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Abstract: In this paper, we introduce a new class of harmonic univalent functions with respect
to k-symmetric points by using a newly-defined q-analog of the derivative operator for complex
harmonic functions. For this harmonic univalent function class, we derive a sufficient condition, a
representation theorem, and a distortion theorem. We also apply a generalized q-Bernardi–Libera–
Livingston integral operator to examine the closure properties and coefficient bounds. Furthermore,
we highlight some known consequences of our main results. In the concluding part of the article, we
have finally reiterated the well-demonstrated fact that the results presented in this article can easily be
rewritten as the so-called (p, q)-variations by making some straightforward simplifications, and it will
be an inconsequential exercise, simply because the additional parameter p is obviously unnecessary.

Keywords: univalent functions; harmonic functions; q-derivative (or q-difference) operator

MSC: Primary 30C45; 30C50; 30C80; Secondary 11B65; 47B38

1. Introduction, Definitions and Motivation

Let the complex-valued function f , given by

f (z) = u(x, y) +=v(x, y),

be continuous and defined in a simply-connected complex domain D ⊂ C. Then, f is said
to be harmonic in D if both u(x, y) and v(x, y) are real harmonic functions in D. Suppose
that there exist functions U(z) and V(z), analytic in D, such that

u(x, y) = <
(
U(z)

)
and v(x, y) = =

(
V(z)

)
.

Then, for

h(z) =
1
2
[U(z) +V(z)] and g(z) =

1
2
[U(z)−V(z)],
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the harmonic function f = h + g can be expressed as follows (see, for details, [1]; see
also [2–4]):

f (z) = h(z) + g(z) (z ∈ D),

in which h is called the analytic part of f and g is called the co-analytic part of f . In fact, if
g is identically zero, the f reduces to the analytic case.

A necessary and sufficient condition for f to be locally univalent and sense-preserving
in D is that (see in [2]) ∣∣h′(z)∣∣ > ∣∣g′(z)∣∣ (z ∈ D).

Thus, for f = h + g ∈ S∗H, where S∗H is the class of normalized starlike harmonic
functions in the open unit disk:

U = {z : z ∈ C and |z| < 1},

we may write

h(z) = z +
∞

∑
n=2

an zn and g(z) =
∞

∑
n=1

bn zn (|b1| < 1). (1)

We note that S∗H reduces to the familiar class S∗ of normalized starlike univalent
functions in U if the co-analytic part of f = h+ g is identically zero. We use the abbreviation
SH in our notation for the subclasses of S∗H consisting of functions f that map the open
unit disk U onto a starlike domain.

A function f is said to be starlike of order α (0 5 α < 1) in U denoted by SH(α) (see
in [5]) if

∂

∂θ

{
arg

(
f
(
reiθ))} = =

 ∂

∂θ

{
f
(
reiθ)}

f
(
reiθ
)


= <

(
zh′(z)− zg′(z)

h(z) + g(z)

)
= α (|z| = r < 1).

A normalized univalent analytic function f is said to be starlike with respect to
symmetrical points in U if it satisfies the following condition:

<
(

2z f ′(z)
f (z)− f (−z)

)
> 0 (z ∈ U).

This function class was introduced and studied by Sakaguchi [6] in 1959. Some other
related function classes were also studied by Shanmugam et al. [7]. In 1979, Chand and
Singh [8] defined the class of starlike functions with respect to k-symmetric points of order
α (0 5 α < 1) (see also in [9]). Ahuja and Jahangiri [10] discussed the class SH(α) of
complex-valued and sense-preserving harmonic univalent functions f of the form (1) and
satisfying the following condition:

=

 2
∂

∂θ

{
f
(
reiθ)}

f
(
reiθ
)
− f

(
−reiθ

)
 = α (0 5 α < 1).
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Al-Shaqsi and Darus [11] introduced the class SHk(α) of complex-valued and sense-
preserving harmonic univalent functions f of the form (1) as follows:

=

 ∂

∂θ

{
f
(
reiθ)}

fk
(
reiθ
)

 = α (0 5 α < 1),

where

hk(z) = z +
∞

∑
n=2

ϕnanzn and gk(z) =
∞

∑
n=1

ϕnbnzn (|b1| < 1) (2)

and

ϕn =
1
k

k−1

∑
v=0

ε(n−1)v (k = 1; εk = 1). (3)

From the definition (3) of ϕn, we have

ϕn =


1 (n = lk + 1)

0 (n 6= lk + 1),

where n = 2 and l, k = 1.
Next, for a function d, given by

d(z) = z +
∞

∑
n=2

anzn (∀ z ∈ U),

and another function v, given by

v(z) = z +
∞

∑
n=2

bnzn (∀ z ∈ U),

the convolution (or the Hadamard product) of d and v is defined, as usual, by

d(z) ∗ v(z) = (d ∗ v)(z) := z +
∞

∑
n=2

anbnzn =: (v ∗ d)(z).

The fractional q-calculus is the q-extension of the ordinary fractional calculus, which
dates back to early twentieth century. The theory of the q-calculus operators are used in
many diverse areas of science such as fractional q-calculus, optimal control, q-difference,
and q-integral equations. This also in the geometric function theory of complex analysis as
is described by Srivastava [12] in his recent survey-cum-expository review article [12].

Initially in 1908, Jackson [13] defined the q-analogs of the ordinary derivative and
integral operators, and presented some of their applications. More recently, Ismail et al. [14]
gave the idea of a q-extension of the familiar class of starlike functions in U. Historically,
however, Srivastava [15] studied the q-calculus in the context of the univalent function
theory in 1989 and also applied the generalized basic (or q-) hypergeometric functions in
the univalent function theory. Many researchers have since studied the q-calculus in the
context of Geometric Functions Theory.

The survey-cum-expository review article by Srivastava [12] is potentially useful
for those who are interested in Geometric Function Theory. Such various applications
of the fractional q-calculus as, for example, the fractional q-derivative operator and the
q-derivative operator in Geometric Function Theory were systematically highlighted in
Srivastava’s survey-cum-expository review article [12]. Moreover, the triviality of the
so-called (p, q)-calculus involving an obviously redundant and inconsequential additional
parameter p was revealed and exposed (see, for details, in [12] (p. 340)).
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In the development of Geometric Function Theory, a number of researchers have
been inspired by the aforementioned works [12,14]. Several convolution and fractional
q-operators, that have been already defined, were surveyed in the above-cited work [12].
For example, Kanas and Răducanu [16] introduced the q-analog of the Ruscheweyh deriva-
tive operator and Zang et al. in [17] studied q-starlike functions related with a generalized
conic domain Ωk,α. By using the concept of convolution, Srivastava et al. [18] introduced
the q-Noor integral operator and studied some of its applications. Furthermore, Srivas-
tava et al. published a series of articles in which they concentrated upon the class of
q-starlike functions from many different aspects and viewpoints (see in [18–22]). For some
more recent investigations about the q-calculus, we may refer the interested reader to the
recent works [23–37].

Recently, Jahangiri [38] applied certain q-operators to complex harmonic functions
and obtained sharp coefficient bounds, distortion theorems, and covering results. On the
other hand, Porwal and Gupta [39] discussed an application of the q-calculus to harmonic
univalent functions. In this article, we apply the q-calculus in order to define a q-analog
of the derivative operator which is applicable to complex harmonic functions, and to
introduce and investigate new classes of harmonic univalent functions with respect to
k-symmetric points.

For better understanding of this article, we recall some concept details and definitions
of the q-difference calculus. We suppose throughout this paper that 0 < q < 1 and that

N = {1, 2, 3, · · · } = N0 \ {0} (N0 := {0, 1, 2, · · · }).

Definition 1. The q-number [τ]q is defined by

[τ]q :=


1− qτ

1− q
(τ ∈ C)

n−1
∑

k=0
qk (τ = n ∈ N).

Definition 2. The q-factorial [n]q! is defined by

[n]q! :=


n
∏

k=1
[k]q (n ∈ N)

1 (n = 0).

Definition 3. The generalized q-Pochhammer symbol [τ]n,q is defined by

[τ]n,q :=


Γq(τ + n)

Γq(τ)
= [τ]q[τ + 1]q[τ + 2]q · · · [τ + n− 1]q (n ∈ N)

1 (n = 0).

Furthermore, for τ > 0, let the q-gamma function be defined as follows:

Γq(τ + 1) = [τ]qΓq(τ) and Γq(1) = 1,

where

Γq(τ) = (1− q)1−τ
∞

∏
n=0

(
1− qn+1

1− qn+τ

)
.
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Definition 4 (see, for example, in [13]). For q ∈ (0, 1), the q-derivative operator (or the q-
difference operator) Dq, when applied to a given function f normalized by

f(z) = z +
∞

∑
n=2

an zn (z ∈ U), (4)

is defined as follows:

Dqf(z) =
f (z)− f (qz)
(1− q)z

(z 6= 0; q 6= 1)

= 1 +
∞

∑
n=2

[n]q an zn−1 (z ∈ U), (5)

so that, clearly, we have
lim

q→1−
Dqf(z) = f∗(z),

provided that the ordinary derivative f∗(z) exists.

Definition 5. We define the q-analog of the derivative operator for the harmonic function f = h+ g
given by (1) as follows:

Dσ,s
λ,δ,q f (z) = Dσ,s

λ,δ,qh(z) + (−1)sDσ,s
λ,δ,qg(z),

where

Dσ,s
λ,δ,qh(z) = z +

∞

∑
n=2

ψn(λ, σ, δ, s, q)anzn,

Dσ,s
λ,δ,qg(z) =

∞

∑
n=1

ψn(λ, σ, δ, s, q)bnzn

and

ψn(λ, σ, δ, s, q) = [n]sq

(
[δ + 1]n−1
[n− 1]q!

{
1 + λ

(
[n]q − 1

)})σ

(λ, δ, σ, s ∈ N0). (6)

Remark 1. First of all, it is easy to see that, for

s = 0 = λ and σ = 1,

we have the q-Ruscheweyh derivative for harmonic functions (see in [38]). Second, for σ = 0, we
obtain the q-Sălăgean operator for harmonic functions (see [38]). Third, if we take

s = 0 and σ = 1,

and let q→ 1−, we obtain the operator for harmonic functions studied by Al-Shaqsi and Darus [40].

Definition 6. LetMHσ,s
k,q(λ, δ, α) denote the class of complex-valued and sense-preserving har-

monic univalent functions f of the form (1) which satisfy the following condition:
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=

 ∂

∂θ

{
Dσ,s

λ,δ,q f
(
reiθ)}

Dσ,s
λ,δ,q fk

(
reiθ
)


= <

 zDqDσ,s
λ,δ,qh(z)− (−1)szDqDσ,s

λ,δ,qg(z)

Dσ,s
λ,δ,qhk(z) + (−1)sDσ,s

λ,δ,qgk(z)

 = α, (7)

where
z = reiθ (0 5 r < 1; 0 5 θ < π; 0 5 α < 1),

Dσ,s
λ,δ,qhk(z) = z +

∞

∑
n=2

ψn(λ, σ, δ, s, q)ϕn an zn

and

Dσ,s
λ,δ,qgk(z) =

∞

∑
n=1

ψn(λ, σ, δ, s, q)ϕn bn zn. (8)

Furthermore, we denote byMHσ,s
k,q(λ, δ, α) the subclass of the classMHσ,s

k,q(λ, δ, α)

such that the functions h and g in f = h + g are of the following form:

h(z) = z−
∞

∑
n=2
|an|zn and g(z) =

∞

∑
n=1
|bn|zn (|b1| < 1) (9)

and the functions hk and gk in fk = hk + gk are of the form given by

hk(z) = z−
∞

∑
n=2
|an|ϕnzn and gk(z) =

∞

∑
n=1
|bn|ϕnzn (|b1| < 1). (10)

In this article, we obtain inclusion properties, sufficient conditions, and coefficient
bounds for functions in the the classMHσ,s

k,q(λ, δ, α). A representation theorem and distor-

tion bounds for the classMHσ,s
k,q(λ, δ, α) are also established. We will examine the closure

properties for the classMHσ,s
k,q(λ, δ, α) under the generalized q-Bernardi–Libera–Livingston

integral operator Lq
c( f ).

2. A Set of Main Results

We begin by stating and proving Theorem 1 below.

Theorem 1. Let f ∈ MHσ,s
k,q(λ, δ, α), where f is given by (1). Then, fk defined by (2) is in

MHσ,s
1,q(λ, δ, α) =:MHσ,s

q (λ, δ, α).

Proof. Let f ∈ MHσ,s
k,q(λ, δ, α). Then, upon replacing reiθ by εvreiθ , where εv = 1 (v =

0, 1, 2, · · · , k− 1) in (7), we have

=

 ∂

∂θ

{
Dσ,s

λ,δ,q f
(
εvreiθ)}

Dσ,s
λ,δ,q fk

(
εvreiθ

)
 = α.
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According to the definition of fk, and as εv = 1 (v = 0, 1, 2, · · · , k− 1), we know that

fk

(
εvreiθ

)
= εv fk

(
reiθ
)

(v = 0, 1, 2, · · · , k− 1).

Thus, by summing up, we get

=

1
k

k−1

∑
v=0

∂

∂θ

{
Dσ,s

λ,δ,q f
(
εvreiθ)}

εvDσ,s
λ,δ,q fk

(
reiθ
)

 = =

 ∂

∂θ

{
Dσ,s

λ,δ,q fk
(
reiθ)}

Dσ,s
λ,δ,q fk

(
reiθ
)

 = α,

that is, fk ∈ MHσ,s
q (λ, δ, α).

If we let q→ 1−, in Theorem 1, we have the following result.

Corollary 1. Let f ∈ MHσ,s
k (λ, δ, α) where f is given by (1). Then, fk defined by (2) is in

the class
MHσ,s

1 (λ, δ, α) =:MHσ,s(λ, δ, α).

Theorem 2. Let f = h + g given by (1) and fk = hk + gk with hk and gk given by (2). Suppose
also that

∞

∑
n=2

ψn(λ, σ, δ, s, q)

(
[n]q − αϕn

1− α
|an|+

[n]q + αϕn

1− α
|bn|

)

5 1−
(

1 + αϕ1

1− α

)
ψ1|b1|, (11)

where ϕn and ψn(λ, σ, δ, s, q) given by (3) and (6) with

a1 = 1, l = 1, λ = 0, (k = 1) and δ, σ, s ∈ N0.

Then, the function f is sense-preserving harmonic univalent in U and f ∈ MHσ,s
k,q(λ, δ, α).

Proof. To prove that f ∈ MHσ,s
k,q(λ, δ, α), we only need to show that if (11) holds true, then

the required condition (7) is satisfied. From (7), we can write

<

 zDqDσ,s
λ,δ,qh(z)− (−1)szDqDσ,s

λ,δ,qg(z)

Dσ,s
λ,δ,qhk(z) + (−1)sDσ,s

λ,δ,qgk(z)

 = <
(
T (z)
R(z)

)
,

where
T (z) = zDqDσ,s

λ,δ,qh(z)− (−1)szDqDσ,s
λ,δ,qg(z)

and
R(z) = Dσ,s

λ,δ,qhk(z) + (−1)sDσ,s
λ,δ,qgk(z).

Now, using the fact that

<(w) = α ⇐⇒ |1− α + w| = |1 + α− w|,

it suffices to show that

|T (z) + (1− α)R(z)| − |T (z)− (1 + α)R(z)| = 0.
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Upon substituting for T (z) andR(z) into (11), we find that

|T (z) + (1− α)R(z)| − |T (z)− (1 + α)R(z)|

= (2− α)|z| −
∞

∑
n=2

ψn(λ, σ, δ, s, q)
(
[n]q + (1− α)ϕn

)
|an||z|n

−
∞

∑
n=1

ψn(λ, σ, δ, s, q)
(
[n]q + (1− α)ϕn

)
|bn||z|n − α|z|

−
∞

∑
n=2

ψn(λ, σ, δ, s, q)
(
[n]q − (1 + α)ϕn

)
|an||z|n

−
∞

∑
n=1

ψn(λ, σ, δ, s, q)
(
[n]q + (1 + α)ϕn

)
|bn||z|n

= 2(1− α)|z|
[

1−
∞

∑
n=2

ψn(λ, σ, δ, s, q)

(
[n]q − αϕn

1− α

)
|an||z|n−1

−
∞

∑
n=1

ψn(λ, σ, δ, s, q)

(
[n]q + αϕn

1− α

)
|bn||z|n−1

]

= 2(1− α)|z|
[

1− ψ1(λ, σ, δ, s, q)

(
[1]q + αϕn

1− α

)
|b1|

−
∞

∑
n=2

ψn(λ, σ, δ, s, q)

(
[n]q − αϕn

1− α
|an|+

[n]q + αϕn

1− α
|bn|

)]
.

The last expression is non-negative by (11), and therefore f ∈ MHσ,s
k,q(λ, δ, α).

The next theorem gives a coefficient bound for functions in the classMHσ,s
k,q(λ, δ, α).

Theorem 3. The function f ∈ MHσ,s
k,q(λ, δ, α) if and only if(

Dσ,s
λ,δ,qh(z) ∗ (ξ + 1)z

(1− z)(1− qz)
− Dσ,s

λ,δ,qhk(z) ∗
(ξ − 1 + 2α)z

(1− z)

)
−(−1)s

(
Dσ,s

λ,δ,qg(z) ∗ (ξ + 1)z
(1− z)(1− qz)

+ Dσ,s
λ,δ,qgk(z) ∗

(ξ − 1 + 2α)z
(1− z)

)
6= 0,

where
|ξ| = 1 (ξ 6= −1) and z ∈ U.

Proof. From (7), f ∈ MHσ,s
k,q(λ, δ, α) if and only if z = reiθ in U, we have

<

 zDqDσ,s
λ,δ,qh(z)− (−1)szDqDσ,s

λ,δ,qg(z)

Dσ,s
λ,δ,qhk(z) + (−1)sDσ,s

λ,δ,qgk(z)

 = α,

which readily yields

<

 1
1− α

 zDqDσ,s
λ,δ,qh(z)− (−1)szDqDσ,s

λ,δ,qg(z)

Dσ,s
λ,δ,qhk(z) + (−1)sDσ,s

λ,δ,qgk(z)
− α

 = 0.
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Now, as

1
1− α

 zDqDσ,s
λ,δ,qh(z)− (−1)szDqDσ,s

λ,δ,qg(z)

Dσ,s
λ,δ,qhk(z) + (−1)sDσ,s

λ,δ,qgk(z)
− α

 = 1 at z = 0,

the above-required condition is equivalent to

1
1− α

 zDqDσ,s
λ,δ,qh(z)− (−1)sz∂qDσ,s

λ,δ,qg(z)

Dσ,s
λ,δ,qhk(z) + (−1)sDσ,s

λ,δ,qgk(z)
− α

 6= ξ − 1
ξ + 1

, (12)

where
|ξ| = 1 (ξ 6= −1) and 0 < |z| < 1.

Thus, by a simple algebraic manipulation, the inequality (12) yields

0 6= (ξ + 1)
(

zDqDσ,s
λ,δ,qh(z)− (−1)szDqDσ,s

λ,δ,qg(z)
)

− (ξ − 1 + 2α)
(

Dσ,s
λ,δ,qhk(z) + (−1)sDσ,s

λ,δ,qgk(z)
)

=

(
Dσ,s

λ,δ,qh(z) ∗ (ξ + 1)z
(1− z)(1− qz)

− Dσ,s
λ,δ,qhk(z) ∗

(ξ − 1 + 2α)z
(1− z)

)
− (−1)s

(
Dσ,s

λ,δ,qg(z) ∗ (ξ + 1)z
(1− z)(1− qz)

+ Dσ,s
λ,δ,qgk(z) ∗

(ξ − 1 + 2α)z
(1− z)

)
,

which is the condition asserted in Theorem 3.

Next, the condition (11) is also necessary for functions in the class MHσ,s
k,q(λ, δ, α),

which is clarified in Theorem 4 below.

Theorem 4. Let f = h + g with h and g given by (9) and fk = hk + gk with hk and gk given
by (10). Then, f ∈ MHσ,s

k,q(λ, δ, α) if and only if

∞

∑
n=2

ψn(λ, σ, δ, s, q)

(
[n]q − αϕn

1− α
|an|+

[n]q + αϕn

1− α
|bn|

)

5 1−
(

1 + αϕ1

1− α

)
ψ1|b1|, (13)

where ϕn and ψn(λ, σ, δ, s, q) are given by (3) and (6) with

a1 = 1, l = 1, λ = 0, (k = 1) and δ, σ, s ∈ N0.

Proof. The direct part of the proof follows from Theorem 2 by noting that if the analytic and
co-analytic parts of f = h + g ∈ MHσ,s

k,q(λ, δ, α) are given in (9), then f ∈ MHσ,s
k,q(λ, δ, α).

Let us prove the converse part by contradiction. We show that f /∈ MHσ,s
k,q(λ, δ, α) if

the condition (13) holds true. Thus, we can write

<

 zDqDσ,s
λ,δ,qh(z)− (−1)szDqDσ,s

λ,δ,qg(z)

Dσ,s
λ,δ,qhk(z) + (−1)sDσ,s

λ,δ,qgk(z)

 = α,

which is equivalent to

<

 zDqDσ,s
λ,δ,qh(z)− (−1)szDqDσ,s

λ,δ,qg(z)

Dσ,s
λ,δ,qhk(z) + (−1)sDσ,s

λ,δ,qgk(z)

− α = 0,
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that is,

<
([

(1− α)z−
∞

∑
n=2

ψn(λ, σ, δ, s, q)
(
[n]q − αϕn

)
|an|zn

−(−1)s
∞

∑
n=1

ψn(λ, σ, δ, s, q)
(
[n]q + αϕn

)
|bn|zn

]

·
[

z−
∞

∑
n=2

ψn(λ, σ, δ, s, q)ϕn|an|zn + (−1)s
∞

∑
n=1

ψn(λ, σ, δ, s, q)ϕn|bn|zn

]−1
.

= 0.

Thus, clearly, the above-required condition holds true for all values of z (|z| = r < 1).
Upon choosing the values of z on the non-negative real axis such that 0 5 z = r < 1, we
find that

<
([

(1− α)−
∞

∑
n=2

ψn(λ, σ, δ, s, q)
(
[n]q − αϕn

)
|an|rr−1

−
∞

∑
n=1

ψn(λ, σ, δ, s, q)
(
[n]q + αϕn

)
|bn|rn−1

]

·
[

1−
∞

∑
n=2

ψn(λ, σ, δ, s, q)ϕn|an|rn−1 +
∞

∑
n=1

ψn(λ, σ, δ, s, q)ϕn|bn|rn−1

]−1


= 0,

which can be written as follows:

Q(q)−
[

∞
∑

n=2
ψn(λ, σ, δ, s, q)

((
[n]q − αϕn

)
|an|+

(
[n]q + αϕn

)
|bn|

)]
rr−1

1 + |b1| −
(

∞
∑

n=2
ψn(λ, σ, δ, s, q)ϕn(|an|+ |bn|)

)
rr−1

= 0, (14)

where
Q(q) = (1− α)− ψ1(λ, σ, δ, s, q)

(
[1]q + αϕn

)
|b1|.

If the condition (13) does not hold true, then the numerator in (14) is negative for r
sufficiently close to 1. Therefore, there exists a z0 = r0 in (0, 1) for which the quotient in
(14) is negative. This contradicts the required condition for f ∈ MHσ,s

k,q(λ, δ, α). Our proof
of the converse part Theorem 4 by contradiction is thus completed.

The following theorem gives the distortion bounds for functions in the classMHσ,s
k,q(λ, δ, α).

Theorem 5. If f ∈ MHσ,s
k,q(λ, δ, α), then

| f (z)| = (1− |b1|)r−
1

ψ2(λ, σ, δ, s, q)

(
1− α

[2]q − αϕ2
− 1 + α

[2]q − αϕ2
|b1|
)

r2 (15)

and

| f (z)| 5 (1 + |b1|)r +
1

ψ2(λ, σ, δ, s, q)

(
1− α

[2]q − αϕ2
− 1 + α

[2]q − αϕ2
|b1|
)

r2, (16)
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where ϕn and ψn(λ, σ, δ, s, q) are given by (3) and (6) with

a1 = 1, l = 1, λ = 0, (k = 1) and δ, σ, s ∈ N0.

Proof. We will only prove the left-hand inequality of Theorem 5. The arguments for
proving the right-hand inequality are similar and so we omit the details involved.

Let f ∈ MHσ,s
k,q(λ, δ, α). Then, by taking the modulus of f (z), we obtain

| f (z)| = (1− |b1|)r−
∞

∑
n=2

(|an|+ |bn|)rn

= (1− |b1|)r−
∞

∑
n=2

(|an|+ |bn|)r2

= (1− |b1|)r−
1− α

ψ2(λ, σ, δ, s, q)
(
[2]q − αϕ2

)
·

∞

∑
n=2

ψ2(λ, σ, δ, s, q)
(
[2]q − αϕ2

)
1− α

(|an|+ |bn|)r2

= (1− |b1|)r−
1− α

ψ2(λ, σ, δ, s, q)
(
[2]q − αϕ2

)(1− 1 + α

1− α
|b1|
)

r2

= (1− |b1|)r−
1

ψ2(λ, σ, δ, s, q)

(
1− α

[2]q − αϕ2
− 1 + α

[2]q − αϕ2
|b1|
)

r2,

which proves the inequality (15).

The following covering result follows from the left-hand inequality in Theorem 5.

Corollary 2. If f ∈ MHσ,s
k,q(λ, δ, α), then

{w : |w| < Q1(λ, σ, δ, s, q)−Q2(λ, σ, δ, s, q)|b1|} ⊂ f (U),

where

Q1(λ, σ, δ, s, q) =
2ψ2(λ, σ, δ, s, q)− 1− (ψ2(λ, σ, δ, s, q)− 1)α

ψ2(λ, σ, δ, s, q)
(
[2]q − αϕ2

)
and

Q2(λ, σ, δ, s, q) =
2ψ2(λ, σ, δ, s, q)− 1− (ψ2(λ, σ, δ, s, q) + 1)α

ψ2(λ, σ, δ, s, q)
(
[2]q − αϕ2

) .

Finally, we will examine the closure properties of the classMHσ,s
k,q(λ, δ, α) under the

generalized q-Bernardi–Libera–Livingston integral operator Lq
c( f ) which is defined by

Lq
c
(

f (z)
)
=

[c + 1]q
zc

∫ z

0
tc−1 f (t) dqt (c > −1).

Theorem 6. Let f ∈ MHσ,s
k,q(λ, δ, α). Then, Lq

c
(

f (z)
)
∈ MHσ,s

k,q(λ, δ, α).
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Proof. From the representation of Lq
c
(

f (z)
)
, it follows that

Lq
c
(

f (z)
)
=

[c + 1]q
zc

∫ z

0
tc−1[h(t) + g(t)] dqt

=
[c + 1]q

zc

 z∫
0

tc−1

(
t +

∞

∑
n=2

antn

)
dqt +

z∫
0

tc−1

(
∞

∑
n=1

bntn

)
dqt


= z +

∞

∑
n=2

Anzn +
∞

∑
n=1

Bnzn,

where

An =
[c + 1]q
[c + n]q

an and Bn =
[c + 1]q
[c + n]q

bn.

Therefore, we get

∞

∑
n=2

ψn(λ, σ, δ, s, q)


(
[n]q − αϕn

)
[c + 1]q

(1− α)[c + n]q
|an|


+

∞

∑
n=2

ψn(λ, σ, δ, s, q)


(
[n]q + αϕn

)
[c + 1]q

(1− α)[c + n]q
|bn|


5

∞

∑
n=2

ψn(λ, σ, δ, s, q)


(
[n]q − αϕn

)
(1− α)

|an|+

(
[n]q + αϕn

)
(1− α)

|bn|


< 1−

(
1 + αϕ1

1− α

)
ψ1|b1|.

As f ∈ MHσ,s
k,q(λ, δ, α), by Theorem (4), we have Lq

c
(

f (z)
)
∈ MHσ,s

k,q(λ, δ, α), as asserted by
Theorem 6.

3. Concluding Remarks and Observations

The theory of the basic (or q-) calculus has been applicable in many areas of math-
ematics and physics such as fractional calculus and quantum physics as described in
Srivastava’s recently-published survey-cum-expository review article [12]. However, re-
searches on the q-calculus in connection with geometric function theory and, especially,
harmonic univalent functions are fairly recent and not much has been published on this
topic. Motivated by the recent works [12,38,39], we have made use of the quantum or
basic (or q-) calculus to define and investigate new classes of harmonic univalent functions
with respect to k-symmetric points, which are associated with a q-analog of the ordinary
derivative operator. We have studied here such results as sufficient conditions, representa-
tion theorems, distortion theorems, integral operators, and sufficient coefficient bounds.
Furthermore, we have highlighted some known consequences of our main results.

Basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) hypergeo-
metric functions and basic (or q-) hypergeometric polynomials are applicable particularly
in several diverse areas of mathematical and physical sciences (see, for example, [41]
(pp. 350–351); see also [42–48]). Moreover, as we remarked above and in the introductory
Section 1, in Srivastava’s recently-published survey-cum-expository review article [12],
the triviality of the so-called (p, q)-calculus was exposed and it also mentioned about
the trivial and inconsequential variation of the classical q-calculus to the so-called (p, q)-
calculus, the additional parameter p being redundant or superfluous

(
see, for details, [12]

(p. 340)
)
. Indeed one can apply Srivastava’s observation in [12] to any attempt to produce

the rather inconsequential and straightforward (p, q)-variations of the q-results which we
have presented in this paper.
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