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Abstract: Let L2(R,H) denote the space of all square integrable quaternionic-valued functions. In this
article, let Φ ∈ L2(R,H). We consider the perturbation problems of wavelet frame {Φm,n,a0,b0 , m, n ∈
Z} about translation parameter b0 and dilation parameter a0. In particular, we also research the stabil-
ity of irregular wavelet frame {

√
SmΦ(Smx− nb), m, n ∈ Z} for perturbation problems of sampling.
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1. Introduction

Frame theory plays a significant role in both harmonic analysis and wavelet theory [1].
There are a number of mathematicians who have contributed a considerable amount of
work on frame theory and perturbation theory, see [2–8]. The study of frames has attracted
interest in recent years because of their applications in several areas of applied mathematics
and engineering, like sampling [9] and signal processing [10].

Since the quaternion was discovered by Hamilton, some properties of quaternions and
the theory of quaternionic-valued functions space have been widely studied. He [11,12]
established the continuous wavelet transform theory of L2(R,H) and L2(C,H) associated
with the affine group. Cheng and Kou [13] acquired the properties of the quaternion Fourier
transform of square integrable function. It is known that quaternions have important
applications in signal processing [14] and image processing [15]. Moreover, quaternions
can be used to represent the three-dimensional rotation group SO(3) which has many
applications in physics such as crystallography and kinematics of rigid body motion. For
more details about this, we refer readers to see [16].

With the maturity of the quaternion theory, some researchers began to study the
stability problems of frames of quaternionic-valued functions. He et al. [17] studied the
stability of wavelet frames for perturbation problems of mother wavelet and sampling. The
wavelet function Φ here is needed to satisfy some conditions. They obtained some useful
results. In particular, they posed a question in their article for the stability of wavelet frames
for L2(R,H) when a0 or b0 has perturbation. Therefore, motivated by [17], our paper aims
at studying the perturbation problems of wavelet frames about translation and dilation
parameters b0 and a0. In practice, the sampling points may not be regular. This leads to
the study of irregular frames. We also study sampling perturbation of irregular wavelet
frames of quaternionic-valued functions. Our results show that a small perturbation does
not change the stability of a wavelet frame when Φ satisfies some conditions, and we can
reconstruct uniquely and stably any element through a wavelet transform.

The organization of this paper is as follows. In Section 2, we state notations and review
some elementary facts of the Fourier transform for quaternionic-valued functions including
the concept of frame. Section 3 contains the main theorems and their proofs. Finally, we
show the conclusions in Section 4.
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2. Preliminaries

First of all, we review some facts of quaternions, which are required throughout the
paper. Relevant knowledge can be found in [17–19]. Write:

H = {a + bi + cj + dk | a, b, c, d ∈ R},

where ij = −ji = k, jk = −kj = i, ki = −ik = j and i2 = j2 = k2 = −1. Let q ∈ H, it can be
denoted by:

q = a + bi + cj + dk = (a + ib) + j(c− id) = u + jv.

The conjugation of q is:

q = a− bi− cj− dk = (a− ib)− j(c− id) = u− jv.

Suppose that q1, q2 ∈ H, q1 = u1 + jv1, q2 = u2 + jv2. We introduce a mapping 〈·, ·〉 from
H×H to H as follows:

〈q1, q2〉H = q1q2 = (u1 + jv1)(u2 − jv2) = (u1u2 + v1v2) + j(v1u2 − u1v2).

Clearly, 〈·, ·〉 can be regarded as the inner product on H (see [11]). Quaternionic-valued
function defined on R is given by:

F(x) = f1(x) + j f2(x), f1(x), f2(x) ∈ L2(R).

Let F(x) = f1(x)+ j f2(x), G(x) = g1(x)+ jg2(x) ∈ L2(R,H), the inner product 〈·, ·〉L2(R,H)
is defined by:

〈F, G〉L2(R,H) =
∫
R
〈F, G〉Hdx =

∫
R

F(x)G(x)dx

=
∫
R

[
f1(x)g1(x) + f2(x)g2(x) + j

(
f2(x)g1(x)− f1(x)g2(x)

)]
dx.

Specially, if F = G, then the norm of F is:

‖ F ‖L2(R,H)=

{∫
R
(| f1(x) |2 + | f2(x) |2)dx

} 1
2
.

Let F(x) = f1(x) + j f2(x) ∈ L2(R,H), we define the Fourier transform for F by:

F̂(ω) = f̂1(ω) + j f̂2(ω), ω ∈ R,

where f̂t(ω) =
∫
R

ft(x)e−iωxdx, t = 1, 2.

Naturally, the frame of square integrable quaternionic-valued functions is defined as
follows: A family of functions {Φm,n,a,b : n, m ∈ Z} ⊂ L2(R,H) is called a frame if there
exist two positive constants A and B with 0 < A ≤ B < ∞ such that:

A ‖ F ‖2
L2(R,H)≤ ∑

n,m∈Z
| 〈F, Φm,n,a,b〉 |2≤ B ‖ F ‖2

L2(R,H),

where Φm,n,a,b(x) = a
m
2 Φ(amx − nb) = a

m
2 (ϕ1(amx − nb) + jϕ2(amx − nb)) ∈ L2(R,H),

and A and B are called bounds of the frame. If A = B, we say that it is a tight frame.
In this paper, we use C to denote constant and do not distinguish different constants.

N is the set of all positive integers.
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For any F(x) = f1(x) + j f2(x) ∈ L2(R,H), let:

KΦ(F) := ∑
m,n∈Z

(∫
R

f̂1(am
0 ω)ϕ̂1(ω)einb0ωdω

∫
R

f̂2(am
0 ω)ϕ̂2(ω)einb0ωdω

+
∫
R

f̂1(am
0 ω)ϕ̂1(ω)e−inb0ωdω

∫
R

f̂2(am
0 ω)ϕ̂2(ω)e−inb0ωdω

−
∫
R

f̂2(am
0 ω)ϕ̂1(ω)e−inb0ωdω

∫
R

f̂1(am
0 ω)ϕ̂2(ω)e−inb0ωdω

−
∫
R

f̂2(am
0 ω)ϕ̂1(ω)einb0ωdω

∫
R

f̂1(am
0 ω)ϕ̂2(ω)einb0ωdω

)
.

Set W := {Φ : KΦ(F) = 0 for all F(x) ∈ L2(R,H), a0 > 1, b0 > 0}. As shown in [17], if
one of ϕ1 and ϕ2 equals to 0, or ϕ1 = κϕ2, where κ ∈ C \ {0}, then Φ ∈ W . That is to say
W 6= ∅. Evidently, W is a linear subspace of L2(R,H). In the next discussion we need to
assume that wavelet function Φ ∈ W .

3. Main Results and the Proofs
In this section, we will present our results and their proofs. The following lemmas

are useful.

Lemma 1 ([17]). Let a > 1, b > 0 and {Φm,n,a,b} is a frame for L2(R,H) with bounds A and B.
If Φ ∈ W , then for a.e. ω,

∑
m

(
|ϕ̂1(amw)|2 + |ϕ̂2(amw)|2

)
≤ 2Bb.

Lemma 2. Let {Φm,n,a,b} be a frame for L2(R,H) with frame bounds A and B. If,

| ∑
m,n
| 〈F, Φm,n,a,b〉 |2 −∑

m,n
| 〈F, Ψm,n,a,b〉 |2 | ≤ M‖ F ‖2 < A‖ F ‖2,

then {Ψm,n,a,b} is a frame with frame bounds A-M and B+M.

Proof. Using the triangle inequality, the lemma obviously holds.

We are now in a position to show the main theorems. We first consider the perturbation
of translation parameter b0 in Theorems 1 and 2.

Theorem 1. Let Φ, Ψ ∈ W . Assume that {Φm,n,a0,b0} is a wavelet frame for L2(R,H) with
bounds A and B, ϕ̂1, ϕ̂2 are continuous and bounded by:

| ϕ̂t(ω) | ≤ C
| ω |α

(1+ | ω |)1+ν
, t = 1, 2,

for ν > α > 0. Then there exists a δ > 0 such that for any b with |b− b0| < δ, {Φm,n,a0,b} is a
wavelet frame for L2(R,H).

Proof. We define a unitary operator by:

Ub : L2(R,H)→ L2(R,H), (Ub ϕt)(x) = (
b
b0
)

1
2 ϕt(

b
b0

x) = ψt(x).

Obviously, Ψ̂(ω) = ( b
b0
)−

1
2 Φ̂( b0

b ω), UbΦm,n,a0,b = Ψm,n,a0,b0 .
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Therefore, {Φm,n,a0,b} is a frame if and only if {Ψm,n,a0,b0} is a frame.

∑
m,n∈Z

| 〈F, Φm,n,a0,b0〉 |
2

= ∑
m,n∈Z

am
0

∣∣∣∣ ∫R
[

f1(x)ϕ1(am
0 x− nb0) + f2(x)ϕ2(am

0 x− nb0)

+j
(

f2(x)ϕ1(am
0 x− nb0)− f1(x)ϕ2(am

0 x− nb0)
)]

dx
∣∣∣∣2

= ∑
m,n∈Z

1
am

0 (2π)2

∣∣∣∣∫R
[

f̂1(ω)ϕ̂1(a−m
0 ω)eia−m

0 nb0ω + f̂2(ω)ϕ̂2(a−m
0 ω)e−ia−m

0 nb0ω

+j
(

f̂2(ω)ϕ̂1(a−m
0 ω)eia−m

0 nb0ω − f̂1(ω)ϕ̂2(a−m
0 ω)e−ia−m

0 nb0ω
)]

dω

∣∣∣∣2
= ∑

m,n∈Z
am

0 (2πb0)
−2

∣∣∣∣∣
∫
R

[
f̂1(

am
0 ω

b0
)ϕ̂1(

ω

b0
)einω + f̂2(

am
0 ω

b0
)ϕ̂2(

ω

b0
)e−inω

+j
(

f̂2(
am

0 ω

b0
)ϕ̂1(

ω

b0
)einω − f̂1(

am
0 ω

b0
)ϕ̂2(

ω

b0
)e−inω

)]
dω

∣∣∣∣∣
2

= ∑
m,n∈Z

am
0 (2πb0)

−2

[∣∣∣∣ ∫R f̂1(
am

0 ω

b0
)ϕ̂1(

ω

b0
)einωdω

∣∣∣∣2 + ∣∣∣∣ ∫R f̂2(
am

0 ω

b0
)ϕ̂2(

ω

b0
)

×e−inωdω

∣∣∣∣2 + ∣∣∣∣ ∫R f̂2(
am

0 ω

b0
)ϕ̂1(

ω

b0
)einωdω

∣∣∣∣2 + ∣∣∣∣ ∫R f̂1(
am

0 ω

b0
)ϕ̂2(

ω

b0
)

× e−inωdω

∣∣∣∣2
]

= I1+I2 + I3 + I4.

A direct computation gives:

I1 = ∑
m,n∈Z

am
0 (b0)

−2

∣∣∣∣∣ 1
2π ∑

l∈Z

∫ (2l+1)π

(2l−1)π
f̂1(

am
0 ω

b0
)ϕ̂1(

ω

b0
)einωdω

∣∣∣∣∣
2

= ∑
m∈Z

am
0 (b0)

−2 ∑
n∈Z

∣∣∣∣∣ 1
2π

∫ π

−π
∑
l∈Z

f̂1(
am

0 (ω + 2lπ)

b0
)ϕ̂1(

ω + 2lπ
b0

)einωdω

∣∣∣∣∣
2

=
1

2π ∑
m∈Z

am
0 (b0)

−2
∫ π

−π

∣∣∣∣∣∑l∈Z f̂1(
am

0 (ω + 2lπ)

b0
)ϕ̂1(

ω + 2lπ
b0

)

∣∣∣∣∣
2

dω

=
1

2π ∑
m∈Z

am
0 (b0)

−2
∫

f̂1(
am

0 ω

b0
)ϕ̂1(

ω

b0
) ∑

l′∈Z
f̂1(

am
0 (ω + 2l′π)

b0
)ϕ̂1(

ω + 2l′π
b0

)dω

=(2πb0)
−1 ∑

m,l′∈Z

∫
f̂1(ω)ϕ̂1(a−m

0 ω) ∑
l′∈Z

f̂1(ω +
2l′πam

0
b0

)ϕ̂1(a−m
0 ω +

2l′π
b0

)dω

≤(2πb0)
−1 ∑

m,l′∈Z

(∫
| f̂1(ω) |2| ϕ̂1(a−m

0 ω)ϕ̂1(a−m
0 ω +

2l′π
b0

) | dω

) 1
2

×
(∫
| f̂1(ω +

2l′πam
0

b0
) |2| ϕ̂1(a−m

0 ω)ϕ̂1(a−m
0 ω +

2l′π
b0

) | dω

) 1
2
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≤(2πb0)
−1

(
∑

m,l′∈Z

∫
| f̂1(ω) |2| ϕ̂1(a−m

0 ω)ϕ̂1(a−m
0 ω +

2l′π
b0

) | dω

) 1
2

×
(

∑
m,l′∈Z

∫
| f̂1(ω) |2| ϕ̂1(a−m

0 ω− 2l′π
b0

)ϕ̂1(a−m
0 ω) | dω

) 1
2

=(2πb0)
−1 ∑

m,l′∈Z

∫
| f̂1(ω) |2| ϕ̂1(a−m

0 ω)ϕ̂1(a−m
0 ω +

2l′π
b0

) | dω.

And by the same way, we can get the values of I2, I3, and I4. Thus:

∑
m,n∈Z

| 〈F, Φm,n,a0,b0〉 |
2

≤ 2πb−1
0 ∑

m,l′∈Z

∫ [
| f̂1(ω) |2 + | f̂2(ω) |2

][
| ϕ̂1(a−m

0 ω)ϕ̂1(a−m
0 ω +

2l′π
b0

) |

+ | ϕ̂2(a−m
0 ω)ϕ̂2(a−m

0 ω +
2l′π
b0

) |
]

dω

≤ b−1
0 sup

1≤|ω|≤a0

∑
m,l′∈Z

[
| ϕ̂1(a−m

0 ω)ϕ̂1(a−m
0 ω +

2l′π
b0

) |

+ | ϕ̂2(a−m
0 ω)ϕ̂2(a−m

0 ω +
2l′π
b0

) |
]
‖ F ‖2 .

Substituting Φ−Ψ for Φ, we have:

∑
m,n∈Z

| 〈F, (Φ−Ψ)m,n,a0,b0〉 |
2

≤ b−1
0 sup

1≤|ω|≤a0

∑
m,l′∈Z

{∣∣∣∣[ϕ̂1(a−m
0 ω)− ψ̂1(a−m

0 ω)

]
×
[

ϕ̂1(a−m
0 ω +

2l′π
b0

)− ψ̂1(a−m
0 ω +

2l′π
b0

)

]∣∣∣∣+ ∣∣∣∣[ϕ̂2(a−m
0 ω)− ψ̂2(a−m

0 ω)

]
×
[

ϕ̂2(a−m
0 ω +

2l′π
b0

)− ψ̂2(a−m
0 ω +

2l′π
b0

)

]∣∣∣∣} ‖ F ‖2 .

For all m and ω,

sup
1≤|ω|≤a0

∑
l′∈Z
| ϕ̂1(a−m

0 ω +
2l′π
b0

) |≤ C sup
1≤|ω|≤a0

∑
l′∈Z

1
(1+ | a−m

0 ω + 2l′π
b0
|)1+ν−α

≤ C.

Similar argument shows that:

sup
1≤|ω|≤a0

∑
l′∈Z
| ψ̂1(a−m

0 ω +
2l′π
b0

) |≤ C.

For all m′ ∈ N,

sup
1≤|ω|≤a0

∑
m∈Z
|ϕ̂1(a−m

0 ω)− ψ̂1(a−m
0 ω) |

≤ sup
1≤|ω|≤a0

∑
|m|≤m′

| ϕ̂1(a−m
0 ω)− (

b
b0
)−

1
2 ϕ̂1(a−m

0
b0

b
ω) |
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+ sup
1≤|ω|≤a0

∑
m<−m′

[
|ϕ̂1(a−m

0 ω)|+ |ψ̂1(a−m
0 ω)|

]
+ sup

1≤|ω|≤a0

∑
m>m′

[
|ϕ̂1(a−m

0 ω)|+ |ψ̂1(a−m
0 ω)|

]
= L1 + L2 + L3.

For every ε > 0, choose m′ such that a−m′
0 < ε. Since 1 ≤| ω |≤ a0, | m |≤ m′, and

ϕ̂1(a−m
0 ω) is uniformly continuous on ω, we choose δ small enough so that if | b− b0 |< δ,

| ϕ̂1(a−m
0 ω)− ϕ̂1(a−m

0
b0

b
ω) |< ε, ∀ | m |≤ m′.

Therefore,

L1 ≤ sup
1≤|ω|≤a0

∑
|m|≤m′

[
| 1− (

b
b0
)−

1
2 || ϕ̂1(a−m

0 ω) |

+(
b
b0
)−

1
2 | ϕ̂1(a−m

0 ω)− ϕ̂1(a−m
0

b0

b
ω) |

]
≤C(2m′ + 1)

[
|1− (

b
b0
)−

1
2 |+ (

b
b0
)−

1
2 ε

]
= o(1), b→ b0.

For L2 and L3, we will just estimate the first term in the series, since the other term
can be handled similarly.

sup
1≤|ω|≤a0

∑
m<−m′

| ϕ̂1(a−m
0 ω) |≤ sup

1≤|ω|≤a0

C ∑
m<−m′

1
(1+ | a−m

0 ω |)1+ν−α

≤ C ∑
m<−m′

am(1+ν−α)
0 ≤ Ca−m′(1+ν−α)

0 = o(1), m′ → +∞.

Finally,

sup
1≤|ω|≤a0

∑
m>m′

| ϕ̂1(a−m
0 ω) |≤ C ∑

m>m′
| a−m

0 a0 |
α ≤ Ca−m′α

0 = o(1), m′ → +∞.

We can deduce that:

sup
1≤|ω|≤a0

∑
m∈Z
| ϕ̂1(a−m

0 ω)− ψ̂1(a−m
0 ω) |≤ ε.

By the same way, we have:

sup
1≤|ω|≤a0

∑
m∈Z
| ϕ̂2(a−m

0 ω)− ψ̂2(a−m
0 ω) |≤ ε.

Based on the above argument, we conclude that for every ε > 0, there exists δ > 0
such that for | b− b0 |< δ,

∑
m,n∈Z

| 〈F, (Φ−Ψ)m,n,a0,b0〉 |
2≤ ε ‖ F ‖2,

which shows that {Ψm,n,a0,b0} is a frame for b sufficiently close to b0 by Theorem 3 of [2].
The proof is completed.

By Theorem 1, we get a definite answer to the stability about translation parameter b0.
If Φ̂ has a small support, we can estimate the frame bounds as follows.
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Theorem 2. Let Φ ∈ W and supp Φ̂ ⊂ [−π
b′ , π

b′ ]. Suppose that {Φm,n,a0,b0} is a wavelet frame
for L2(R,H) with bounds A and B. Then there exists a δ > 0 such that for any b with | b− b0 |< δ

and M = 2 | 1− ( b0
b ) | B < A, {Φm,n,a0,b} is a wavelet frame for L2(R,H) with bounds A-M

and B+M, b′ = max(b0, b).

Proof. Since supp Φ̂ ⊂ [−π
b′ , π

b′ ],

∑
m,n∈Z

| 〈F, Φm,n,a0,b0〉 |
2

=
1

(2πb0)2 ∑
m,n∈Z

am
0

[∣∣∣∣∫R f̂1(
am

0 ω

b0
)ϕ̂1(

ω

b0
)einωdω

∣∣∣∣2 + ∣∣∣∣ ∫R f̂2(
am

0 ω

b0
)ϕ̂2(

ω

b0
)e−inωdω

∣∣∣∣2

+

∣∣∣∣∫R f̂2(
am

0 ω

b0
)ϕ̂1(

ω

b0
)einωdω

∣∣∣∣2 + ∣∣∣∣ ∫R f̂1(
am

0 ω

b0
)ϕ̂2(

ω

b0
)e−inωdω

∣∣∣∣2
]

=J1 + J2 + J3 + J4.

The value of J1 is:

J1 =(2πb0)
−2 ∑

m,n∈Z
am

0

∣∣∣∣∫R f̂1(
am

0 ω

b0
)ϕ̂1(

ω

b0
)einωdω

∣∣∣∣2
=(2π)−1b−2

0 ∑
m∈Z

am
0

∫
R

∣∣∣∣ f̂1(
am

0 ω

b0
)ϕ̂1(

ω

b0
)

∣∣∣∣2dω

=(2πb0)
−1 ∑

m∈Z

∫
R

∣∣∣∣ f̂1(ω)ϕ̂1(a−m
0 ω)

∣∣∣∣2dω.

By performing the same calculations, we have:

∑
m,n∈Z

| 〈F, Φm,n,a0,b0〉 |
2

= (2πb0)
−1 ∑

m∈Z

∫
R

(
| f̂1(ω) |2 + | f̂2(ω) |2

)(
| ϕ̂1(a−m

0 ω) |2 + | ϕ̂2(a−m
0 ω) |2

)
dω.

According to the conclusion of Lemma 1, we get:

| ∑
m,n∈Z

| 〈F, Φm,n,a0,b0〉 |
2 − ∑

m,n∈Z
| 〈F, Φm,n,a0,b〉 |2|

= (2π)−1 | b−1
0 − b−1 | ∑

m∈Z

∫
R

(
| ϕ̂1(a−m

0 ω) |2 + | ϕ̂2(a−m
0 ω) |2

)
×
(
| f̂1(ω) |2 + | f̂2(ω) |2

)
dω

≤ 2 | b−1
0 − b−1|Bb0 ‖ F ‖2= 2B | 1− b0

b
|‖ F ‖2 .

Choosing suitable b such that:

M = 2B | 1− b0

b
|< A.

Applying Lemma 2, we obtain the result.

Next, we shall consider the perturbation of dilation parameter a0 in Theorems 3 and 4.
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Theorem 3. Let Φ ∈ W . If {Φm,n,a0,b0} is a wavelet frame for L2(R,H) with bounds A and B,
satisfying supp Φ̂ ⊂ [−π

b0
, π

b0
], and M < b0 A, where:

M =esssup | ∑
m∈Z
| ϕ̂1(a−m

0 ω) |2 − ∑
m∈Z
| ϕ̂1(a−mω) |2

+ ∑
m∈Z
| ϕ̂2(a−m

0 ω) |2 − ∑
m∈Z
| ϕ̂2(a−mω) |2|,

then {Φm,n,a,b0} is a wavelet frame for L2(R,H) with bounds A− b−1
0 M and B + b−1

0 M.

Proof. In fact, it is not difficult to calculate that:

| ∑
m,n∈Z

| 〈F, Φm,n,a0,b0〉 |
2 − ∑

m,n∈Z
| 〈F, Φm,n,a,b0〉 |

2 |

=(2πb0)
−1
∣∣∣∣ ∫R( ∑

m∈Z
| ϕ̂1(a−m

0 ω) |2 − ∑
m∈Z
| ϕ̂1(a−mω) |2

+ ∑
m∈Z
| ϕ̂2(a−m

0 ω) |2 − ∑
m∈Z
| ϕ̂2(a−mω) |2)× (| f̂1(ω) |2 + | f̂2(ω) |2)dω

∣∣∣∣
≤ esssup | ∑

m∈Z
| ϕ̂1(a−m

0 ω) |2 − ∑
m∈Z
| ϕ̂1(a−mω) |2

+ ∑
m∈Z
| ϕ̂2(a−m

0 ω) |2 − ∑
m∈Z
| ϕ̂2(a−mω) |2| b−1

0 ‖ F ‖2 .

Setting:

M =esssup| ∑
m∈Z
| ϕ̂1(a−m

0 ω) |2 − ∑
m∈Z
| ϕ̂1(a−mω) |2

+ ∑
m∈Z
| ϕ̂2(a−m

0 ω) |2 − ∑
m∈Z
| ϕ̂2(a−mω) |2 | < b0 A,

the conclusion follows from Lemma 2.

Theorem 4. Let Φ ∈ W and supp Φ̂ ⊂ [−π
b0

, π
b0
]. Suppose that {Φm,n,a0,b0} is a wavelet frame

for L2(R,H) with bounds A and B, and:

| ϕ̂1(a−mω) |≤ γ1 | ϕ̂1(a−m
0 ω) |, | ϕ̂2(a−mω) |≤ γ2 | ϕ̂2(a−m

0 ω) | .

Then {Φm,n,a,b0} is a wavelet frame for L2(R,H) with bounds A − 2Bγ and B + 2Bγ, where
2Bγ < A, γ = max{1 + γ2

1, 1 + γ2
2}.

Proof. From the hypothesis above, we have:

| ∑
m,n∈Z

| 〈F, Φm,n,a0,b0〉 |
2 − ∑

m,n∈Z
| 〈F, Φm,n,a,b0〉 |

2 |

=
1

2πb0

∣∣∣∣ ∫R( ∑
m∈Z
|ϕ̂1(a−m

0 ω) |2 − ∑
m∈Z
| ϕ̂1(a−mω) |2

+ ∑
m∈Z
| ϕ̂2(a−m

0 ω) |2 − ∑
m∈Z
| ϕ̂2(a−mω) |2)× (| f̂1(ω) |2 + | f̂2(ω) |2)dω

∣∣∣∣
≤ γ

2πb0

∣∣∣∣ ∫R ∑
m∈Z

(| ϕ̂1(a−m
0 ω) |2 + | ϕ̂2(a−m

0 ω) |2)× (| f̂1(ω) |2 + | f̂2(ω) |2)dω

∣∣∣∣.



Mathematics 2021, 9, 1807 9 of 12

Applying the conclusion of Lemma 1, we get:

| ∑
m,n∈Z

| 〈F, Φm,n,a0,b0〉 |
2 − ∑

m,n∈Z
| 〈F, Φm,n,a,b0〉 |

2 |

≤ 2Bγ ‖ F ‖2 .

The result is derived by Lemma 2.

For Φ ∈ L2(R,H), the continuous wavelet transform of a function F ∈ L2(R,H) is
defined by:

(WΦF)(s, p) = (Tϕ1 f1)(s, p) + (Tϕ2 f2)(s,−p) + j
(
−(Tϕ2 f1)(s,−p) + (Tϕ1 f2)(s, p)

)
,

where (Tϕ f )(s, p) =
∫ ∞
−∞ f (x)s−

1
2 ϕ
(

x−p
s

)
dx, s > 0 and p ∈ R (see [20]).

If {Φm,n,a,b, m, n ∈ Z} is a wavelet frame, then F is determined by the sampling values
of continuous wavelet transformWΦF on the set {(am, nbam) : m, n ∈ Z}.

In practice, the sampling points may not be regular. Thus the following problem has
been investigated: Suppose {Φm,n,a,b, m, n ∈ Z} is a wavelet frame, {Sm} and {bn} are
perturbations of {am} and {nb}, respectively, in some sense. If {

√
SmΦ(Sm · −bn) : m, n ∈

Z} is a frame, where Sm > 0 and bn are real numbers, then {
√

SmΦ(Sm · −bn)} will be
called an irregular wavelet frame. In this case, Φ can also be reconstructed by the sampling
points {(Sm, bnSm) : m, n ∈ Z} (see [21]).

Next, we still take bn = bn, let {
√

SmΦ(Sm · −nb) : m, n ∈ Z} be a frame for L2(R,H),
we study the sampling perturbation of the irregular wavelet frame, replacing the sequence
of integers by a double sequence {λm,n}.

Theorem 5. For 1 < β ≤ 2, ε > 0. Suppose that {
√

SmΦ(Sm · −nb) : m, n ∈ Z} is a
frame for L2(R,H) with bounds A and B, ϕ̂1, ϕ̂2 ∈ L1(R) ∩ L∞(R) and | ϕ̂1(ω) |, | ϕ̂2(ω) |≤
C | ω |−β−ε. Then there exist some a > 1 and 0 < η < 1, such that | Sm − am |≤ ηam,
{
√

SmΦ(Sm · −λm,nb) : m, n ∈ Z} is a frame for L2(R,H) with bounds (1−
√

Mσ/A)2 A and
(1 +

√
Mσ/B)2B whenever σ = ∑m,n∈Z | n− λm,n |β< A

M , where:

M = 22−βbβ(π)−1
(
‖ ϕ̂1 ‖1‖ ϕ̂1 ‖∞ + ‖ ϕ̂2 ‖1‖ ϕ̂2 ‖∞

(1− a−β)(1− η)β

+ C
(‖ ϕ̂1 ‖1 + ‖ ϕ̂2 ‖1)(1 + η)ε

1− a−ε

)
.

Proof. We first calculate:

∑
m,n∈Z

| 〈F,
√

SmΦ(Sm · −nb)−
√

SmΦ(Sm · −λm,nb)〉 |2

= ∑
m,n∈Z

∣∣∣∣(2π)−1S−
1
2

m

∫
R

[
f̂1(ω)ϕ̂1(ω/Sm)e

i λm,nb
Sm ω(ei (n−λm,n)b

Sm ω − 1)

+ f̂2(ω)ϕ̂2(ω/Sm)e
−i λm,nb

Sm ω(e−i (n−λm,n)b
Sm ω − 1)

+ j
(

f̂2(ω)ϕ̂1(ω/Sm)e
i λm,nb

Sm ω(ei (n−λm,n)b
Sm ω − 1)

− f̂1(ω)ϕ̂2(ω/Sm)e
−i λm,nb

Sm ω(e−i (n−λm,n)b
Sm ω − 1)

)]
dω

∣∣∣∣2
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≤ ∑
m,n∈Z

(2π2)−1S−1
m

{[∫
R
| f̂1(ω) + j f̂2(ω) || ϕ̂1(ω/Sm)(e

i (n−λm,n)b
Sm ω − 1) | dω

]2

+

[∫
R
| f̂2(ω)− j f̂1(ω) || ϕ̂2(ω/Sm)(e

i (λm,n−n)b
Sm ω − 1) | dω

]2
}

≤ ∑
m,n∈Z

(2π2)−1
[∫

R
| f̂1(ω) + j f̂2(ω) |2| ϕ̂1(ω/Sm) || ei (n−λm,n)b

Sm ω − 1 |2 dω

×
∫
R

S−1
m | ϕ̂1(ω/Sm) | dω +

∫
R
| f̂2(ω)− j f̂1(ω) |2| ϕ̂2(ω/Sm) |

× | ei (λm,n−n)b
Sm ω − 1 |2 dω

∫
R

S−1
m | ϕ̂2(ω/Sm) | dω

]
= ∑

m,n∈Z
(2π2)−1

[
‖ ϕ̂1 ‖1

∫
R
(| f̂1(ω) |2 + | f̂2(ω) |2) | ϕ̂1(ω/Sm) |

× | ei (n−λm,n)b
Sm ω − 1 |2 dω+ ‖ ϕ̂2 ‖1

∫
R
(| f̂1(ω) |2 + | f̂2(ω) |2) | ϕ̂2(ω/Sm) |

× | ei (λm,n−n)b
Sm ω − 1 |2 dω

]
. (1)

On the other hand, for any ω 6= 0, there exist some m0 ∈ Z such that | am0 ω |≤ 1 <|
am0+1ω | . It follows from (1− η)am ≤ Sm ≤ (1 + η)am that:

∑
m∈Z
| ϕ̂1(ω/Sm) | · | ω/Sm |β

= ∑
m≥−m0

| ϕ̂1(ω/Sm) | · | ω/Sm |β + ∑
m≤−m0−1

| ϕ̂1(ω/Sm) | · | ω/Sm |β

≤ ∑
m≥−m0

‖ ϕ̂1 ‖∞|
a−mω

1− η
|β + ∑

m≤−m0−1
C | ω/Sm |−β−ε| ω/Sm |β

≤ ∑
m≥−m0

‖ ϕ̂1 ‖∞|
a−mω

1− η
|β + ∑

m≤−m0−1
C | a−mω

1 + η
|−ε

=‖ ϕ̂1 ‖∞
| am0 ω |β

(1− a−β)(1− η)β
+ C

| am0+1ω |−ε

(1− a−ε)(1 + η)−ε

≤ ‖ ϕ̂1 ‖∞

(1− a−β)(1− η)β
+ C

(1 + η)ε

1− a−ε
.

Thus,

∑
m,n∈Z

| ϕ̂1(ω/Sm) | · | ei (n−λm,n)b
Sm ω − 1 |2

≤ ∑
m,n∈Z

| ϕ̂1(ω/Sm) | 22−βbβ | n− λm,n |β| ω/Sm |β

≤ ∑
m,n∈Z

22−βbβ

(
‖ ϕ̂1 ‖∞

(1− a−β)(1− η)β
+ C

(1 + η)ε

1− a−ε

)
| n− λm,n |β . (2)

For the same reason, we have:

∑
m,n∈Z

| ϕ̂2(ω/Sm) | · | ei (λm,n−n)b
Sm ω − 1 |2

≤ ∑
m,n∈Z

22−βbβ

(
‖ ϕ̂2 ‖∞

(1− a−β)(1− η)β
+ C

(1 + η)ε

1− a−ε

)
| λm,n − n |β . (3)
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Consequently, by (1)–(3), we get:

∑
m,n∈Z

| 〈F,
√

SmΦ(Sm · −nb)−
√

SmΦ(Sm · −λnb)〉L2(R,H) |2< σM ‖ F ‖2
L2(R,H) .

We finish the proof by Theorem 3 of [2].

4. Conclusions

In this paper, we consider the perturbation problems of wavelet frames of quaternionic-
valued functions about translation and dilation parameters. Let {Φm,n,a0,b0 , m, n ∈ Z} be
a wavelet frame for L2(R,H). We prove that {Φm,n,a0,b, m, n ∈ Z} is still a wavelet frame
when Φ satisfies certain conditions and b is sufficiently close to b0. Moreover, if the Fourier
transform Φ̂ has small support, we can estimate the frame bounds. Next, for wavelet
functions whose Fourier transforms have small supports, we give a method to determine
whether the perturbation system {Φm,n,a,b0 , m, n ∈ Z} is a frame. We address the open
issues raised in [17]. We also study a sampling perturbation of irregular wavelet frames of
quaternionic-valued functions. Suppose that {

√
SmΦ(Smx− nb), m, n ∈ Z} is an irregular

wavelet frame for L2(R,H), then {
√

SmΦ(Smx− λm,nb)} is also a frame when Φ satisfies
some conditions and ∑m,n |n− λm,n|β is sufficiently small. Specific frame bounds of the
sampling perturbation are given.
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