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Abstract: In this work, we present numerical methods appropriate for parameter estimation in
high-dimensional statistical modelling. The solution of these problems is not unique and a crucial
question arises regarding the way that a solution can be found. A common choice is to keep the
corresponding solution with the minimum norm. There are cases in which this solution is not
adequate and regularisation techniques have to be considered. We classify specific cases for which
regularisation is required or not. We present a thorough comparison among existing methods for
both estimating the coefficients of the model which corresponds to design matrices with correlated
covariates and for variable selection for supersaturated designs. An extensive analysis for the
properties of design matrices with correlated covariates is given. Numerical results for simulated
and real data are presented.

Keywords: high-dimensional; minimum norm solution; regularisation; Tikhonov; `p-`q;
variable selection

1. Introduction

Many fields of science, and especially health studies, require the solution of problems
in which the number of characteristics is larger than the sample size. These problems
are referred to as high-dimensional problems. In the present paper, we focus on solving
high-dimensional problems in statistical modelling.

We consider the linear regression model

y = Xβ + ε, (1)

where X =
[

1 x1 · · · xd
]

is the design matrix of order n× (d+ 1), which is supposed
to be high-dimensional, i.e., n < d. The columns xi ∼ N(0n, σ2

i In), i = 1, 2, . . . , d, are the
correlated covariates of the model and all the elements of the first column of the design
matrix are equal to 1 in correspondence with the mean effect. The response vector y has
length n, ε = (ε1, ε2, . . . , εn)T is the n-vector of independent and identically distributed
(i.i.d.) random errors, where εi ∼ N(0, σ2) for all i = 1, 2, . . . , n.

In the present study we focus on the following two points.

1. Estimation of the regression parameter β ∈ Rd+1.
From numerical linear algebra point of view, the statistical model (1) can be con-
sidered as an underdetermined system. This kind of system has infinitely many
solutions. The first way to determine the desired vector β is to keep the solution
with the minimum norm. This solution is referred to as minimum norm solution
(MNS), [1] (p. 264). Another way of solving these problems is based on regularisation
techniques. Specifically, these methods allow us to solve a different problem which
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has a unique solution and thus to estimate the desired vector β. One of the most pop-
ular regularisation methods is Tikhonov regularization, [2]. Another regularization
technique which is used is the `p-`q regularization, [3,4].
It is of major importance to decide whether problem (1) can be solved directly in the
least squares sense or regularisation is required. Therefore, we describe a way of
choosing the appropriate method for solving (1) for design matrices with correlated
covariates. For these matrices we study extensively their properties. We prove that as
the correlation of the covariates increases, the generalised condition number of the
design matrix increases as well and thus the design matrix becomes ill-conditioned.

2. To ascertain the most important factors of the statistical model.
Variable selection is a major issue in solving high-dimensional problems. By means
of variable selection we refer to the specification of the important variables (active
factors) in the linear regression model, i.e., the variables which play a crucial role in
the model. The rest of the variables (inactive factors) can be omitted.
We deal with the variable selection in supersaturated designs (SSDs) which are frac-
tional factorial designs in which the run size is less than the number of all the main
effects. In this class of designs, the columns of X, except the first column, have el-
ements ±1. The symbols 1 and −1 are usually utilised to denote the high and low
level of each factor, respectively. The correlation of SSDs is usually small, i.e., r ≤ 0.5.
The analysis of SSDs is a main issue in Statistics. Many methods for analysing these
designs have been proposed. In [5], a Dantzig selector was introduced. Recently,
a sure independence screening method has been applied in a model selection method
in SSDs [6], and a support vector machine recursive feature elimination method for
feature selection [7]. In our study, as we want to retain sparsity in variable selec-
tion, we adopt the `p-`q regularisation and the SVD principal regression method, [8],
in order to determine the most important factors of the statistical model.

In the regression model (1), there is no error setting in the design matrix X which
defines the model. It is always considered an unperturbed matrix X with covariates from
normal distribution with well determined rank. However, we assume i.i.d. random error
ε = (ε1, ε2, . . . , εn)T , εi ∼ N(0, σ2) for all i = 1, 2, . . . , n, incorporated in the model as given
from relation (1). Thus, we are having well-posed problems on the set of the data according
to the work in [9].

The paper is organised as follows. In Section 2, we briefly present some methods
for solving high-dimensional problems. We initially display the MNS and in the sequel
we present two regularisation methods. Specifically, Tikhonov regularisation and a gen-
eral regularisation technique, `p-`q regularisation method, are discussed. The described
methods are used in estimating the regression parameter β of (1) for design matrices with
correlated covariates and the results are given in Section 3. These methods can be applied
to ill-posed problems as well. Variable selection for SSDs can be found in Section 4. We end
up this work with several concluding remarks in Section 5.

2. Methods Overview

In this section, we present some methods for solving high-dimensional problems.

2.1. Minimum Norm Solution

The system (1), which is an underdetermined system, does not have a unique so-
lution. In fact, this underdetermined system has infinitely many solutions, and we are
seeking a solution such that its norm is minimised, i.e., the minimum norm solution (MNS)
argmin
β∈Rd+1

‖y− Xβ‖2
2, [1] (p. 264). A necessary and sufficient condition for the existence of

MNS is given in the following theorem.
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Theorem 1. Let X ∈ Rn×(d+1) be a high-dimensional matrix, i.e., n < d, with rank(X) = n,
and β∗ be a solution of the underdetermined system Xβ = y. Then, β∗ is a MNS if and only if
β∗ ∈ Range(XT).

Proof. As β∗ is a solution of the underdetermined system Xβ = y, we have

Xβ∗ = y ⇔ (β∗)TXT = yT . (2)

Let us consider the QR factorisation of XT , i.e.,

XT = QR = Q
[

R1
0d+1−n,n

]
,

where Q ∈ R(d+1)×(d+1) is orthogonal and R1 ∈ Rn×n is upper triangular. Therefore, (2)
can be rewritten as

(β∗)TQR = yT ⇔ (QT β∗)T R = yT . (3)

If we set
z = QT β∗, (4)

then

(3) ⇔ zT R = yT ⇔ RTz = y.

Moreover, we have

(4) ⇔ Q−1β∗ = z ⇔ β∗ = Qz ⇔ β∗ ∈ Range(Q) ⇔ β∗ ∈ Range(XT).

Taking into account the result of the above theorem, we obtain the formula for the
MNS β∗, which is given by

β∗ = XT(XXT)−1y. (5)

Formula (5) cannot be used directly for calculating the vector β, as it is not a stable
computation. Therefore, we state the Algorithm 1 for a stable way of calculating the MNS
through the singular value decomposition (SVD) of the design matrix X, [1] (p. 265). The
operation count for this algorithm is dominated by the computation of the SVD, which
requires a cost of O(nd2) flops.

Algorithm 1: Computation of MNS via SVD.

Inputs: Design matrix X ∈ Rn×(d+1), n < d, rank(X) = n
Response vector y ∈ Rn

Output: MNS solution β∗

− Compute the SVD of X, i.e., X = USVT =
n

∑
i=1

siuivT
i

− Compute the solution β∗ =
n

∑
i=1

uT
i y
si

vi

2.2. The Discrete Picard Condition

It is crucial to identify when problem (1) can be directly solved with a satisfactory MNS
solution or different ways of handling the solution must be employed. In [10], a criterion
for deciding whether a least squares problem can have a satisfactory direct solution or not
is proposed. This criterion employs the SVD of the design matrix X and the discrete Picard

condition as defined in [11,12]. Let X = USVT =
n

∑
i=1

siuivT
i be the SVD of X, where si are

the singular values of X with corresponding left singular vectors ui and right singular
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vectors vi, i = 1, 2, . . . , n. The discrete Picard condition ensures that the solution can be
approximated by a regularised solution [13].

Definition 1 (The discrete Picard condition). The discrete Picard condition (DPC) requires that

the ratio
|ci|
si

decreases to zero as i→ n, i.e.,

|ci|
si
→ 0, as i→ n,

where ci = uT
i y. The DPC implies that the constants |ci| tend to zero faster than the singular

values tend to zero.

Example 1. Let us now consider design matrices of order 50× 101, their columns have same
variance σ2 and same correlation structure r. In particular, we test two design matrices X with

(r, σ2) = (0.9, 0.25) and (r, σ2) = (0.999, 1). In Figure 1, we display the ratios
|ci|
si

and
|ĉi|
si

,

which correspond to the noise-free and the noisy problem, ci = uT
i y, ĉi = uT

i ŷ, i = 1, 2, . . . , n,
ŷ = y + ε. If the graphs are close enough the MNS is satisfactory; otherwise, regularisation
techniques are necessary for deriving a good approximation of the desired vector β. As we can see
in Figure 1, the values of the depicted ratios are very close in the design matrix with r = 0.9 case
whereas in the highly correlated matrix with r = 0.999 case the ratios differ. This implies that a
regularisation method is necessary for the second case.

Figure 1. The ratios |ci|/si and |ĉi|/si for the design matrices of order 50× 101 for (r, σ2) = (0.9, 0.25)
(left) and (r, σ2) = (0.999, 1) (right).

2.3. Regularisation Techniques

There are cases where the MNS β∗ cannot achieve a good approximation of the
desired unknown solution β. As in the linear regression model as described in (1) the
design matrix X is always unperturbed, and thus its rank can be a priori known, we can
adopt regularisation techniques. In the present section, we present two regularisation
methods. In particular, we present the popular Tikhonov regularisation [2] and the `p-`q
regularisation which has recently received considerable attention [3,4]. Both of these
techniques replace the initial problem with another one which is close to the original.

2.3.1. Tikhonov Regularisation

A regularisation method that is widely used is Tikhonov regularisation. The standard
form of Tikhonov regularization, which corresponds in linear regression model (1), is
given by

min
β∈Rd+1

{‖y− Xβ‖2
2 + λ2‖β‖2

2}, (6)

where λ is the regularisation parameter. The solution of the penalised least-squares problem
(6) is given by the formula

βλ = (XTX + λ2 Id+1)
−1XTy = XT(XXT + λ2 In)

−1y,
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as it holds the identity (XTX + λ2 Id+1)
−1XT = XT(XXT + λ2 In)−1. Indeed, we have

XT(XXT + λ2 In) = (XTX + λ2 Id+1)XT ⇒ (XTX + λ2 Id+1)
−1XT = XT(XXT + λ2 In)−1.

As we can see, Tikhonov regularisation depends on the regularization parameter λ.
An appropriate method for selecting λ leads to the derivation of a satisfactory approxi-
mation βλ of the desired regression parameter β. The error ε in the input data for the
statistical model that we study follows the standard norm distribution, i.e., ε ∼ N(0n, σ2 In).
Therefore, the norm of the error is known, and it is given by ‖ε‖2 =

√
n− 1σ. In the case of

known error norm, the appropriate method for the selection of the regularisation parameter
is the discrepancy principle, which is reported in Algorithm 2 [14] (p. 283). Following also
the analysis presented in [9], and due to the uniqueness of λ for most reasonable values of
ε (see, for example, in [15]), we adopt this method for our study.

Algorithm 2: Discrepancy principle.

Inputs: Design matrix X ∈ Rn×(d+1), n < d, rank(X) = n
Response vector y ∈ Rn

Error norm ‖ε‖2 =
√

n− 1σ
Output: Regularisation parameter λ
− Compute the SVD of X, i.e., X = USVT

− Set c = UTy
− Choose λ > 0 such that λ4cT(S + λ2 I)−2c = ‖e‖2, over a given grid of λ.

2.3.2. `p-`q Regularisation

A more general regularisation technique is the so-called `p-`q regularisation [3].
The main idea of this approach is based on the replacement of the minimisation prob-
lem ‖y− Xβ‖2 by an `p-`q minimisation problem of the form

min
β∈Rd+1

{ 1
p
‖y− Xβ‖p

p + µ
1
q
‖β‖q

q}, (7)

where µ > 0 is the regularisation parameter and 0 < p, q ≤ 2. The solution of the
minimisation problem (7) is given by

β̂µ = argmin
β∈Rd+1

{ 1
p
‖y− Xβ‖p

p + µ
1
q
‖β‖q

q}. (8)

Remark 1. In case of p = q = 2, the regularised minimisation problem (7) reduces to Tikhonov reg-
ularisation.

Concerning the selection of the regularisation parameter, we choose the optimal value
of µ, i.e., the value that minimises the error norm ‖β̂µ − β‖2 over a given grid of values
for µ. Concerning the computational cost, the implementation of the `p-`q regularisation
requires O(nd) flops.

3. Design Matrix with Correlated Covariates

In high-dimensional applications, the design matrix X =
[

1 x1 · · · xd
]

has
correlated covariates xi ∼ N(0n, σ2

i In), i = 1, . . . , d, where σ2
i is the variance of xi and the

correlation structure is given from the relation

rij = cor(xi, xj) =
xi

Txj

‖xi‖‖xj‖
, i, j = 1, . . . , d, i 6= j,

with −1 ≤ rij ≤ 1.
Next, we present a thorough investigation of the properties that characterize these matrices.
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3.1. Correlated Covariates with Same Variance and Correlation

We initially consider design matrices with correlated covariates which have same
variance σ2 and same correlation r. In the following theorem, we formulate and prove
in detail the types for the singular values of the design matrix X. In [16], this case of
design matrix is considered and there exists a brief description of the eigenvalues of the
matrix XTX.

Theorem 2. Let X =
[

1 x1 · · · xd
]
∈ Rn×(d+1) be a high-dimensional design matrix

of full rank whose columns xi ∼ N(0n, σ2 In), i = 1, 2, . . . , d, with correlation structure r. The
singular values of the matrix X are

s1 =
√

n, s2 = · · · = sn−1 = σ
√
(n− 1)(1− r), sn = σ

√
(n− 1)[(d− 1)r + 1].

Proof. The n singular values of X are the square roots of the n non-zero eigenvalues of
XTX. Therefore, we compute the matrix XTX, i.e.,

XTX =


1 . . . 1

x11 . . . xn1
...

. . .
...

x1d . . . xnd


 1 x11 . . . x1d

...
...

. . .
...

1 xn1 . . . xnd



=



n

∑
j=1

1
n

∑
j=1

xj1 . . .
n

∑
j=1

xjd

n

∑
j=1

xj1

... X̂TX̂
n

∑
j=1

xjd


=


n 0 . . . 0
0
... X̂TX̂
0

,

where X̂ =
[

x1 · · · xd
]

and
n

∑
j=1

xji = 0, ∀ i = 1, . . . , d, due to the construction of the

design matrix X according to the normal distribution. Therefore, the matrix XTX has one
eigenvalue equal to n.

Moreover, we can express the variance σ2 of each covariate xi =
[

x1i x2i · · · xni
]T

in terms of vector norms as follows:

σ2 =
1

n− 1

n

∑
j=1

(xji − x̄i)
2 =

1
n− 1

‖xi − x̄i‖2,

where x̄i denotes the mean value of each xi. As the mean value of each xi is zero, we have

σ2 =
1

n− 1
‖xi‖2 ⇒ ‖xi‖2 = (n− 1)σ2, ∀ i = 1, . . . , d. (9)

The submatrix X̂TX̂ of XTX can be written as



Mathematics 2021, 9, 1806 7 of 16

X̂TX̂ =


‖x1‖2 r‖x1‖‖x2‖ . . . r‖x1‖‖xd‖

r‖x1‖‖x2‖ ‖x2‖2 . . . r‖x2‖‖xd‖
...

...
. . .

...
r‖xd‖‖x1‖ r‖xd‖‖x2‖ . . . ‖xd‖2



(9)
=


(n− 1)σ2 r(n− 1)σ2 . . . r(n− 1)σ2

r(n− 1)σ2 (n− 1)σ2 . . . r(n− 1)σ2

...
...

. . .
...

r(n− 1)σ2 r(n− 1)σ2 . . . (n− 1)σ2



= (n− 1)σ2


1 r . . . r
r 1 . . . r
...

...
. . .

...
r r . . . 1

 = (n− 1)σ2[(1− r)I + rJ],

where J is the d× d matrix with all elements equal to 1. The non-zero eigenvalues of X̂TX̂
are λ1 = (n− 1)σ2(1− r) with algebraic multiplicity n− 2 and λ2 = (n− 1)σ2[(d− 1)r+ 1]
with algebraic multiplicity 1. Therefore, the singular values of X are s1 =

√
n, s2 = · · · =

sn−1 = σ
√
(n− 1)(1− r), sn = σ

√
(n− 1)[(d− 1)r + 1].

Let us denote by κ(X) the generalised condition number of X, i.e., κ(X) = ‖X‖2 ·
‖X†‖2, where X† = XT(XXT)−1 is the pseudoinverse of X, [1] (p. 246). It is known that
the generalised condition number can be expressed in terms of the maximum smax and the

minimum smin singular value of X as κ(X) =
smax

smin
, [1] (p. 216).

In Theorem 3, we express the generalised condition number of X in terms of the
correlation structure r.

Theorem 3. Let X =
[

1 x1 · · · xd
]
∈ Rn×(d+1) be a high-dimensional design matrix

of full rank whose columns xi ∼ N(0n, σ2 In), i = 1, 2, . . . , d, with correlation structure r. The
generalised condition number of X is given by

1. κ(X) =

√
n

(n− 1)σ2(1− r)
, if r ≤ 1

d− 1

(
n

(n− 1)σ2 − 1
)

,

2. κ(X) =

√
(d− 1)r + 1

1− r
, if

(
r >

1
d− 1

(
n

(n− 1)σ2 − 1
)

and σ2 <
n

n− 1

)
or(

r > 1− n
(n− 1)σ2 and σ2 >

n
n− 1

)
,

3. κ(X) =

√
(n− 1)σ2((d− 1)r + 1)

n
, if r < 1− n

(n− 1)σ2 .

Proof. It is obvious that sn = σ
√
(n− 1)[(d− 1)r + 1] > si, i = 2, . . . , n− 1 holds. There-

fore, we have to distinguish three cases. The first case is s1 ≥ sn, the second case is
si < s1 < sn and the last one is s1 < si.

First case: If s1 ≥ sn, then κ(X) =
s1

si
=

√
n

(n− 1)σ2(1− r)
. The restriction s1 ≥ sn

can be rewritten as follows:
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n ≥ (n− 1)σ2((d− 1)r + 1)

⇔ n
(n− 1)σ2 ≥ (d− 1)r + 1

⇔ n
(n− 1)σ2 − 1 ≥ (d− 1)r

⇔ r ≤ 1
d− 1

(
n

(n− 1)σ2 − 1
)

.

Second case: If si < s1 < sn, then κ(X) =
sn

si
=

√
(d− 1)r + 1

1− r
. The restriction

si < s1 < sn can be reformulated as follows:

(n− 1)σ2(1− r) < n < (n− 1)σ2(dr + 1− r)

⇔


1− r <

n
(n− 1)σ2

(d− 1)r >
n

(n− 1)σ2 − 1
⇔


r > 1− n

(n− 1)σ2

r >
1

d− 1

(
n

(n− 1)σ2 − 1
) .

Moreover, we make the check

1
d− 1

(
n

(n− 1)σ2 − 1
)
< 1− n

(n− 1)σ2

⇔ n− (n− 1)σ2 < (d− 1)(n− 1)σ2 − n(d− 1)

⇔ (n− 1)σ2(1 + d− 1) > n + nd− n

⇔ σ2 >
n

n− 1
.

Therefore, we conclude that the generalised condition number κ(X) is equal to

√
(d− 1)r + 1

1− r
if the following relation holds.

r >
1

d− 1

(
n

(n− 1)σ2 − 1
)

and σ2 <
n

n− 1
or

r > 1− n
(n− 1)σ2 and σ2 >

n
n− 1

Third case: If s1 ≤ si, then κ(X) =
sn

s1
=

√
(n− 1)σ2((d− 1)r + 1)

n
. This restriction is

equivalently written as

n < (n− 1)σ2(1− r)⇔ n
(n− 1)σ2 < 1− r ⇔ r < 1− n

(n− 1)σ2 .

Taking into consideration the derived formulae for the generalised condition number
of the design matrix X, we see that if r ≈ 1 the generalised condition number κ(X) becomes
large. A detailed example is presented next.

Example 2. In this example, we plot the generalised condition number of X as a function of the
correlation r. We consider n = 50, d = 100 and σ2 = 2. In Figure 2, we display κ(X) for
correlation r −→ 1. As we see in Figure 2, as correlation r tends to 1, the generalised condition
number κ(X) increases rapidly.
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Figure 2. The generalised condition number of X as a function of the correlation r.

3.2. Highly Correlated Covariates with Different Variance and Correlation

Next, we consider a general and more usual case in which the covariates xi ∼
N(0n, σ2

i In) of the design matrix X have different variance σ2
i and correlation rij, i, j =

1, . . . , d. Based on the results presented in [17] for the eigenvalues of the matrix XTX, we
record analytic formulae for the singular values of X in the following theorem.

Theorem 4. Let X =
[

1 x1 · · · xd
]
∈ Rn×(d+1) be a high-dimensional design matrix of

full rank whose columns xi ∼ N(0n, σ2
i In), i = 1, 2, . . . , d, with highly correlation structure rij.

The singular values of the matrix X are

s1 =
√

n, s2 =

√√√√(n− 1)
d

∑
j=1

σ2
i +O(δ), s3 = · · · = sn =

√
O(δ),

assuming that 1− rij = O(δ) as δ→ 0.

As we record in Section 3.1, the generalised condition number is equal to the ratio
smax

smin
and in the present case smin = O(δ) considering that 1− rij = O(δ), i.e., highly

correlated covariates. Therefore, the value of κ(X) is large and this affects the solution of
the corresponding problem.

Remark 2. As the correlation r increases the generalised condition number κ(X) increases as well.
From Theorems 2 and 4 we deduce that the case of highly correlated covariates leads to possible
instability and thus regularisation is recommended. This result is confirmed from Table 1 which is
presented in Section 3.3.

3.3. Numerical Implementation

The implementation of the simulation study presented in this section and in Section 4
has been done by using the Julia Programming Language.

Given the high-dimensional design matrix X of order n× (d + 1), the response vector
y of order n and the n-vector ε = (ε1, ε2, . . . , εn)T of i.i.d. random errors, εj ∼ N(0, 1),
j = 1, 2, . . . , n, we estimate the vector β by using the methods which are described in
Section 2. We consider design matrices X with correlated covariates and we distinguish
the two aforementioned cases. The results for the first case, i.e., the covariates of the design
matrices having same correlation r and same variance σ2, are recorded in Tables 1 and 2.
The results for the second case are displayed in Table 3.

The implemented simulation scheme is the following. For each design matrix X,
a random vector β is generated and y = Xβ denotes the noise free response vector. Then,
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100 iterations are performed, in each one the response vector is perturbed by noise εi

resulting in a noisy response vector ŷ = y + εi, i = 1, 2, . . . , 100. Eventually, the regression
parameter β̂ is computed by using both the MNS given by Algorithm 1 and the regularisa-
tion techniques. The quality of the generated approximation solution β̂ is assessed by the
mean square error (MSE) between β and β̂ which is given by the formula

MSE(β̂) = E[‖β̂− β‖2
2].

In Algorithm 3, we summarise the simulation scheme.

Algorithm 3: Simulation scheme.

Input: Design matrix X ∈ Rn×(d+1)

Result: MSE(β̂)
β = randn(n);
y = Xβ ;
for i← 1 to 100 do

ŷ = y + εi;
β∗ = MNS(ŷ);
βλ = Tikhonov(ŷ);
β̂µ = `p-`q(ŷ)

end

In Tables 1–3, we present the results of estimating the regression parameter β for
different orders of the design matrices X. In the two first columns of the tables, the
correlation r and the variance σ2 of the covariates are recorded, respectively. In Table 3,
we record the interval in which lies the correlation and the variance. In the third column,
the adopted methods are written. Specifically, we record MNS, Tikhonov regularisation
and `p-`q regularisation technique for different pairs of (p, q). The fourth column contains
the used grid of values for the regularisation parameter λ or µ for Tikhonov or `p-`q

regularisation, respectively. In the last column the MSE(β̂) of the derived approximation
solutions β̂ are recorded.

Table 1. Results for X5×21.

r σ2 Method λ/µ MSE (β̂)

0.5 0.25 MNS 1.3063× 10−1

Tikhonov [1, 10] 8.3874× 10−1

`1.8-`1.8 [10−7, 10−2] 1.1949× 10−1

0.5 1.0 MNS 1.3093× 10−1

Tikhonov [1, 10] 8.0127× 10−1

`1.8-`1.8 [10−7, 10−2] 1.2216× 10−1

0.9 0.25 MNS 5.5782× 10−1

Tikhonov [1, 10] 9.4101× 10−1

`1.8-`1.8 [0.1, 10] 1.2571× 10−1

0.9 1.0 MNS 6.2096× 10−1

Tikhonov [1, 10] 8.5836× 10−1

`1.8-`1.8 [0.1, 10] 6.0884× 10−1

0.999 0.25 MNS 4.4474
Tikhonov [1, 10] 1.774
`0.1-`2 [10−7, 10−2] 7.3793× 10−1

0.999 1.0 MNS 2.0129
Tikhonov [1, 10] 1.0456
`1.2-`1.2 [0.1, 10] 6.8626× 10−1
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Table 2. Results for X50×101.

r σ2 Method λ/µ MSE (β̂)

0.9 0.25 MNS 4.5894× 10−1

Tikhonov [1, 10] 7.0511× 10−1

`2-`0.1 [10−7, 10−2] 4.5093× 10−1

0.9 1.0 MNS 4.8802× 10−1

Tikhonov [1, 10] 6.0754× 10−1

`2-`0.1 [10−7, 10−2] 4.8614× 10−1

0.999 0.25 MNS 3.5306
Tikhonov [1, 10] 1.0022
`2-`0.1 [0.1, 10] 8.3247× 10−1

0.999 1.0 MNS 1.1970
Tikhonov [1, 10] 9.6625× 10−1

`1.8-`1.8 [0.1, 10] 7.4754× 10−1

Table 3. Results for X25×51.

r σ2 Method λ/µ MSE (β̂)

[0.27, 0.91] [0.19, 1.17] MNS 2.1252× 10−1

Tikhonov [1, 10] 6.2245× 10−1

`1.8-`1.8 [0.1, 10] 9.3163× 10−2

[−0.32, 0.85] [0.13, 2.32] MNS 1.6819× 10−1

Tikhonov [1, 10] 5.9699× 10−1

`1.8-`1.8 [0.1, 10] 1.2632× 10−1

[0.06, 0.91] [0.42, 1.93] MNS 1.1623× 10−1

Tikhonov [1, 10] 5.8305× 10−1

`1.8-`1.8 [0.1, 10] 1.0371× 10−1

As we can see in these tables, in the case of highly correlated design matrices, the reg-
ularisation is necessary for deriving a good approximation of the desired vector β. On
the other hand, if the correlation of the design matrix is not high, MNS can achieve a fair
estimation and a regularisation method does not improve the results, as it is verified by the
MSE(β̂). Therefore, according to the presented results, for matrices with moderate corre-
lated covariates, regularisation is redundant, as MNS yields adequate results. However,
as the correlation between the covariates rises, the regularisation is essential.

Note that in case of design matrices with same variance and correlation r = 0.999
(Tables 1 and 2) the regularisation techniques, Tikhonov and `p-`q, can achieve comparable
results. The choice of the pair of parameters (p, q) and the values of the required regulari-
sation parameter play an important role for the efficient implementation of both methods.

4. Variable Selection in SSDs

In this section, we are interested in selecting the active factors of SSDs by using
the methods which are described in Section 2. In our comparison, we also include SVD
principal regression method which is used in SSDs, and it was proposed in [8]. We briefly
refer to this method as SVD regression. The main computational cost of this approach is
the evaluation of the SVD.

We measure the effectiveness of these methods through the Type I and Type II error
rates. In particular, Type I error measures the cost of declaring an inactive factor to be
active and Type II measures the cost of declaring an active effect to be inactive. In our
numerical experiments, we consider 500 different realisations of the error ε and in the
presented tables we record the mean value of Type I, II error rates.

It is worth mentioning that both the MNS and Tikhonov regularisation give that all
the factors are active, i.e., Type I = 1, Type II = 0, for all the tested SSDs. Therefore, these
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methods are not suitable for variable selection and we do not include them in the following
presented tables.

Example 3 (An illustrative example). In this example, we shall exhibit in detail the performance
of each method for a particular problem. For this purpose, we adopt the illustrative example presented
in [8], with design matrix

X =



+ − − − − − − − − −
+ + + + + + + − − −
+ + + + − − − + + +
− + − − + + − + + −
− − + − + − + + − +
− − − + − + + − + +

 =
[

x1 x2 . . . x10
]
.

Then a first column x0 with all entries equal to 1 is added to the matrix, which corresponds to the
average mean. The simulated data are generated by the model

y = 5x0 + 4x2 + 3x5 + ε,

where ε ∼ N(06, I6). A response vector y obtained by using this model is

y =
[
−1.54 12.02 6.82 12.44 4.62 −1.21

]T .

The exact regression parameter β and the predicted coefficients by each method are demonstrated below.

β =
[

5 0 4 0 0 3 0 0 0 0 0
]T ,

β̂MNS =
[

5.525 0.1208 2.4508 1.1475 0.1758 2.0842 1.1125 −0.1908 1.2175 0.2458 −1.0575
]T ,

β̂Tik =
[

4.7237 0.1114 2.2592 1.0578 0.1621 1.9212 1.0255 −0.1759 1.1223 0.2266 −0.9748
]T ,

β̂`2`0.1
=
[

5.5214 0.0 3.9482 0.0 0.0 2.8458 0.0 0.0 0.0 0.0 0.0
]T ,

β̂SVD =
[

5.5245 0.0 3.901 0.0 0.0 2.801 0.0 0.0 0.0 0.0 0.0
]T .

As we can see from the generated approximation solutions β̂, the MNS and Tikhonov
regularised solution cannot specify the active factors of the model and completely spoil the
sparsity. On the other hand, the `p-`q regularisation method and the SVD regression can
determine appropriately the active factors of the model.

Example 4 (Williams’ data). We consider the well-known Williams’ dataset (rubber age data)
which is reported in Table 4. It is a classical dataset of SSDs and it is tested in several works, such as
in [8]. As it is written in [8], as the columns 13 and 16 in the original design matrix are identical,
the column 13 is removed for executing our numerical experiments. For this dataset we consider
two cases, the real case and 3 synthetic cases.

We initially deal with the real case where the design matrix X and the response vector
y are given, without the initial knowledge of the desired vector β. In literature, it is reported
that the active factor is x15. In this case, according to our numerical experiments, the SVD
regression and the `p-`q regularisation method for p = 0.8, q = 0.1 indicate that the factor
x15 is important. In particular, the proposed models, i.e., the coefficients βi are given in
Table 5.

The second case corresponds to 3 synthetic cases, see in [8] and references therein,
which are given below. For these simulated cases, we record the results in Table 6. In
particular, we compute Type I and II error rates for the described methods. We apply the
`p-`q regularisation method for µ = 5 and the SVD regression for the significance level
a = 0.05. As we notice in this table, both the `p-`q regularisation and the SVD regression
can select sufficiently the important factors, as we see from the corresponding Type I, II
error rates. The first model has the particularity that it includes the interaction of the factors
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x5, x9 which does not usually appear in SSDs analysis. The first model is a challenging case
for all the methods.

Model 1: y ∼ N(15x1 + 8x5 − 6x9 + 3x5x9, I14)
Model 2: y ∼ N(8x1 + 5x12, I14)
Model 3: y ∼ N(10x1 + 9x2 + 2x3, I14)

Table 4. The Williams’ data—rubber age data.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 y

+ + + - - - + + + + + - - - + + - - + - - - + 133
+ - - - - - + + + - - - + + + - + - - + + - - 62
+ + - + + - - - - + - + + + + + - - - - + + - 45
+ + - + - + - - - + + - - + + - + + + - - - - 52
- - + + + + - + + - - - - + + + - - + - + + + 56
- - + + + + + - + + + - + + - + + + + + + - - 47
- - - - + - - + - + - + + - + + + + + + - - + 88
- + + - - + - + - + - - - - - - - + - + + + - 193
- - - - - + + - - - + + - + - + + - - - - + + 32
+ + + + - + + + - - - + + + - + - + - + - - + 53
- + - + + - - + + - + - + - - - + + - - - + + 276
+ - - - + + + - + + + + - - + - - + - + + + + 145
+ + + + + - + - + - - + - - - - + - + + - + - 130
- - + - - - - - - - + + + - - - - - + - + - - 127

Table 5. The selected model for William’s data (real case).

Method Intercept x15

`0.8-`0.1 6.11 −1.13
SVD Regression 102.7857 −36.0341

Table 6. Results for William’s Data (synthetic cases).

Model Method Type I Type II

Model 1 `1.8-`0.8 0.23 0.56
SVD Regression 0.15 0.74

Model 2 `2.0-`0.1 0.00 0.00
SVD Regression 0.05 0.00

Model 3 `2.0-`0.1 0.00 0.27
SVD Regression 0.07 0.33

Example 5 (A 3-circulant SSD). In this example, we consider one more SSD, which is also used
in [18], and it is recorded in Table 7. We test the behaviour of the methods for variable selection by
considering three models which can be found in [19] and are given below.

Model 1: y ∼ N(10x1, I8)
Model 2: y ∼ N(−15x1 + 8x5 − 2x9, I8)
Model 3: y ∼ N(−15x1 + 12x5 − 8x9 + 6x13 − 2x17, I8)

The results are presented in Table 8. For the three used models, we apply the `p-`q regularisation
method for µ = 5, 5.5, 0.5 respectively and the SVD regression for a = 0.25. According to the
presented numerical results, we see that both the `p-`q regularisation and the SVD regression
can achieve satisfactory Type I and II error rates for the Model 1. On the other hand, for the
Model 2 the SVD regression fails to specify the active factors whereas the `p-`q regularisation
method achieves better Type II error. However, neither of the methods produce fair results for the
Model 3. The coefficients of this model are not sufficiently close and this fact affects the behaviour of
the methods.



Mathematics 2021, 9, 1806 14 of 16

Table 7. A 3-circulant SSD.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

- - - - - - - + + - - - + - + + + - + + +
+ + + - - - - - - - + + - - - + - + + + -
+ + - + + + - - - - - - - + + - - - + - +
+ - + + + - + + + - - - - - - - + + - - -
- - - + - + + + - + + + - - - - - - - + +
- + + - - - + - + + + - + + + - - - - - -
- - - - + + - - - + - + + + - + + + - - -
+ + + + + + + + + + + + + + + + + + + + +

Table 8. Results for 3-circulant SSD.

Model Method Type I Type II

Model 1 `2.0-`0.1 0.00 0.00
SVD Regression 0.08 0.00

Model 2 `0.6-`1.3 0.39 0.13
SVD Regression 0.08 0.67

Model 3 `1.8-`0.8 0.39 0.45
SVD Regression 0.17 0.80

Example 6. In this example we consider a real data set presented in [20] that deals with moss bags
of Rhynchostegium riparioides which were exposed to different water concentrations of 11 trace
elements under laboratory conditions. The design matrix X can be found in Table 1 in [20]. We
consider the main effects, the second- and third-order interactions of influent factors. Therefore, we
have a 67× 232 SSD and we can select the important factors applying the `p-`q regularisation for
µ = 0.75 and the SVD regression for significance level a = 0.05.

From Table 9, we see that both `2-`0.1 and SVD regression methods identify the main
effect Zn as active factor. The second order interactions Cd/Mn, As/Pb and Mn/Ni are
also identified as active. These results are in agreement with [20].

Table 9. Important elements and interactions.

Method Main Effects Second-Order Interactions Third-Order Interactions

`2-`0.1 Fe, Zn Al/Hg, As/Pb, Al/As/Mn, Al/Cr/Zn,
Cd/Mn, Mn/Ni As/Cd/Fe, As/Cd/Mn,

Cr/Mn/Zn, Cu/Hg/Mn
Fe/Hg/Ni, Fe/ Ni/Pb

SVD Regression Zn As/Pb, Cd/Mn,
Fe/Mn, Fe/Zn,
Mn/Ni, Pb/Zn

5. Conclusions

In the present work, we analysed the properties of design matrices with correlated
covariates. Specifically, we derived and proved formulae for the singular values of these
matrices and we studied the connection of the generalised condition number with the
correlation structure. Moreover, we described some available methods for solving high-
dimensional problems. We checked the behaviour of the MNS and the necessity of applying
regularisation techniques in estimating the regression parameter β in the linear regression
model. We concluded that in solving high-dimensional statistical problems the following
remarks must be taken into consideration.
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1. Regularisation should be applied only if the given data set satisfies the discrete Picard
condition. In this case, the choice of the regularisation parameter can be uniquely
chosen by applying the discrepancy principle method.

2. The regression parameter β ∈ Rd+1 can be satisfactory estimated by the MNS if the
design matrix is not highly correlated but in case of highly correlated data matrices
we have to adopt regularisation techniques. The quality of the derived estimation β̂
of β is assessed by the computation of MSE(β̂).

3. In variable selection, where sparse solutions are needed, SVD regression or `p-`q
regularisation can be used. When only few factors of the experiment are needed to be
specified (maybe only the most important), SVD regression may be preferable since it
avoids regularisation and the troublesome procedure of defining the regularisation
parameter. The quality of the variable selection which is proposed by the estimation
methods is assessed by the evaluation of Type I and II error rates.

In conclusion, the proposed scheme for the selection of the appropriate method
for the solution of high-dimensional statistical problems is summarised in the following
logical diagram, see Figure 3.

Design Matrix
with Correlated

Covariates
X

Highly
Correlated

correlation ≈ 1

Not Highly
Correlated

correlation ≤ 0.9

Regularization
Techniques

Tikhonov
`p-`q

Non Sparse
Solutions

MNS

Sparse Solu-
tions for SSDs

More Effective
Factors

`p-`q
Regularization

Few Effec-
tive Factors

SVD Regression

Figure 3. Logical diagram for choosing the appropriate method for the solution of high-dimensional statistical problems.
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