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Abstract: In this study, we present a link between approximation theory and summability meth-
ods by constructing bivariate Bernstein-Kantorovich type operators on an extended domain with
reparametrized knots. We use a statistical convergence type and power series method to obtain cer-
tain Korovkin type theorems, and we study certain rates of convergences related to these summability
methods. Furthermore, we numerically analyze the theoretical results and provide some computer
graphics to emphasize the importance of this study.
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1. Introduction

The most well known proof of Weierstrass approximation theorem (see [1]) was given
in [2,3]. Bernstein opened a new way by constructing a sequence of polynomials depending
explicitly on evaluation of a function at rational values. Researchers have successfully
extended this idea for approximating functions, for instance, L.V. Kantorovich introduced
a new process to approximate Lebesgue integrable real-valued functions defined on [0, 1]
(see [4]). Recently, there has been an increasing degree of attention on approximation
properties of Bernstein type operators with shape parameters (see [5–12]).

The decision on whether a sequence of positive linear operators converges strongly
includes the use of Korovkin-type theorems. Using certain types of statistical convergences
instead of usual convergence in Korovkin type approximation theory provides several
benefits. The statistical convergence extends the scope of classical convergence of sequences
of numbers or functions, and it has been used in various fields of mathematics such as
summability theory [13], topology [14], optimization [15], measure theory [16], number
theory [17], trigonometric series [18], approximation by positive linear operators [9,19–25].
Statistical convergence of double and single sequences were given in [26–28]. Unlike any
convergent sequence, statistically convergent double or single sequences do not need to
be bounded. This is why it is preferred to be used by many researchers in approximation
theory (see, for instance, [29–31]).

The primary objective of this work is to establish a link between approximation theory
and summability methods via four-dimensional matrices and construction of bivariate
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Bernstein-Kantorovich type operators on extended domain with reparametrized knots,
as well as to prove some Korovkin theorems using two summability methods motivated
by the studies [32–36]. The first summability method is a statistical convergence concept
which is stronger than the classical case and the second one is power series method (PSM).
Since we create a link between the approximation theory and the summability theory we
obtain the rate of convergence for PSM and the rate of statistical convergence by modulus
of continuity (MC). Moreover, we provide some computer graphics to numerically analyze
the efficiency and the accuracy of convergence of our operators, and obtain corresponding
error and density plots. Finally, we provide some concluding remarks to emphasize main
concepts of this article. All the results that have been obtained in the present paper can be
extended for n-variate functions.

2. Auxiliary Results

Certain notions and auxiliary results are given in this section.
Let $ = ($r,s) be a double sequence of real numbers. Assume that there is N = N(τ) ∈ N

for each τ > 0, so that |$r,s −Q| < τ whenever r, s > N, in this case double sequence
$ = ($r,s) is said to be convergent to Q in Pringsheim’s sense (or simply Π-convergent),
and it is denoted by Π− lim

r,s
$r,s = Q, where Q is a real number (see [37]). When there is

a positive number E such that |$r,s| ≤ E for all (r, s) ∈ N2 = N×N, the double sequence
is said to be bounded. As it is well known, every convergent single sequence is bounded
whereas a convergent double sequence need not to be bounded.

Assume that D = (dl,o,r,s) is a four-dimensional summability method. Given a double
sequence $ = ($r,s), D transform of $, denoted by D$ := ((D$)l,o), is defined by

(D$)l,o =
∞

∑
r,s=1

dl,o,r,s$r,s,

and the double series is Π-convergent for (l, o) ∈ N2. When a four-dimensional matrix
D = (dl,o,r,s) maps every bounded Π−convergent sequence into a Π−convergent sequence
with the same Π−limit, it is called RH−regular (shortly RHR). A four-dimensional matrix
D = (dl,o,r,s) is RHR if and only if

(a) Π− liml,o dl,o,r,s = 0,

(b) Π− liml,o
∞
∑

r,s=1
dl,o,r,s = 1,

(c) Π− liml,o
∞
∑

r=1

∣∣dl,o,r,s
∣∣ = 0 (∀s ∈ N),

(d) Π− liml,o
∞
∑

s=1

∣∣dl,o,r,s
∣∣ = 0 (∀r ∈ N),

(e)
∞
∑

r,s=1

∣∣dl,o,r,s
∣∣ is Π−convergent,

(f) The inequality ∑
r,s>E2

∣∣dl,o,r,s
∣∣ < E1 is satisfied for finite positive integers E1 and E2 and

for each (l, o) ∈ N2.

These conditions are called Robison-Hamilton conditions [38]. Assume that D = (dl,o,r,s)
is a nonnegative RHR matrix, and S ⊂ N2, then the D−density of S is defined by

ρ2
D(S) := Π− lim

l,o
∑

(r,s)∈S
dl,o,r,s

provided that the limit on the right-hand side exists in the Pringsheim sense. A real double
sequence $ = ($r,s) is called D−statistically convergent to Q and denoted by st2

D − lim
r,s

$r,s = Q

if, for every τ > 0,
ρ2

D

({
(r, s) ∈ N2 : |$r,s −Q| ≥ τ

})
= 0
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(see also [31,39]). A Π−convergent double sequence is D−statistically convergent to the
same number even if the converse statement is not true.

When the D = C(1, 1), C(1, 1)−statistical convergence becomes statistical convergence
for double sequences (see also [27]), where C(1, 1) = (cl,o,r,s) is the double Cesàro matrix,
defined by cl,o,r,s = 1/lo if 1 ≤ r ≤ o, 1 ≤ s ≤ l, and cl,o,r,s = 0 otherwise.

Suppose that (ξr,s) is a double sequence of nonnegative numbers with condition
ξ0,0 > 0, then the power series

ξ(a, b) :=
∞

∑
r,s=0

ξr,sarbs

has radius of convergence R, where R ∈ (0, ∞] and a, b ∈ (0, R). When the equality

lim
a,b→R−

1
ξ(a, b)

∞

∑
r,s=0

ξr,sarbs$r,s = Q

is satisfied ∀a, b ∈ (0, R), then the double sequence $ = ($r,s) is said to be convergent to Q
in the sense of PSM [40]. PSM for double sequences is regular if and only if

lim
a,b→R−

∞
∑

r=0
ξr,υar

ξ(a, b)
= 0; lim

a,b→R−

∞
∑

s=0
ξµ,sbs

ξ(a, b)
= 0

are satisfied for any µ, υ [40].
In this work, we assume that PSM is regular.

Remark 1. The power series method becomes an Abel summability method when R = 1 and
ξr,s = 1 and it becomes a logarithmic summability method if ξr,s = 1

(r+1)(s+1) . Moreover, it

becomes a Borel summability method when R = ∞ and ξr,s =
1

r!s! .

3. Statistical Convergence via Four Dimensional Matrices

A bivariate case of the γ Kantorovich operators, defined in [41], is constructed in this
section. Moreover, the D-statistical convergence of these bivariate operators is studied.

The Bernstein-Schurer polynomials νr,u(y) were introduced by Frans Schurer in [42] as

νr,u(y) =
(

r + κ

u

)
yu (1− y)r+κ−u (u = 0, 1, . . . , r + κ),

where κ is a non-negative integer. Note that these polynomials are actually Bernstein
polynomials with r + κ = n. Let C[0, 1] = C, C[0, 1 + κ] = Cκ and C[0, 1 + β] = Cβ. The
operators generated by these polynomials, are called Bernstein-Schurer operators, were
introduced to extend the domain of function from C to Cκ . The bases in [43] were modified
by adding parameter κ to introduce the following modified Bernstein-Schurer polynomials
in [23]:

ν̄s,0(γ; z) = νs,0(z)−
γ

s + κ + 1
νs+1,1(z),

ν̄s,u(γ; z) = νs,u(z) +
γ

(s + κ)2 − 1
[(s + κ − 2u + 1)νs+1,u(z)

−(s + κ − 2u− 1)νs+1,u+1(z)] (u = 1, 2 . . . , s + κ − 1),

ν̄s,s+κ(γ; z) = νs,s+κ(z)−
γ

s + κ + 1
νs+1,s+κ(z), (1)

where shape parameter γ ∈ [−1, 1].
Let C[o, w] be the space of all continuous real valued functions on [o, w] and let

‖h‖C[o,w] denote the usual supremum norm of h.
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From here on, considering given non-negative integers κ and β, and the shape param-
eters γ1, γ2 ∈ [−1, 1], the operators Kγ1

r,κ : Cκ −→ C, Kγ2
s,β : Cβ −→ C for any r, s ∈ N be

given as follows, respectively,

Kγ1
r,κ( f ; y) = (r + κ + 1)

r+κ

∑
u=0

ν̄r,u(γ1; y)
∫ u+1

r+κ+1

u
r+κ+1

f (s)ds, (2)

Kγ2
s,β(g; z) = (s + β + 1)

s+β

∑
k=0

ν̃s,k(γ2; z)
∫ k+1

s+β+1

k
s+β+1

g(t)dt, (3)

where modified Bernstein-Schurer polynomials ν̄r,u(γ1; y) and ν̄s,k(γ2; z) are given in (1).
Let C([0, 1]× [0, 1]) = C̄, C([0, 1 + κ]× [0, 1 + β]) = C̄κ,β and C([0, 1 + α]× [0, 1 + β])

= C̄α,β. The parametric extensions of (2) and (3) for r, s ∈ N and h ∈ C̄κ,β are the operators

Kγ1,y
r,κ , Kγ2,z

s,β : C̄κ,β −→ C̄, (4)

where

Kγ1,y
r,κ (h; y, z) = (r + κ + 1)

r+κ

∑
u=0

ν̄r,u(γ1; y)
∫ u+1

r+κ+1

u
r+κ+1

h(s, z)ds, (5)

Kγ2,z
s,β (h; y, z) = (s + β + 1)

s+β

∑
k=0

ν̃s,k(γ2; z)
∫ k+1

s+β+1

k
s+β+1

h(y, t)dt. (6)

Lemma 1. The parametric extensions of operators defined in (5) and (6) are linear and positive.

Proof. The assertion follows from the definitions of Kγ1,y
r,κ and Kγ2,z

s,β .

Lemma 2. The parametric extensions of Bernstein-Kantorovich type operators on extended do-
main with reparametrized knots commute on C̄κ,β. Their product establishes bivariate Bernstein-
Kantorovich type operators on extended domain with reparametrized knots Kγ1,γ2

r,s,κ,β : C̄α,β −→ C̄
defined for any r, s ∈ N and any h ∈ C̄κ,β by the relation

Kγ1,γ2
r,s,κ,β(h; y, z) = (r + α + 1)(s + β + 1)

×
r+κ

∑
u=0

s+β

∑
k=0

ν̄r,u(γ1; y)ν̄s,k(γ2; z)
∫ k+1

s+β+1

k
s+β+1

∫ u+1
r+κ+1

u
r+κ+1

h(w, t)dwdt. (7)

Proof. We get the desired result by direct computation, taking into account the definitions
(5), (6) and Lemma 1.

Lemma 3. The bivariate Bernstein-Kantorovich type operators on extended domain with reparametrized
knots (7) are linear and positive.

Proof. Using the fact that product of linear and positive operators are also linear and
positive, and applying Lemma 1 we obtain desired result.

In the recent paper [41], the following results were provided:

Lemma 4. Let γ ∈ [−1, 1] and κ be a non-negative integer, then the moments of Bernstein-
Kantorovich type operators on extended domain with reparametrized knots are as follows:

Kγ
r,κ(1; y) = 1, (8)

Kγ
r,κ(s; y) =

1 + 2(r + κ)y
2(r + κ + 1)

+
1− 2y + yr+κ+1 − (1− y)r+κ+1

(r + κ)2 − 1
γ, (9)
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Kγ
r,κ(s2; y) =

(r + κ)2

(r + κ + 1)2 y2 +
r + κ

(r + κ + 1)2 y(2− y) +
1 + 6yγ

3(r + κ + 1)2

+
2(r + κ + 1)yr+κ+1 − 4(r + κ)y2

(r + κ + 1)((r + κ)2 − 1)
γ. (10)

Lemma 5. The parametric extension Kγ1,y
r,κ satisfies the identities (8), (9) and (10).

Proof. By using the definition (5) of Kγ1,y
r,κ and Lemma 4, we get the result.

Remark 2. The parametric extension Kγ2,z
s,β satisfies identities similar to the identities (8), (9)

and (10).

The following lemmas are stated to give moments.

Lemma 6. Let euv = sutv, u, v ∈ N, y, z ∈ R be the two-dimensional test functions. The bivariate
operators defined in (7) satisfy

(i) Kγ1,γ2
r,s,κ,β(e00; y, z) = 1,

(ii) Kγ1,γ2
r,s,κ,β(e10; y, z) = 1+2(r+κ)y

2(r+κ+1) + 1−2y+yr+κ+1−(1−y)r+κ+1

(r+κ)2−1 γ1,

(iii) Kγ1,γ2
r,s,κ,β(e01; y, z) = 1+2(s+β)z

2(s+β+1) + 1−2z+zs+β+1−(1−z)s+β+1

(s+β)2−1 γ2,

(iv) Kγ1,γ2
r,s,κ,β(e20; y, z) = (r+κ)2

(r+κ+1)2 y2 + r+κ
(r+κ+1)2 y(2− y) + 1+6yγ1

3(r+κ+1)2 +
2yr+κ+1

(r+κ)2−1 γ1

− 4(r+κ)y2

(r+κ+1)((r+κ)2−1)γ1,

(v) Kγ1,γ2
r,s,κ,β(e02; y, z) = (s+β)2

(s+β+1)2 z2 + s+β

(s+β+1)2 z(2− z) + 1+6zγ1
3(s+β+1)2 +

2zs+β+1

(s+β)2−1 γ2

− 4(s+β)y2

(s+β+1)((s+β)2−1)γ2.

Proof. Taking into account definition (7) and Lemma 5, the result follows.

Lemma 7. The bivariate Bernstein-Kantorovich type operators on extended domain with reparametrized
knots (7) satisfy the relations

Kγ1,γ2
r,s,κ,β((e10 − y)2; y, z) =

y− y2

r + κ + 1
+

1 + 6yγ1

3(r + κ + 1)2

−y(1− 2y) + yr+κ+1(y− 1)− y(1− y)r+κ+1

(r + κ)2 − 1
2γ1

− 4(r + κ)y2

(r + κ + 1)((r + κ)2 − 1)
γ1, (11)

Kγ1,γ2
r,s,κ,β((e01 − z)2; y, z) =

z− z2

s + β + 1
+

1 + 6zγ2

3(s + β + 1)2

− z(1− 2z) + zs+β+1(z− 1)− z(1− z)s+β+1

(s + β)2 − 1
2γ2

− 4(s + β)z2

(s + β + 1)((s + β)2 − 1)
γ2. (12)

Proof. Since Kγ1,γ2
r,s,κ,β is linear, we have

Kγ1,γ2
r,s,κ,β((e10 − y)2; y, z) = Kγ1,γ2

r,s,κ,β(e20; y, z)

−2yKγ1,γ2
r,s,κ,β(e10; y, z) + y2Kγ1,γ2

r,s,κ,β(e10; y, z).

By applying Lemma 6, we get the relation (11). Similarly we have the equality (12).
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The following theorem gives Korovkin type approximation for D-statistical convergence:

Theorem 1 ([31]). Let D = (dl,o,r,s) be a nonnegative RHR matrix. Let (Qr,s) be a double
sequence of operators acting from C([o, w]× [e, i]) into itself. So, for each h ∈ C([o, w]× [e, i]),

st2
D − lim

r,s
‖Qr,s(h)− h‖C([o,w]×[e,i]) = 0

if and only if for u = 0, 1, 2, 3

st2
D − lim

r,s
‖Qr,s(hu)− hu‖C([o,w]×[e,i]) = 0,

where h0(y, z) = 1, h1(y, z) = y, h2(y, z) = z and h3(y, z) = y2 + z2.

Theorem 1 provides next result.

Theorem 2. Let h ∈ C̄κ,β, then

st2
D − lim

r,s

∥∥∥Kγ1,γ2
r,s,κ,β(h)− h

∥∥∥
C̄
= 0,

where h0(y, z) = 1, h1(y, z) = y, h2(y, z) = z and h3(y, z) = y2 + z2.

Proof. We now claim that

st2
D − lim

r,s

∥∥∥Kγ1,γ2
r,s,κ,β(hu)− hu

∥∥∥
C̄
= 0. (13)

Following result is satisfied by Lemma 6 (a):

st2
D − lim

r,s

∥∥∥Kγ1,γ2
r,s,κ,β(h0)− h0

∥∥∥
C̄
= 0.

This result guarantees that (13) holds for u = 0.

∥∥∥Kγ1 ,γ2
r,s,κ,β(h1)− h1

∥∥∥
C̄

= sup(y,z)∈[0,1]×[0,1]

∣∣∣∣ 1+2(r+κ)y
2(r+κ+1) + 1−2y+yr+κ+1−(1−y)r+κ+1

(r+κ)2−1 γ1 − y
∣∣∣∣

≤
∣∣∣ 1+2(r+κ)

2(r+κ+1) − 1
∣∣∣+ 5

(r+κ)2−1 .
(14)

Defining the sets

S : =

{
(r, s) :

∥∥∥Kγ1,γ2
r,s,κ,β(h1)− h1

∥∥∥
C([0,1]×[0,1])

≥ τ

}
,

S1 : =

{
(r, s) :

∣∣∣∣1 + 2(r + κ)

2r + 2κ + 2
− 1
∣∣∣∣ ≥ τ

2

}
,

S2 : =

{
(r, s) :

5
r2 + κ2 − 1 + 2κr

≥ τ

2

}

we see that S ⊆
2⋃

u=1
Su. Hence ρ2

D(S) ≤
2
∑

u=1
ρ2

D(Su) and one can obtain

st2
D − lim

r,s

∥∥∥Kγ1,γ2
r,s,κ,β(h1)− h1

∥∥∥
C̄
= 0.

Similarly we have
st2

D − lim
r,s

∥∥∥Kγ1,γ2
r,s,κ,β(h2)− h2

∥∥∥
C̄
= 0,

that is (13) holds for u = 2. Finally, taking into account the inequalities
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∥∥∥Kγ1,γ2
r,s,κ,β(h3)− h3

∥∥∥
C̄

(15)

≤
∥∥∥Kγ1,γ2

r,s,κ,β(e20)− e20

∥∥∥
C̄
+
∥∥∥Kγ1,γ2

r,s,κ,β(e02)− e02

∥∥∥
C̄

≤
∣∣∣∣ (r + κ)2

(r + κ + 1)2 − 1
∣∣∣∣+ r + κ

(r + κ + 1)2 +
7

3(r + κ + 1)2 +
2

(r + κ)2 − 1

+
4(r + κ)

(r + κ + 1)((r + κ)2 − 1)
+

∣∣∣∣ (s + β)2

(s + β + 1)2 − 1
∣∣∣∣+ s + β

(s + β + 1)2

+
7

3(s + β + 1)2 +
2

(s + β)2 − 1
+

4(s + β)

(s + β + 1)((s + β)2 − 1)
,

and defining the sets

M : =
{
(r, s) :

∥∥∥Kγ1,γ2
r,s,κ,β(h3)− h3

∥∥∥ ≥ τ
}

, M1 :=
{
(r, s) : r+κ

(r+κ+1)2 ≥ τ
10

}
,

M2 : =
{
(r, s) : 4(r+κ)

(r+κ+1)((r+κ)2−1) ≥
τ
10

}
, M3 :=

{
(r, s) : s+β

(s+β+1)2 ≥ τ
10

}
,

M4 : =
{
(r, s) :

∣∣∣ (r+κ)2

(r+κ+1)2 − 1
∣∣∣ ≥ τ

10

}
, M5 :=

{
(r, s) :

∣∣∣ (s+β)2

(s+β+1)2 − 1
∣∣∣ ≥ τ

10

}
,

M6 : =
{
(r, s) : 7

3(r+κ+1)2 ≥ τ
10

}
, M7 :=

{
(r, s) : 2

(r+κ)2−1 ≥
τ
10

}
,

M8 : =
{
(r, s) : 7

3(s+β+1)2 ≥ τ
10

}
, M9 :=

{
(r, s) : 2

(s+β)2−1 ≥
τ
10

}
,

M10 : =
{
(r, s) : 4(s+β)

(s+β+1)((s+β)2−1) ≥
τ
10

}
we see that M ⊆

10⋃
u=1

Mu. Hence ρ2
D(M) ≤

10
∑

u=1
ρ2

D(Mu) and one can obtain

st2
D − lim

r,s

∥∥∥Kγ1,γ2
r,s,κ,β(h3)− h3

∥∥∥
C̄
= 0,

that is (13) holds for u = 3. As a result, Kγ1,γ2
r,s,κ,β satisfies all hypothesis of Theorem 1 which

concludes the proof.

The following corollary is obtained by replacing the double matrix D in Theorem 1
with the double identity matrix.

Corollary 1. Let h ∈ C̄κ,β, then

Π− lim
r,s

∥∥∥Kγ1,γ2
r,s,κ,β(h)− h

∥∥∥
C̄
= 0.

The C(1, 1)-statistical convergence becomes statistical convergence for double se-
quences if D = C(1, 1) is chosen. This leads us to the following corollary:

Corollary 2. Let h ∈ C̄κ,β, then

st2
C(1,1) − lim

r,s

∥∥∥Kγ1,γ2
r,s,κ,β(h)− h

∥∥∥
C̄
= 0.

4. Korovkin Theorem for the Operators Kγ1,γ2
r,s,κ,β via Power Series Method

Korovkin type approximation theory by power series method have been studied in sev-
eral function spaces by many researchers (see [44–47]). In this section, certain Korovkin type
theorems for linear positive operators, and specifically for bivariate Bernstein-Kantorovich
type operators on extended domain with reparametrized knots are proven by the power
series method. Let us assume that Ψ := [o, w]× [e, i] and that (Qr,s) is a double sequence
of positive linear operators acting from C(Ψ) into itself such that
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sup
0<a,b<R

1
ξ(a, b)

∞

∑
r,s=0

ξr,sarbs‖Qr,s(1)‖C(Ψ) < ∞ (16)

throughout this section. Set

Sa,b(h; y, z) =
1

ξ(a, b)

∞

∑
r,s=0

ξr,sarbsQr,s(h; y, z), a, b ∈ (0, R)

and

Ta,b(h; y, z) =
1

ξ(a, b)

∞

∑
r,s=0

ξr,sarbsKγ1,γ2
r,s,κ,β(h; y, z), a, b ∈ (0, R).

Theorem 3. Let h ∈ C(Ψ), then

lim
a,b→R−

∥∥Sa,b(h)− h
∥∥

C(Ψ)
= 0 (17)

if and only if for u = 0, 1, 2, 3

lim
a,b→R−

∥∥Sa,b(hu)− hu
∥∥

C(Ψ)
= 0, (18)

where h0(y, z) = 1, h1(y, z) = y, h2(y, z) = z and h3(y, z) = y2 + z2.

Proof. The implication (17)⇒(18) is clear, since hu ∈ C(Ψ) for each u = 0, 1, 2, 3. Let
h ∈ C(Ψ) and (y, z) ∈ Ψ be fixed. Since function h is continuous on Ψ, following inequality
is satisfied:

|h(y, z)| ≤ Mh.

Therefore
|h(s, t)− h(y, z)| ≤ 2Mh.

Also, since h is continuous on Ψ, there is a number ρ > 0 such that |h(s, t)− h(y, z)| < τ
holds for each τ > 0 and (s, t) ∈ Ψ satisfying |s− y| < ρ and |t− z| < ρ. Hence, we get

|h(s, t)− h(y, z)| < τ +
2Mh

ρ2

{
(s− y)2 + (t− z)2

}
.

This means

−τ − 2Mh
ρ2

{
(s− y)2 + (t− z)2

}
< h(s, t)− h(y, z) < τ +

2Mh
ρ2

{
(s− y)2 + (t− z)2

}
.

So, we can write

|Sa,b(h; y, z)− h(y, z)|

=

∣∣∣∣∣ 1
ξ(a, b)

∞

∑
r,s=0

ξr,s arbsQr,s(h; y, z)− h(y, z)

∣∣∣∣∣
≤ 1

ξ(a, b)

∞

∑
r,s=0

ξr,s arbsQr,s(|h(s, t)− h(y, z)|)

+ |h(y, z)|
∣∣∣∣∣ 1

ξ(a, b)

∞

∑
r,s=0

ξr,s arbsQr,s(h0; y, z)− h0(y, z)

∣∣∣∣∣
≤ τ +

(
τ + Mh +

2Mh‖h3‖C(Ψ)

ρ2

)
|Sa,b(h0; y, z)− h0(y, z)|

+
4Mh‖h1‖C(Ψ)

ρ2 |Sa,b(h1; y, z)− h1(y, z)|

+
4Mh‖h2‖C(Ψ)

ρ2 |Sa,b(h2; y, z)− h2(y, z)|

+
2Mh

ρ2 |Sa,b(h3; y, z)− h3(y, z)|.
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Then taking the supremum over (y, z) ∈ Ψ, we have

∥∥Sa,b(h)− h
∥∥

C(Ψ)
≤ τ + N

{
3

∑
u=0

∥∥Sa,b(hu; y, z)− hu(y, z)
∥∥

C(Ψ)

}
,

where N := max
{

τ + Mh +
2Mh‖h3‖C(Ψ)

ρ2 ,
4Mh‖h1‖C(Ψ)

ρ2 ,
4Mh‖h2‖C(Ψ)

ρ2 , 2Mh
ρ2

}
. By relation (18),

following result is obtained and this completes the proof:

lim
a,b→R−

∥∥Sa,b(h)− h
∥∥

C(Ψ)
= 0.

Theorem 4. Let h ∈ C̄κ,β, then

lim
a,b→R−

∥∥Ta,b(h)− h
∥∥

C̄ = 0.

Proof. Since Kγ1,γ2
r,s,κ,β(e00; y, z) = 1, we see that (16) holds. Also, taking into account Lemma 6

and the inequalities (14) and (15), the proof is completed.

5. The Convergence Rate of Operators

The rate of D-statistical convergence and the rate of convergence for the power series
method are calculated in this section with the help of MC. MC is expressed as

ω(h, ρ) = sup√
(s−y)2+(t−z)2≤ρ

|h(s, t)− h(y, z)| (ρ > 0), h ∈ C([o, w]× [e, i]).

We know that, for any γ > 0 and for all h ∈ C([o, w]× [e, i]),

ω(h, γρ) ≤ (1 + [γ])ω(h, ρ),

where [γ] is greatest integer less than or equal to γ (see [48]).
The next theorem provides a rate of D-statistical convergence for the proposed operators.

Theorem 5. Let r, s ∈ Z+ and D = (dl,o,r,s) be a nonnegative RHR matrix. Let h ∈ C̄κ,β and
(cr,s) be a positive non-increasing double sequence such that ω(h, ρr,s) = st2

D − o(cr,s), where
lowercase o(.) notion indicates the rate of convergence, then∥∥∥Kγ1,γ2

r,s,κ,β(h)− h
∥∥∥

C̄
= st2

D − o(cr,s),

where

ρr,s :=

{
3

r + κ + 1
+

10

(r + κ)2 − 1
+

3
s + β + 1

+
10

(s + β)2 − 1

} 1
2

.

Proof. Suppose that the hypotheses are fulfilled. Since Kγ1,γ2
r,s,κ,β is positive and monotonic

we obtain∣∣∣Kγ1,γ2
r,s,κ,β(h; y, z)− h(y, z)

∣∣∣ ≤ Kγ1,γ2
r,s,κ,β(|h(s, t)− h(y, z)|; y, z)

≤ Kγ1,γ2
r,s,κ,β

((
1 +

(s− y)2 + (t− z)2

ρ2

)
ω(h, ρ); y, z

)

= ω(h, ρ) +
ω(h, ρ)

ρ2 Kγ1,γ2
r,s,κ,β

(
(s− y)2 + (t− z)2; y, z

)
.
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Then taking the supremum over (y, z) ∈ [0, 1]× [0, 1], we have∥∥∥Kγ1,γ2
r,s,κ,β(h)− h

∥∥∥
C̄

≤ ω(h, ρ) +
ω(h, ρ)

ρ2

{∥∥∥Kγ1,γ2
r,s,κ,β

(
(s− .)2

)∥∥∥
C̄
+
∥∥∥Kγ1,γ2

r,s,κ,β

(
(t− .)2

)∥∥∥
C̄

}
≤ ω(h, ρ) +

ω(h, ρ)

ρ2

{
3

r + κ + 1
+

10

(r + κ)2 − 1
+

3
s + β + 1

+
10

(s + β)2 − 1

}
.

Taking

ρ = ρr,s :=

{
3

r + κ + 1
+

10

(r + κ)2 − 1
+

3
s + β + 1

+
10

(s + β)2 − 1

} 1
2

,

we get for any positive integers r, s that∥∥∥Kγ1,γ2
r,s,κ,β(h)− h

∥∥∥
C̄
≤ 2ω(h, ρr,s).

Therefore for any τ > 0 we have

1
cr,s

∑∥∥∥K
γ1,γ2
r,s,κ,β(h)−h

∥∥∥
C̄
≥τ

dl,o,r,s ≤
1

cr,s
∑

ω(h,ρr,s)≥ τ
2

dl,o,r,s

and from the hypothesis it follows that∥∥∥Kγ1,γ2
r,s,κ,β(h)− h

∥∥∥
C̄

= st2
D − o(cr,s).

Next theorem provides a rate of convergence for PSM.

Theorem 6. Suppose that h ∈ C̄κ,β and ζ is a positive real function defined on (0, R)× (0, R). If
ω(h, ψ) = o(ζ), as a, b→ R− and o(.) indicates the rate of convergence, then∥∥Ta,b(h)− h

∥∥
C̄ = o(ζ)

as a, b→ R−, where ψ : (0, R)× (0, R)→ R is given as

ψ(a, b) :=

{
1

ξ(a, b)

∞

∑
r,s=0

ξr,sarbs
∥∥∥Kγ1,γ2

r,s,κ,β

(
(s− .)2 + (t− .)2

)∥∥∥
C̄

} 1
2

.

Proof. Let h ∈ C̄κ,β. Using linearity and positivity, following relations are satisfied for any
a, b ∈ (0, R) and (y, z) ∈ [0, 1]× [0, 1]:∣∣Ta,b(h; y, z)− h(y, z)

∣∣
=

∣∣∣∣∣ 1
ξ(a, b)

∞

∑
r,s=0

ξr,sarbsKγ1,γ2
r,s,κ,β(h; y, z)− h(y, z)

∣∣∣∣∣
≤ 1

ξ(a, b)

∞

∑
r,s=0

ξr,sarbsKγ1,γ2
r,s,κ,β(|h(s, t)− h(y, z)|; y, z)

≤ ω(h, ρ) +
ω(h, ρ)

ρ2

{
1

ξ(a, b)

∞

∑
r,s=0

ξr,sarbsKγ1,γ2
r,s,κ,β

(
(s− y)2 + (t− z)2; y, z

)}
.
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Then taking the supremum over (y, z) ∈ [0, 1]× [0, 1], we have∥∥Ta,b(h)− h
∥∥

C̄ ≤ 2 ω(h, ρ),

where

ρ = ψ(a, b)

: =

{
1

ξ(a, b)

∞

∑
r,s=0

ξr,sarbs
∥∥∥Kγ1,γ2

r,s,κ,β

(
(s− .)2 + (t− .)2

)∥∥∥
C̄

} 1
2

,

which completes the proof.

6. Numerical Results

Final section of this work provides certain numerical experiments and computer
graphs supporting the theoretical results. We consider two functions for which we study
approximations of our bivariate operators Kγ1,γ2

r,s,κ,β with them and obtain corresponding
errors of approximations for different γ1, γ2, κ, β, r and s values. point represents the
evaluation of the plotted function at that point. In Figures 1 and 2, larger values are
shown with lighter color. In Figures 1D–F and 2D–F, the color of each point represents the
evaluation of the plotted function at that point. In Figures 1 and 2, larger values are shown
with lighter color.

Example 1. We first consider the function

h1(y, z) = cos(y3) cos(z2)

on (y, z) ∈ [0, 1]× [0, 1]. Choosing γ1 = γ2 = 1, κ = β = 2 we obtain some graphs to see the
accuracy of the approximations for the function h1(y, z). In Figure 3, we give three graphs; the
yellow one is the graph of function h1(y, z), the blue one is the graph for approximation of our
operators when r = s = 20, and finally the green one is also the graph for approximation of our
operators when r = s = 60. We present the graph of function h1(y, z) and approximations for
r = s = 20 and r = s = 60 in Figure 1A–C, respectively. In Figure 1D–F, we give the graphs of
corresponding density plots, for instance, (D) is the density plot of (A). In density plots (D)–(F),
we represent the color of each corresponding point of the function. Finally we give the errors of
approximations of our operators for r = s = 20 and r = s = 60 in Figure 4. It can be seen that the
error decreases when the values of r and s increase, as it is expected.

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

(A) (B) (C)

(D) (E) (F)

Figure 1. The function h1(y, z), and approximations for r, s = 20 and r, s = 60 with density graphs. (A) h1(y, z); (B) r, s = 20;
(C) r, s = 60; (D) is the density plot of (A); (E) is the density plot of (B); (F) is the density plot of (C).
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- 1.50

- 1.25

- 1.00

- 0.75

- 0.50

- 0.25

0

- 1.25

- 1.00

- 0.75

- 0.50

- 0.25

- 1.50

- 1.25

- 1.00

- 0.75

- 0.50

- 0.25

0

(A) (B) (C)

(D) (E) (F)

Figure 2. The function h2(y, z), and approximations for r, s = 20 and r, s = 60 with density graphs. (A) h2(y, z); (B) r, s = 20; (C)
r, s = 60; (D) is the density plot of (A); (E) is the density plot of (B); (F) is the density plot of (C).

h1(y,z)

n=m=20

n=m=60

Figure 3. Approximation with different r and s values.

0

10-2

0.02

0.03

0.04

0.05

(A)

0

5. × 10-3

1. × 10-2

0.015

0.020

(B)

Figure 4. Error functions for some r and s values. (A) r, s = 20; (B) r, s = 60.

Example 2. We now consider the function

h2(y, z) =
3y2 − 3y
z3 + 0.5

on (y, z) ∈ [0, 1] × [0, 1]. We take γ1 = γ2 = −0.5, κ = β = 3 to study approximation of
operators Kγ1,γ2

r,s,κ,β for the function h2(y, z). We provide graph of h2(y, z), graph for approximation
of our operators when r = s = 20, and graph for approximation of our operators when r = s = 60
in Figure 5, and we use the colors yellow, blue, and green, respectively. We give the graph of
function h1(y, z) and approximations for r = s = 20 and r = s = 60 in Figure 2A–C, respectively.
In Figure 2D–F, we give the corresponding density plots. Moreover, we obtain the errors of
approximations when r = s = 20 and r = s = 60 in Figure 6.
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h2(y,z)

n=m=20

n=m=60

Figure 5. Approximation with different r and s values.

0

0.05

0.10

0.15

(A)

0

10-2

0.02

0.03

0.04

(B)

Figure 6. Error functions for some r and s values. (A) r, s = 20; (B) r, s = 60.

As a result, we show that the operators defined in this paper approximate different
kind of functions for certain γ1, γ2, κ, β, r and s values.

7. Concluding Remarks

Many mathematicians have investigated the Korovkin-type approximation theorems
for a sequence of positive linear operators by different types of convergences. In this study,
we focus on two summability methods including double sequences to prove Korovkin type
theorems for the proposed operators. We also prove certain rates of convergence theorems
connected with these two summability methods and support our theoretical results with
numerical experiments. This is why the content of this paper is absolutely different from
other types of papers in the literature like [9]. We also note that we reparametrize knots of
operators defined in [9] and extend domain of the functions.

Now, we show that our results related to power series method are non-trivial general-
ization of the classical Korovkin results. Using the double sequence $r,s = 1 + (−1)r+s, we
consider the following operators:

Uγ1,γ2
r,s,κ,β = (1 + (1−)r+s)Kγ1,γ2

r,s,κ,β.

We have the following results for Uγ1,γ2
r,s,κ,β :

Uγ1,γ2
r,s,κ,β(h0; y, z) = 1 + (−1)r+s,

Uγ1,γ2
r,s,κ,β(h1; y, z) =

[
1 + (−1)r+s]Kγ1,γ2

r,s,κ,β(e01; y, z),

Uγ1,γ2
r,s,κ,β(h2; y, z) =

[
1 + (−1)r+s]Kγ1,γ2

r,s,κ,β(e10; y, z),

Uγ1,γ2
r,s,κ,β(h3; y, z) =

[
1 + (−1)r+s][Kγ1,γ2

r,s,κ,β(e02; y, z) + Kγ1,γ2
r,s,κ,β(e20; y, z)

]
.



Mathematics 2021, 9, 1895 14 of 15

It is clear that the operators Uγ1,γ2
r,s,κ,β do not satisfy Korovkin conditions for functions of two

variables since Uγ1,γ2
r,s,κ,β(h0) = 1 + (−1)r+s 9 1 as r, s → ∞. On the other hand, choosing

R = 1, ξr,s = 1 and ξ(a, b) = 1
(1−a)(1−b) , we have∥∥∥∥∥(1− a)(1− b)
∞

∑
r,s=0

arbsUγ1,γ2
r,s,κ,β(hu)− hu

∥∥∥∥∥
C̄

−→ 0 as a, b→ 1−

for u = 0, 1, 2, 3. This means the operators Uγ1,γ2
r,s,κ,β converge in the sense of power series

method, so Theorem 4 is valid.
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