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Abstract: In this study, optimal diffusion coefficients for Lake Zirahuén, Mexico, were found under
particular conditions based on images taken with a drone of a dye release experiment. First, the dye
patch concentration was discretized using image processing tools, and it was then approximated
by an ellipse, finding the optimal major and minor axes. The inverse problem was implemented
by comparing these observational data with the concentration obtained numerically from the 2D
advection–diffusion equation, varying the diffusion tensor. When the tensor was isotropic, values
of K11 = K22 ≈ 0.003 m2/s were found; when nonequal coefficients were considered, it was found
that K11 ≈ 0.005 m2/s and K22 ≈ 0.002 m2/s, and the cross-term K12 influenced the results of the
orientation of the ellipse. It is important to mention that, with this simple technique, the parameter
estimation had consequences of great importance as the value for the diffusion coefficient was
bounded significantly under particular conditions for this site of study.

Keywords: nonlinear least squares method; Levenberg–Marquardt method; inverse problem

1. Introduction

Lakes are vitally important components that provide essential ecosystem services,
such as water for drinking, and food supply and sites for recreation and tourism [1].
However, the quality of lakes’ water resources is deteriorating rapidly due to the load or
spread of pollutants, excessive nutrient inputs, and all types of sediments. In particular,
suspended solids affect dissolved oxygen levels and the temperature, interfering with the
mixing and decreasing the dispersion processes toward deeper layers [2–4]. The sediment
transport estimation is often difficult, time-consuming, and expensive [5]. Nonetheless,
observations and monitoring are important aspects of ecosystem services that can be used
to map the distribution of sediments and can also be used as a target for numerical models
to predict sediment movement and spreading, in particular, knowing that the diffusion
coefficient is essential for the numerical modeling of such transport processes [6–9].

The transport of pollutants can be described by many factors, including advection,
diffusion, dispersion, reaction, dilution or mixing, retardation, and decay. These factors are
usually incorporated into transport equations, which describe phenomena such as mass
transfer or heat, fluid, waves, and momentum transfer [10,11]. Nevertheless, this equation
is usually solved numerically for advection–diffusion terms solely, and such numerical
models are frequently implemented with known constant coefficients [10,11].

The parameterizations of a set of coefficients have been the topic of ongoing research,
most of it carried out empirically and, more recently, based on theoretical considerations
with the use of the inversed problem approach. The use of adequate formulations in inverse
modeling has proven to be a highly useful method for estimating these parameters and
improving the fit of observational data [11–15]. With the use of parameter estimation for a
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specified set of data, the numerical modeling of the transport equation can be improved
for a particular study site.

Likewise, dye tracers are a highly useful tool to estimate advection–diffusion char-
acteristics implemented to measure several aspects of the transport process, such as to
measure certain effluent discharge rates and horizontal dispersion coefficients; it is also
used to study circulation patterns and to calibrate–validate numerical models used in the
forecast activity [10,16–19]. Along with dye-tracers, aircraft systems (drones) and image
processing tools can be used to visualize the dye plume and provide accurate tools to
identify, map, and predict the spread of hazardous agents [18,20,21].

For image processing or pattern recognition, several algorithms have been used to
detect objects fitting certain geometrical shapes, such as circles or ellipses, to the images.
Although there are several sophisticated algorithms for detecting shapes from images, the
least squares method is the most often present in these algorithms [22,23].

In this work, a set of images of a dye tracer patch was used to determine the optimal
diffusion coefficients from the advection–diffusion equation. The hypothesis was that,
based on the inverse problem approach and the observational data of a dye patch, as
a proxy for sediment transport, we expected to find optimal diffusion coefficients for
the study site and under particular conditions without the involvement of sophisticated
measurements to estimate it.

2. Materials and Methods

To generate data for solving the advection–diffusion equation, a dye tracer experiment
was performed in Lake Zirahuén, Mexico. In general, the methodology applied in this study
consists of (i) the estimation of the dye distribution using image processing tools to obtain
the area of the dye patch based on an optimization technique, and (ii) the solution of the
nonlinear inverse problem for the advection–diffusion equation in order to find the optimal
diffusion coefficients by comparing this analytical solution against the observational dye
patch distribution; see Figure 1 for an overview and a better understanding of the study.

Mathematics 2021, 9, x FOR PEER REVIEW 2 of 15 
 

 

for a specified set of data, the numerical modeling of the transport equation can be im-

proved for a particular study site. 

Likewise, dye tracers are a highly useful tool to estimate advection–diffusion charac-

teristics implemented to measure several aspects of the transport process, such as to meas-

ure certain effluent discharge rates and horizontal dispersion coefficients; it is also used 

to study circulation patterns and to calibrate–validate numerical models used in the fore-

cast activity [10,16–19]. Along with dye-tracers, aircraft systems (drones) and image pro-

cessing tools can be used to visualize the dye plume and provide accurate tools to identify, 

map, and predict the spread of hazardous agents [18,20,21]. 

For image processing or pattern recognition, several algorithms have been used to 

detect objects fitting certain geometrical shapes, such as circles or ellipses, to the images. 

Although there are several sophisticated algorithms for detecting shapes from images, the 

least squares method is the most often present in these algorithms [22,23]. 

In this work, a set of images of a dye tracer patch was used to determine the optimal 

diffusion coefficients from the advection–diffusion equation. The hypothesis was that, 

based on the inverse problem approach and the observational data of a dye patch, as a 

proxy for sediment transport, we expected to find optimal diffusion coefficients for the 

study site and under particular conditions without the involvement of sophisticated meas-

urements to estimate it. 

2. Materials and Methods 

To generate data for solving the advection–diffusion equation, a dye tracer experi-

ment was performed in Lake Zirahuén, Mexico. In general, the methodology applied in 

this study consists of (i) the estimation of the dye distribution using image processing 

tools to obtain the area of the dye patch based on an optimization technique, and (ii) the 

solution of the nonlinear inverse problem for the advection–diffusion equation in order to 

find the optimal diffusion coefficients by comparing this analytical solution against the 

observational dye patch distribution; see Figure 1 for an overview and a better under-

standing of the study. 

 

Figure 1. Flowchart of the proposed methodology to find the optimal coefficient. 

  

Figure 1. Flowchart of the proposed methodology to find the optimal coefficient.



Mathematics 2021, 9, 1695 3 of 14

2.1. The Inverse Problem

To solve the inverse problem, the nonlinear least squares method was used. These
problems arise in the context of fitting a parameterized mathematical model to a dataset to
minimize an objective function that can be expressed as follows:

f (x) =
1
2

m

∑
i=1

ri(x)
2, (1)

where ri is a smooth function from Rn to R. Such a minimization problem is derived from
curve fitting by least squares, where f (x) measures the difference between the model and
the observational data, i.e., ri represents the residuals.

Although there are many optimization methods, most of them have the same structure
based on Newton’s method. To solve Equation (1), the Levenberg–Marquardt method that
combines two algorithms, the gradient descent method and Gauss–Newton method, was
implemented. The Levenberg–Marquardt method is more similar to a gradient descent
method when the parameter is far from the optimal and works as a Gauss–Newton method
when the parameters are close to the optimal [24–28].

2.2. Image Processing and the Inverse Problem to Estimate the Concentration

During a field campaign conducted in July 2018 in Lake Zirahuén, a dye release
experiment and an unmanned aerial vehicle (DJI Phantom 4 drone) were used to capture
videos and images of a dye plume. Images were captured from 50 m high at a rate of
approximately one image every 3 s. In this experiment, natural food colorant (not harmful
for the environment) was used as a tracer. The method consisted of the instantaneous
release of the dye on the surface used to determine the transport.

Image processing was performed by adjusting the red, green, and blue (RGB) values
to increase the contrast of every image and select only the dye plume. Then, working
with the binary mask-image and using an edge detection approach, the boundary points
of the region were determined to evaluate the extension of the patch. The dye patch
area was estimated based on the hypothesis that, after the release, the dye cloud can be
approximated by an ellipse, as the natural propagation of the tracer is better characterized
by this geometrical form.

To estimate the proposed concentration ellipse (Ce) that fits the dye tracer patch, it
was first necessary to find the center and orientation of the data considering the algebraic
equation of the general conic to define the minimization problem. In this case, the non-
linear optimization problem was solved for finding the optimal lengths of the major and
minor axes.

To obtain the ellipse parameters, we considered only the boundary points, (ζi, ηi), i =
1, 2, . . . n, of the region. Then, if the geometrical center (ζc, ηc) is defined as:

ζc =
1
n ∑n

i=1 ζi,ηc =
1
n ∑n

i=1 ηi, (2)

Then, based on the variance:

σ2
ζ =

1
(n− 1) ∑n

i=1(ζi − ζc)
2; σ2

η =
1

(n− 1) ∑n
i=1 (ηi − ηc)

2, (3)

and the covariance:

σζη =
1

(n− 1)

n

∑
i=1

(ζi − ζc)(ηi − ηc), (4)

the orientation of the principal axes is determined by:

θ =
1
2

tan−1(2(ζi − ζc)(ηi − ηc)/(σ2
ζ − σ2

η)), (5)
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and the variance in the major and minor axes by:

σ2
ma =

σ2
ζ +σ2

η

2 +

√ (
σ2

ζ +σ2
η

)2

4 − σ2
ζ σ2

η + σζησζη ,

σ2
mi =

σ2
ζ +σ2

η

2 −

√ (
σ2

ζ +σ2
η

)2

4 − σ2
ζ σ2

η + σζησζη .

(6)

To calculate the optimal length of the major axis (x1·σma) and the minor axis (x2·σmi),
the ellipse equation considered with the center in (ζc, ηc) and θ, the rotation angle:

((ζ − ζc) cos θ + (η − ηc) sin θ)2

(x1·σma)
2 +

((ζ − ζc) sin θ − (η − ηc) cos θ)2

(x2·σmi)
2 = 1. (7)

was used to define the quadratic error of Equation (1) for all the points, where ri(x1, x2) is
the residual defined by (7) when (ζ, η) is replaced with (ζi, ηi). Therefore, this equation
was minimized based on the two parameters (x1 and x2) to obtain the best ellipse that
represents the dye tracer area [23,29,30].

2.3. Mathematical Formulation of the Direct and Inverse Problem of the Transport Equation

The mathematical formulation most suitable for simulating the phenomena at hand of
the transport of a substance in a fluid is the advection–diffusion equation:

∂ϕ

∂t
+
→
∇·
(
−K·

→
∇ϕ + vϕ

)
= 0, on Ω, t > 0, (8)

with initial and boundary conditions:

ϕ(X, 0) = ϕ0(X)on Ω, t = 0,
∂ϕ

∂n
= 0, (9)

where ϕ represents the tracer concentration and n is an outward vector normal to the
boundary of the spatial domain Ω; v is the bidimensional velocity field; K is the diffusion
tensor; X = (ζ, η) and t are the spatial and temporal variables, respectively.

The forward problem for the advection–diffusion equation was solved using the
MATLAB PDE Toolbox (The MathWorks, Inc., Natick, MA, USA). The core of this toolbox
algorithm uses the finite element method for problems defined on bounded domains.
Here, the advection term was provided as a function and was set as the f-coefficient of the
PDE Toolbox.

The general procedure to solve this equation is to choose the flow field and a diffusion
coefficient in advance and compute the tracer distribution by solving the forward problem;
then, the nonlinear inverse problem is solved to obtain the optimal diffusion coefficients
based on the observational data from the spatial distribution of the tracer and the flow field.

Knowing the diffusion coefficient that is essential for internal processes, such as
stratification and mixing [6–9], can be achieved from the diagonal tensor for diffusion,
expressed as:

K =

(
K11 0
0 K22

)
, (10)

and if the flow is not parallel to the cartesian axes, then the cross-symmetric terms are
required:

K =

(
K11 K12
K21 K22

)
, with K12 = K21 . (11)

To find the optimal diffusion coefficients for Lake Zirahuén, the inverse problem
consists of searching the diffusion coefficients that yield the best possible fit to the observed
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values by solving the problem in the sense of a nonlinear least squares problem [11,31–33],
as in Equation (1), where:

r = ϕ− ϕobs,K = K11 = K22 and K12 = K21 = 0or K11 6= K22 and K12 = K21 6= 0. (12)

This equation makes an optimal approximation by comparing the value of concentra-
tion ϕ obtained by solving the advection–diffusion Equation (8), with the observational
data ϕobs. The model is rerun with the the updated K value until the minimal difference
between the simulated (ϕ) and observed (ϕobs) is found.

For practical solutions of the minimization of the objective functional Equation (1),
the MATLAB subroutine lsqnonlin is used, starting at an initial estimate based on the
trust-region-reflective algorithm or the Levenberg–Marquardt method [34–38]. A good
convergence indicator is given by a small first-order optimality measure and a moderate
number of iterations.

2.4. The Velocity Field Calculation

The measurements to obtain the flow velocities are usually made by sensors, such as
a current meter and acoustic profilers, but this equipment is expensive, which could be
an inconvenience [29]. An alternative method is the use of unmanned air vehicles (UAVs)
that allow high-resolution data collection in larger areas at minimal cost. This technology
was used to measure the velocity field on the surface by using image-based techniques,
resulting in a cost-effective and environmentally friendly method [21,39].

Then, from the contours of the dye patch, the mean velocity field was also calculated, to
solve the 2-D advection–diffusion equation. The velocity field was obtained by comparing
two consecutive patch contours, considering the geometrical center of the ellipses (xc, yc)
with a time step of 40 s. From the geometrical center of the ellipses, the distance between
consequent contours was obtained, and then the velocity was computed by dividing
the distance for the time step between contours. In this way, velocity components were
calculated as follows:

u(i) =
ζc(i+1) − ζc(i)

t(i+1) − t(i)
; v(i) =

ηc(i+1) − ηc(i)

t(i+1) − t(i)
, (13)

and the average velocity for each component would be:

U =
1
n

n

∑
i=1

u(i); V =
1
n

n

∑
i=1

v(i), (14)

2.5. The Setting of the Model

To solve the direct problem of the transport equation, from the information of the
dye tracer experiment, the region Ω = {(ζ, η) : 0 ≤ ζ ≤ 30, 0 ≤ η ≤ 17} was considered
according to the number of pixels of the image and the height from where the images were
captured. The velocity field (u, v) and the diffusion coefficient K were considered constants.
The Neumann boundary condition was set to zero.

The initial condition was the area related to the ellipse of the first image set as:

C0 =
((ζ − ζc) cos θ − (η − ηc) sin θ)2

σ2
mi

+
((ζ − ζc) sin θ − (η − ηc) cos θ)2

σ2
ma

, (15)

where σ2
ma = 0.255 m2; σ2

mi = 0.498 m2; θ = 0.4876 rad; ζc = 16.48 m; ηc = 6.47 m.
The domain was portioned into unstructured triangular elements with 2447 nodes

and 1176 elements, for elements of approximately 1 m, as shown in Figure 2. For the
solver options, the absolute, relative, and residual tolerance were set as the default values.
The accuracy of the simulation was checked by reducing the relative tolerance, and with
simulations with different element sizes (not shown).
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condition.

3. Results
3.1. Image Processing

In Figure 3a, the scheme of the image treatment, which consists of the selection of (i)
the RGB (red, green, and blue) intensity, (ii) the inverted mask image, (iii) the binary image,
and (iv) the selection only of the dye patch, is shown. After georeferencing the image and
calculating the geometrical center and the optimal axes, in Figure 3b, the binary image with
the boundary dataset of the dye tracer patch, along with the optimal ellipse fit, is shown.
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Figure 3. (a) Image processing steps (i) selection of the RGB intensity, (ii) inverted mask, (iii) binary
image, and (iv) selection of the dye patch. (b) Optimal ellipse for the boundary dataset (ζi, ηi).

In Figure 4, the main characteristics of the dye patch extent mapping are shown. The
images show a dye patch dispersing over time. The first image shows the dye patch after
several seconds of release, whereas the last was taken before the patch was not identifiable,
due to the reflection of the cloudy sky. The evolution of the corresponding binary image
and the optimal ellipse is shown on the right side of Figure 4a–h. It is worth noting that
during this experiment (19 July 2018), a light breeze was registered of less than 4 km/h,
but enough to displace the boat that was drifting freely with the motor turned off so as to
not interfere with the dye patch. Other conditions measured during this experiment were
the air temperature of approximately 20 ◦C, the surface water temperature of 21 ◦C, and a
stratified water column, creating almost ideal conditions to carry out the experiment [40].
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3.2. The Velocity Field

The spatial evolution of the dye patch shows a tendency to the right due to the wind
forcing at the site. It was observed that the dye patch was advected ~6 m with an almost
homogeneous dispersion of approximately 1 to 5 m of extension for 290 s. The positions
of the geometrical center at each time are shown in Table 1. From the comparison of two
consecutive patch contours, the velocity data were obtained according to Equation (14); see
Figure 5.

Table 1. Data of time and the geometrical center between each contour.

t (s) ζc ηc u (m/s) v (m/s)

30 16.4837 6.4725 0.0250 −0.0055

50 16.9838 6.3624 0.0194 0.0029

90 17.7586 6.4793 0.0231 0.0011

130 18.6824 6.5220 0.0225 0.0020

170 19.5822 6.6005 0.0220 0.0041

210 20.4634 6.7630 0.0231 0.0030

250 21.3856 6.8815 0.0251 −0.0030

The average velocity for each component used in the transport equation results in the
following:

U = 2.0× 10−2 m/s, V = 6.6× 10−4 m/s. (16)
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3.3. The Direct and Inverse Problem of the Transport Equation
3.3.1. General Aspects

The primary goal of the inverse problem modeling approach is to determine the
parameter values that yield the best fit to the observed data. In Figure 6, the objective
function f (K) of Equation (1) and the number of iterations are presented. A smooth
convergence is shown, in which the minimization process is completed with a prescribed
tolerance of tol = 1× 10−6.
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From the analyzed cases, it was indicated that, when K11 6= K22 (Table 2), the com-
putational time was greater and the number of iterations was 1 or 3 times higher, but
the solution was more precise as the error decreased. When K11 = K22, the solution was
obtained after seven iterations. Additionally, when the anisotropic terms were considered,
when K11 6= K22 and K12 = K21 = 0, the convergence was achieved after eight itera-
tions, and when K11 6= K22 and K12 = K21 6= 0, the optimal solution was obtained after
ten iterations.

In Figure 7, the time evolution of the case when K11 6= K22 and K12 = K21 = 0 is
shown as an example; the image corresponds to the direct problem for the optimal diffusion
coefficients found. It is shown that the evolution of the concentration moved to the right
due to the given velocity field, and as time progressed, a lower concentration was observed
in the center.
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Table 2. Parameters and estimation of the diffusion coefficient.

Ce K11=K22
K11 6=K22

K12=K21=0
K11 6=K22 and
K12=K21 6=0

Number of iterations 7 8 10
Number of objective
function evaluations 16 27 44

Computational time (s) ~52 ~79 ~124

K11 and K22 (m2/s) 0.0032 K11 = 0.0051
K22 = 0.0020

K11 = 0.0053
K22 = 0.0021
K12 = 0.0008

RMSE 0.031 0.029 0.028
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3.3.2. The Final Concentration Snapshots

The distribution of the concentration for the final step solution from the simulation
is shown in Figure 8a in color contours. In order to obtain a simpler visual analysis, one
arbitrary contour is displayed by a black line for the observations and by a red line for the
numerical solution of the transport equation once the optimal coefficient was found.
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The distribution of the concentration when K11 = K22 had a circular shape (as expected)
and moved slightly to the right with respect to the center of the observations (the ellipse)
(Figure 8a). The optimal diffusion coefficients in this case were K11 = K22 ≈ 0.003 m2/s.

When K11 6= K22 and K12 = K21 = 0, the solution improved as the resulting numerical
shape was an ellipse similar to the one proposed in the observations (Figure 9a), but slightly
shifted to the right.
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Additionally, in Figure 10a, when K11 6= K22 and K12 = K21 6= 0, a major improvement
was achieved as the solution had an ellipse shape, and the orientation matched with the
observations; however, a slight shift to the right was still presented.
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In Figure 8b, Figure 9b, and Figure 10b, the error between the data and the fit, charac-
terized by the sum of square errors (SSE) and the determination coefficient (R2), is shown.
In Figure 8b, SSE = 0.93 and R2 = 084; meanwhile, in Figure 9b, the values correspond to
SSE = 0.71 and R2 = 0.88, and in Figure 10b, SSE = 0.67 and R2 = 0.89. Then, the best result
was quantitatively obtained for the case when K11 6= K22 and K12 = K21 6= 0, as R2 was
closer to unity, and the error tended to zero ( R2 → 1 y SSE→ 0).

4. Discussion

Based on the results of the diffusion coefficients, the value for these parameters in
the study area can be significantly bounded, which is crucial for the forward and inverse
problems, as in several studies, the considered values are in the range between 0.0001 and
1 m2/s, and such a wide range can be reflected in significant changes in the dynamics
of the transport phenomena. For example, studies [41–45] have been carried out where
the distribution of pollutants in lakes and ponds is analyzed using numerical models that
solve the advection–diffusion equation, and different values for the diffusion coefficient
are considered that span several orders of magnitude (see Table 3).

Table 3. Studies with different values for the diffusion coefficients considered.

References Diffusion Coefficient

Kusuma et al. (2017) K11 = 1.28× 10−5 m2/s,
K22 = 1.02× 10−5 m2/s

Sunarsih et al. (2020) K = 1.37× 10−6 m2/s

Ahmed (2012) K11 = 1 m2/s
K22 = 0.01 m2/s

Hutomo et al. (2019)
K = 0.0004 m2/s

K = 0.00012 m2/s
K = 0.00028 m2/s

Lima et al. (2015) K = 0.09 m2/s

It should be noted that in some of these studies, information was obtained from data
of the velocity field, as well as the concentration of different substances measured with very
sophisticated instruments, and in several studies, they considered that the propagation
rate is proportional to the concentration gradient to estimate the diffusion coefficient.

In the present study, it should be noted that a more dynamic approach was used in
which the transport equation itself was basically used to determine its corresponding and
more adequate value for a set of observations based on an inverse problem approach.

5. Conclusions

From the dye tracer images, it was noticed that the shape of the distribution of the
tracer was not uniform, but for numerical purposes, the ellipse resulted in an improved
and accurate approximation; as the typical consideration was a circular shape, although
showing similar results, the ellipse was better. Additionally, a perfect match with the ellipse
approximation was not expected, as there would be more physical factors to consider in
reality, for example, if there was no wind, the diffusion of a point source in a uniform
medium should be perfectly circular; however, there are other physical mechanisms that
make the diffusion parameter variable according to the conditions such as turbulence,
enhanced by waves and its secondary circulations (e.g., Stokes drift and Langmuir circula-
tions). Other factors that could be considered are the chemical or biological properties in
the waterbody; however, with further development and measurements, this work can be
improved.

Nonetheless, the result of the simulations when K11 = K22 was K ≈ 0.003 m2/s,
whereas, when nonequal coefficients were considered, K11 6= K22, K11 ≈ 0.005 m2/s, and
K22 ≈ 0.002 m2/s were found. The value of the coefficients showed no significant changes,
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regardless of whether the term K12 (= K21) was considered; however, this parameter was
important as it influences the orientation of the ellipse.

Counting with measurements is of great importance as the results of different studies
have indicated that pollutants move with the flow and diffuse over time. However,
sometimes, the resources are not available to carry out these measurements, hence the
importance of this study in terms of the sampling technique and the parameter estimation,
which were relatively simple to use. In addition, the values obtained in this paper contribute
to a better understanding of the transport phenomena in Lake Zirahuén, which have not
been extensively analyzed to date.

Even though the aim was to have a practical implementation to find and bound the
values for the diffusion coefficients, the next step could be to consider a bidimensional and
space-variable velocity field, solving the transport equation, and applying other numerical
scheme solvers or more sophisticated hydrodynamical models, as one of the limitations
that arise when implementing the PDE Toolbox is that it only allows the configuration of
an analytical velocity field.

Future studies will focus on calibrating a numerical model by using the optimal
coefficients calculated in this study. Velocities and diffusion coefficients calculated at
different times will serve as a validation.
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Abbreviations and Notation

Ce concentration ellipse
f objective function
K diffusion tensor
(ζi, ηi). boundary points
(ζc, ηc) geometrical center
θ orientation of the principal axis
σ2

ζ , σ2
η variance in the ζ and η directions, respectively

σζη covariance
σ2

ma, σ2
mi variance in the major and minor axes

ϕ concentration
ϕobs concentration from the observational data
Ω domain region
→
∇ gradient
lsqnonlin nonlinear least-squares
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PDE Partial Differential Equations
ri residuals
R2 Coefficient of determination
RGB Red, Green, and Blue
RMSE Root-Mean-Square Error
SSE Sum of Square Errors
t temporal variable
tol tolerance
u(i), v(i) velocity components
v = (u, v) bidimensional velocity field
U, V average velocity for each component
UAVs Unmanned Air Vehicles
x optimization parameters
X = (ζ, η) spatial variables
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