large. Regarding the relative biases, the difference between
the relative biases of both types of estimators is small, such that both methods give rise to
estimators that on average are very similar. Therefore, we recommend using MICE instead
of the maximum likelihood method.

As in other studies [6,17], multiple imputation has proven to be a good method (and
better than the maximum likelihood method) to estimate parameters of a binary diagnostic
test in the presence of partial verification of the disease. In the situation studied here,
the application of MICE has been carried out by generating 20 data sets. Rubin [14]
recommended imputing five complete data sets in order to be able to apply multiple
imputation. As our simulations have given stable values with 20 and 50 data sets, we
decided, finally, to use 20.

The MICE method is requires the missing data to be MAR, so if the verification process
depends on disease status then the MAR assumption is not verified and MICE cannot be
applied. Therefore, it is necessary to study other methods of estimating the average kappa
coefficient when the MAR assumption is not verified. The application of the method used
by Kosinski and Barnhart [23] may be a solution to this problem. Future research should
also focus on estimating the average kappa coefficient when covariates are observed in all
patients in the sample.

Finally, we have written a function in R to estimate the average kappa coefficient
in the situation studied in this manuscript, applying MICE. The function is available as
Supplementary Materials.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/math9141694/s1. The function “eakcpv” is a function written in R that allows estimating the
average kappa coefficient by applying the MICE method.
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Appendix A

Roldán-Nofuentes and Olvera-Porcel [3] have deduced (applying the delta method)
the expressions of the estimated variances of the estimators of the average kappa coefficients
when the BDT and GS are applied to all patients in a sample.

When p̂ 6= Q̂ (which is equivalent to x0 6= y1), the estimated asymptotic variances of
κ̂1 and κ̂2 are [3]

V̂ar(κ̂1) =
1

[κ̂(0)+κ̂(1)]2[κ̂(0)−κ̂(1)]2
×{{

2κ̂(0)2κ̂(1)−κ̂(1)[κ̂(0)+κ̂(1)]κ̂1
κ̂(0)

}2 (1−Ŝp)
2
Ŷ2V̂ar( p̂)+ p̂2

[
(1−Ŝp)

2
V̂ar(Ŝe)+Ŝe2V̂ar(Ŝp)

]
Q̂4 +

{
κ̂(0)[(κ̂(0)+κ̂(1))κ̂1−2κ̂(0)κ̂(1)]

κ̂(1)

}2 (1−Ŝe)
2
Ŷ2V̂ar( p̂)+q̂2

[
Ŝp2V̂ar(Ŝe)+(1−Ŝe)

2
V̂ar(Ŝp)

]
(1−Q̂)

4 +

2
{

2κ̂(0)2κ̂(1)+κ̂(1)[κ̂(0)+κ̂(1)]κ̂1
κ̂(0)

}{
κ̂(0)[(κ̂(0)−κ̂(1))κ̂1−2κ̂(0)κ̂(1)]

κ̂(1)

}
×

p̂q̂[(1−Ŝe)ŜeV̂ar(Ŝp)+(1−Ŝp)ŜpV̂ar(Ŝe)]−(1−Ŝe)(1−Ŝp)Ŷ2V̂ar( p̂)

Q̂2(1−Q̂)
2

}
and

V̂ar(κ̂2) =
1

[κ̂(0)+κ̂(1)]2[κ̂(0)−κ̂(1)]2
×{{

κ̂(1)[2κ̂(0)κ̂(1)−(κ̂(0)+κ̂(1))κ̂2]
κ̂(0)

}2 (1−Ŝp)
2
Ŷ2V̂ar( p̂)+ p̂2

[
(1−Ŝp)

2
V̂ar(Ŝe)+Ŝe2V̂ar(Ŝp)

]
Q̂4 +{

κ̂(0)[κ̂(0)+κ̂(1)]κ̂2−2κ̂(0)κ̂(1)2

κ̂(1)

}2 (1−Ŝe)
2
Ŷ2V̂ar( p̂)+q̂2

[
Ŝp2V̂ar(Ŝe)+(1−Ŝe)

2
V̂ar(Ŝp)

]
(1−Q̂)

4 +

2
{

κ̂(1)[2κ̂(0)κ̂(1)−(κ̂(0)+κ̂(1))κ̂2]
κ̂(0)

}{
κ̂(0)[κ̂(0)+κ̂(1)]κ̂2−2κ̂(0)κ̂(1)2

κ̂(1)

}
×

p̂q̂[(1−Ŝe)ŜeV̂ar(Ŝp)+(1−Ŝp)ŜpV̂ar(Ŝe)]−(1−Ŝe)(1−Ŝp)Ŷ2V̂ar( p̂)

Q̂2(1−Q̂)
2

respectively, where Ŝe = x1/x, Ŝp = y0/y, p̂ = x/m, q̂ = y/m, Ŷ = x1y0−x0y1
xy and

Q̂ = m1/m.
When p̂ = Q̂ (which is equivalent to x0 = y1) the estimated asymptotic variances are

V̂ar(κ̂1) = V̂ar(κ̂2) = V̂ar
(
Ŷ
)
=

Ŝe
(
1− Ŝe

)
x

+
Ŝp
(
1− Ŝp

)
y

.

Appendix B

In this appendix, the expressions of the estimated variances of the estimators of the
average kappa coefficients in the presence of partial verification are obtained. Applying
the delta method, the asymptotic estimated variance of κ̂ipv, with i = 1, 2, is

V̂ar
(
κ̂ipv

)
=
(

∂κipv
∂Se

)2

Se=Ŝepv
V̂ar

(
Ŝepv

)
+
(

∂κipv
∂Sp

)2

Sp=Ŝppv
V̂ar

(
Ŝppv

)
+
(

∂κipv
∂p

)2

p= p̂pv
V̂ar

(
p̂pv
)
+

2
(

∂κipv
∂Se

)
Se=Ŝepv

(
∂κipv
∂Sp

)
Sp=Ŝppv

Ĉov
(
Ŝepv, Ŝppv

)
+

2
(

∂κipv
∂Se

)
Se=Ŝepv

(
∂κipv

∂p

)
p= p̂pv

Ĉov
(
Ŝepv, p̂pv

)
+

2
(

∂κipv
∂Sp

)
Sp=Ŝppv

(
∂κipv

∂p

)
p= p̂pv

Ĉov
(
Ŝppv, p̂pv

)
,
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when p̂pv 6= Q̂pv, and

V̂ar
(
κ̂ipv

)
= V̂ar

(
Ŷpv
)
= Ŝp2

pvV̂ar
(
Ŝepv

)
+ Ŝe2

pvV̂ar
(
Ŝppv

)
+ 2ŜepvŜppvĈov

(
Ŝepv, Ŝppv

)
when p̂pv = Q̂pv, and where [4]

V̂ar
(
Ŝepv

)
=
{

Ŝepv
(
1− Ŝepv

)}2
{

n
n1n0

+ r1
s1(s1+r1)

+ r0
s0(s0+r0)

}
,

V̂ar
(
Ŝppv

)
=
{

Ŝppv
(
1− Ŝppv

)}2
{

n
n1n0

+ s1
r1(s1+r1)

+ s0
r0(s0+r0)

}
and [24]

Ĉov
(
Ŝepv, Ŝppv

)
= ŜepvŜppv

(
1− Ŝepv

)(
1− Ŝppv

){ u1

n1(s1 + r1)
+

u0

n0(s0 + r0)

}
.

The variance V̂ar( p̂) and covariances Ĉov
(

p̂, Ŝe
)

and Ĉov
(

p̂, Ŝp
)

are obtained by
applying the delta method. Let τ be the positive predictive value of the BDT, let υ be the
negative predictive value of the BDT, let Q be the probability of a positive result of the BDT,
and let ψ = (τ, υ, Q)T . Applying the delta method, the variance-covariance matrix of ψ
is [25]

∑ψ
= Diag

{
τ2(1− τ)2

s1(1− τ)2 + r1τ2
,

υ2(1− υ)2

s0υ2 + r0(1− τ)2 ,
Q2(1−Q)2

n1(1−Q)2 + n0Q2

}

MLEs of predictive values in the presence of partial verification are [26] τ̂pv =

s1/(s1 + r1) and υ̂pv = r0/(s0 + r0), and the MLE of Q is Q̂pv = n1/n. Therefore, in
the presence of partial verification, the estimators of the predictive values coincide with the
naïve estimators (those obtained regardless of the unverified patients) when the MAR hy-
pothesis is assumed [26]. Let θ = (Se, Sp, p)T be the vector whose components are the sen-
sitivity, the specificity and the prevalence. As the sensitivity, specificity and prevalence can
be written in terms of the predictive values and of Q as Se = τ{υ−(1−p)}

p(τ+υ−1) , Sp = υ(τ−p)
(1−p)(τ+υ−1)

and p = 1− (1− τ)Q− (1−Q)υ, then the estimated variance-covariance matrix of θ̂ is
obtained by applying the delta method, i.e.,

ˆ∑θ̂
=

(
∂θ

∂ψ

)
θ=θ̂pv

ˆ∑ψ̂

(
∂θ

∂ψ

)T

θ=θ̂pv

Carrying out the algebraic operations it is obtained:

V̂ar
(

p̂pv
)
=

τ̂pv(1−τ̂pv)Q̂2
pv

s1+r1
+

υ̂pv(1−υ̂pv)(1−Q̂pv)
2

s0+r0
+

(s1r0−s0r1)
2Q̂pv(1−Q̂pv)

n(s1+r1)
2(s0+r0)

2 ,

Ĉov
(
Ŝepv, p̂pv

)
= n1n0s1s0(s1+r1)(s0+r0)

{n1s1(s0+r0)+n0s0(s1+r1)}2

{
(1−τ̂pv)Q̂pv

s1+r1
− υ̂pv(1−Q̂pv)

s0+r0
+ s1r0−s0r1

n(s1+r1)(s0+r0)

}
and

Ĉov
(
Ŝppv, p̂pv

)
= n1n0r1r0(s1+r1)(s0+r0)

{n1r1(s0+r0)+n0r0(s1+r1)}2

{
τ̂pvQ̂pv
s1+r1

− (1−υ̂pv)(1−Q̂pv)
s0+r0

− s1r0−s0r1
n(s1+r1)(s0+r0)

}
.
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