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Abstract: In a conventional interpretation of decision-making based on ambiguity, a decision-maker
must prefer the best possible opportunity including various feasible possibilities. However, the
dilemma of picking the best possible alternative has continued to be a substantial task to resolve.
In this manuscript, we improve the existing complex intuitionistic fuzzy soft set (CIFSS), which
includes the grade of truth and falsity with the rule that the sum of the real and imaginary parts
of both grades is confined to [0, 1]. CIFS is a valuable procedure to determine the authenticity and
consistency of the elaborated approaches. The fundamental laws and their related examples are
also determined. Moreover, by using these laws, we investigated the complex intuitionistic fuzzy
soft prioritized weighted averaging operator (CIFSPWAO), the complex intuitionistic fuzzy soft
prioritized ordered weighted averaging operator (CIFSPOWAO), the complex intuitionistic fuzzy soft
prioritized weighted geometric operator (CIFSPWGO), complex intuitionistic fuzzy soft prioritized
ordered weighted geometric operator (CIFSPOWGO), and their related properties are also developed.
Based on the developed operators, the multiattribute decision-making (MADM) tool is developed by
using the explored operators based on CIFSS. Some numerical examples are also illustrated by using
the investigated operators to determine the feasibility and consistency of the developed approaches.
Finally, the comparative analysis and their geometrical manifestations are also determined to enhance
the excellence of the performed explorations.

Keywords: complex intuitionistic fuzzy soft sets; prioritized averaging/geometric aggregation
operators; multiattribute decision-making methods

1. Introduction

MADM is a mutual procedure in individuals’ everyday natural life and industry orga-
nization. In the exploration of MADM procedures, developing and controlling evaluation
material is a requirement for achieving the best explanation. Since Zadeh [1] initially sug-
gested the idea of fuzzy set (FS) to illustrate the ambiguity of an object, various conventional
expansions of FSs have been offered to adapt to unique decision-making situations, such as
the idea of soft set (SS), which was elaborated by Molodtsov [2]. Mahmood [3] developed
the notion of bipolar soft set and discussed its application in decision making problems.
Between these expansions of FSs, researchers have also sought effective implementations
for exhibiting ambiguity and vagueness, which describe every single component with a
truth degree belonging to [0, 1]. In the last 30 years, numerous researchers have conducted
in-depth investigations and explorations in FS theory, and in consequence a huge number
of discoveries have been accomplished within the field of FS, comprising assessment and
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ranking procedures, aggregation operators, hybrid operators, similarity measures and
allowances of traditional MADM approaches, etc. However, there are various concerns
that when an individual faced this kind of situation, which includes the grade of truth and
falsity, then the FS is not proficient to operate within it. For this purpose, the theory of intu-
itionistic FS (IFS) was elaborated by Atanassov [4] as a generalization of FS that includes
the grade of truth and falsity with the rule that 0 ≤ µΞ̃IF

+ ηΞ̃IF
≤ 1. IFS is an extensive

validation procedure used to determine the dependability and consistency of the created
approaches. Since its development, this theory has received extensive attention from
distinguished scholars and several individuals have utilized it in many directions [5–10].

From the above prevailing examinations, it is noted that they are extensively manipu-
lated but that previous researchers have neglected to carry out the time-periodic problems
and two-dimensional knowledge mutually in a specific set. In light of this, Ramot et al. [11]
suggested the concept of complex FS (CFS) to illustrate the ambiguity of an object dis-
cussed above. CFS theory is exhibited by a complex-valued truth function with a codomain
unit disc in the complex plane. Since its development, this theory has received extensive
attention from distinguished scholars and several individuals have utilized it in many
directions, like distance measures and cross-entropy [12], logic [13,14] and neurofuzzy
architecture [15]. Keeping in view the effectiveness and importance of CFS theory in the
last 15 years, numerous researchers have undertaken in-depth investigation and explo-
ration of CFSs and a huge number of solutions making use of the CFSs have been studied,
comprising assessment and ranking procedures, aggregation operators, hybrid operators,
similarity measures and allowances of traditional MADM approaches, etc. However, there
are various concerns that when an individual is faced with this kind of situation, which
includes the grade of truth and falsity in the form of complex-valued, then the CFS is
not proficient to operate with it. For this reason, Alkouri and Salleh [16] generalized the
notion of CFSs to Complex IFSs (CIFSs) by familiarizing falsity degrees into the assessment.
In CIFS theory, complex values of truth and falsity are measured in polar structure. The
amplitude terms related with agreeing (disagreeing) values depict the strength of being
appropriate (not-being appropriate) for the aspect in the set and the phase terms require
extra knowledge, which is correlated with periodicity. These phase terms discriminate the
CIFS and IFS theories. IFS nature cannot carry extra one-dimensional problems, which
affects the failure of knowledge in certain situations. However, in complex problems,
e.g., when designing two-dimensional pieces of information simultaneously in one set, it
becomes even more essential to combine the phase terms with truth and falsity grades. This
establishment of supplementary terms precludes the situation of knowledge loss and devel-
opments of the completed knowledge collectively in one set. CIFS is a modified technique
of CFS that includes the grade of truth and falsity with the rules that 0 ≤ µΞ̃RP

+ ηΞ̃RP
≤ 1

and 0 ≤ µΞ̃IP
+ ηΞ̃IP

≤ 1. CIFS has received much attraction from different scholars and
certain scholars have utilized it in the environments of different directions [17–23].

Distinguished scholars have utilized the theory of aggregation operators in the cir-
cumstances of separated areas; as a result of this, the theory of intuitionistic fuzzy soft set
(IFSS) was discovered by Maji [24]. The MCDM model in an IFSS environment considers
the hesitancy of experts in arriving at the membership grades, since the IFS allows an
expert to record his hesitancy factor. However, hesitancy is a feature of one’s perception,
and it needs to be supported by another independent observer/expert. To address this
problem, the notion of generalized IFSS and their applications were initiated by Garg and
Arora [25]. Hayat et al. [26] explored aggregation operators for generalized IFSSs. Priori-
tized averaging/geometric aggregation operators for IFSSs were investigated by Arora and
Garg [27]. Bonferroni mean operators for IFSS were introduced by Garg and Arora [28].
Robust aggregation operators for IFSSs were discovered by Arora and Garg [29]. Prioritized
intuitionistic fuzzy soft interaction averaging aggregation operators were developed by
Garg and Arora [30]. Khan et al. [31] discovered the generalized IFSSs and discussed their
applications. In certain real-life troubles, we go over numerous circumstances where we
need to aggregate the vulnerability existing in the information to settle on ideal choices.
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Aggregation operators are significant tools for taking care of unsure data present in our
day-to-day life issues. Different operators of information, such as averaging, geometric,
and hybrid operators, process the inconsistent information and allow us to reach some
conclusions. Recently, these operators have gained much attention from many authors due
to their wide applications in various fields, such as pattern recognition, medical diagnosis,
clustering analysis, and image processing. All the prevailing approaches of decision-
making, based on aggregation operators in FS, IFS, and IFSS theories, deal only with the
grades of truth and falsity, which are real-valued. In CIFSS theory, truth and falsity grades
are complex-valued and are represented in polar coordinates. The amplitude term corre-
sponding to truth and falsity degrees gives the extent of membership and non-membership
of an object in a CIFSS with the rule that the sum of the real and unreal parts of both grades
is restricted to the unit interval. The phase terms are novel parameters of the truth and
falsity degrees, and these are the parameters that distinguish the CIFSS and traditional
IFS and IFSS theories. IFSS theory deals with only one dimension at a time, which results
in information loss in some cases. However, in real life, we come across complex natural
phenomena where it becomes essential to add the second dimension to the expression of
truth and falsity grades. By introducing this second dimension, the complete information
can be projected in one set, and hence loss of information can be avoided.

To illustrate the significance of the phase term, we give an example. Assume XYZ
organization chooses to set up biometric-based participation gadgets (BBPGs) in the entirety
of its workplaces spread everywhere in the country. For this, the organization counsels
a specialist who gives the data concerning (i) demonstrates of BBPGs and (ii) creation
dates of BBPGs. The organization needs to choose the most ideal model of BBPGs with its
creation date all the while. Here, the issue is two-dimensional, to be specific, the model of
BBPGs and the creation date of BBPGs. This kind of issue cannot be handled precisely by
utilizing the conventional IFSS hypothesis as the IFSS hypothesis cannot handle both the
measurements at the same time. The most ideal approach to address the entirety of the data
given by the master is by utilizing the notion of CIFSS. The sufficiency terms in CIFSS might
be utilized to give the organization’s choice regarding the model of BBPGs and the stage
terms might be utilized to address the organization’s judgment concerning the creation date

of BBPGs. When an intellectual provides µΞ̃CI−j

(
^
xl

)
= µΞ̃RP−j

(
^
xl

)
e

i2π(µΞ̃IP−j
(
^
xl))

for truth

grade and ηΞ̃CI−j

(
^
xl

)
= ηΞ̃RP−j

(
^
xl

)
e

i2π(ηΞ̃IP−j
(
^
xl))

for falsity grade with the rules such that

0 ≤ µΞ̃RP−j

(
^
xl

)
+ ηΞ̃RP−j

(
^
xl

)
≤ 1 and 0 ≤ µΞ̃IP−j

(
^
xl

)
+ ηΞ̃IP−j

(
^
xl

)
≤ 1, then the principle

of fuzzy sets, complex fuzzy sets, soft sets, complex fuzzy soft sets, intuitionistic fuzzy sets,
intuitionistic fuzzy soft sets, and complex intuitionistic fuzzy sets are unable to cope with
it. For managing such information, the theory of CIFSSs is a very important and effective
technique, which is developed in this manuscript. Keeping the advantages of the soft set
and complex intuitionistic fuzzy sets, the aims of this manuscript are discussed below:

1. To improve the theory of CIFSSs and to develop their fundamental laws such as
operational laws, score value, accuracy value, and their examples.

2. To elaborate on the CIFSPWAO, CIFSPOWAO, CIFSPWGO, and CIFSPOWGO, and
deliberate on their properties based on the above-investigated approaches.

3. To determine a MADM tool by using the elaborated operators based on CIFSSs.
4. To determine the verity of the elaborated approaches with the help of some examples

by using the elaborated operators to determine the consistency and validity of the
developed approaches.

5. To determine the comparative analysis of the elaborated operators by using some
existing operators.

6. To utilize the geometrical manifestations of the settled operators are discussed to show
the advantages of the proposed tools.
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The principle of FSs, CFSs, SSs, CFSSs, IFSs, IFSSs, and CIFS are the special cases of
the presented CIFSSs.

The rest of this manuscript is arranged as follows. In Section 2, we briefly recall
some fundamental notions such as SSs, CIFSs, and their operational laws. The existing
theory of CIFSSs, which was explored by Kumar and Bajaj [32] and Quek et al. [33] and
the prioritized weighted aggregation operator (PWAO) is also revised. In Section 3, we
improve the idea of CIFSSs and investigate their fundamental laws. In Section 4, by using
these laws, we elaborate on the CIFSPWAO, CIFSPOWAO, CIFSPWGO, and CIFSPOWGO,
and deliberate on their properties. In Section 5, we developed a MADM tool by using the
investigated operators. Some examples are illustrated by using the elaborated operators
to determine the consistency and validity of the developed approaches. The comparative
analysis of the elaborated operators by using some existing operators is also discussed.
The geometrical manifestations of the settled operators are also utilized. The conclusion of
this manuscript is discussed in Section 6.

2. Preliminaries

To explain better the investigated ideas, we briefly recall some fundamental notions
such as SSs, CIFSs, and their operational laws. The existing theory of CIFSSs, which
was explored by Kumar and Bajaj [32] and Quek et al. [33] and the prioritized weighted

aggregation operator (PWAO) is also revised. In the overall manuscript, the symbol
︷ ︸︸ ︷
XUNI

is used for fixed set and the terms µTfCI and ηTfCI are used to show the grade of positive
and the grade of negative.

Definition 1 ([2]). Suppose E is a set of parameters. A duplet
(

Ξ̃SS, E
)

expresses the SSs based

on the fixed set
︷ ︸︸ ︷
XUNI , where Ξ̃SS : E −→ K

︷ ︸︸ ︷
XUNI and the set of all subsets of

︷ ︸︸ ︷
XUNI .

From the prevailing examinations, it is noticed that they are extensively manipulated
but are neglect to carry out the time-periodic troubles and two-dimensional knowledge
mutually in a specific set. Therefore, Ramot et al. [11] initially suggested the thought of
complex FS (CFS) to illustrate the ambiguity of object; various conventional expansions
of CFSs have been offered to adapt to unique decision-making situations. However, there
are various concerns, while an individual faced such sorts of situation, which includes
the grade of truth and falsity in the form of complex-values, then the notion of CFS is not
proficient to operate with it. For this, Alkouri and Salleh [16] generalized the notion of
CFSs to Complex IFSs (CIFSs) by familiarizing falsity degrees into the assessment. In CIFS
theory, complex values of truth and falsity are measured in polar structure. CIFS is the
generalized form of CFS that includes the grade of truth and falsity with the rules that
0 ≤ µΞ̃RP

+ ηΞ̃RP
≤ 1 and 0 ≤ µΞ̃IP

+ ηΞ̃IP
≤ 1. The principle of CIFS is discussed below:

Definition 2 ([16]). A CIFS Ξ̃CI is demonstrated by:

Ξ̃CI =

{(
µΞ̃CI

(
^
§
)

, ηΞ̃CI

(
^
§
))

:
^
x ∈

︷ ︸︸ ︷
XUNI

}
(1)

where µΞ̃CI
= µΞ̃RP

e
i2π(µΞ̃IP

)
and ηΞ̃CI

= ηΞ̃RP
e

i2π(ηΞ̃IP
)

where 0 ≤ µΞ̃RP
+ ηΞ̃RP

≤ 1 and
0 ≤ µΞ̃IP

+ ηΞ̃IP
≤ 1. Furthermore, the refusal grade is demonstrated in the form of

LΞ̃CI
= LΞ̃RP

e
i2π(LΞ̃IP

)
=
(

1− µΞ̃RP
− ηΞ̃RP

)
e

i2π(1−µΞ̃RP
−ηΞ̃RP

)
. In the overall manuscript, the

complex intuitionistic fuzzy numbers (CIFNs) are represented by: Ξ̃CI−i =(
µΞ̃RP−i

e
i2π(µΞ̃IP−i

)
, ηΞ̃RP−i

e
i2π(ηΞ̃IP−i

)
)

, i = 1, 2, . . . ,
︷︸︸︷

n . To determine the relationship among

any number of attributes, the operations of addition, multiplication, and scaler multiplication and
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vector power scaler are discussed below. The graphical expressions of the unit disc are explained
in Figure 1.
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Definition 3 ([17]). By using two CIFNs Ξ̃CI−i =

(
µΞ̃RP−i

e
i2π(µΞ̃IP−i

)
, ηΞ̃RP−i

e
i2π(ηΞ̃IP−i

)
)

,

i = 1, 2, then

Ξ̃CI−1
⊕

Ξ̃CI−2 =

 (
µΞ̃RP−1

+ µΞ̃RP−2
− µΞ̃RP−1

µΞ̃RP−2

)
e

i2π(µΞ̃IP−1
+µΞ̃IP−2

−µΞ̃IP−1
µΞ̃IP−2

)
,

ηΞ̃RP−1
ηΞ̃RP−2

e
i2π(ηΞ̃IP−1

ηΞ̃IP−2
)

 (2)

Ξ̃CI−1
⊗

Ξ̃CI−2 =

 µΞ̃RP−1
µΞ̃RP−2

e
i2π(µΞ̃IP−1

µΞ̃IP−2
)
,(

ηΞ̃RP−1
+ ηΞ̃RP−2

− ηΞ̃RP−1
ηΞ̃RP−2

)
e

i2π(ηΞ̃IP−1
+ηΞ̃IP−2

−ηΞ̃IP−1
ηΞ̃IP−2

)

 (3)

ΦSCΞ̃CI−1 =

((
1−

(
1− µΞ̃RP−1

)ΦSC
)

e
i2π(1−(1−µΞ̃IP−1

)ΦSC )
, η

ΦSC
Ξ̃RP−1

e
i2π(η

ΦSC
Ξ̃IP−1

)
)

(4)

Ξ̃ΦSC
CI−1 =

(
µ

ΦSC
Ξ̃RP−1

e
i2π(µ

ΦSC
Ξ̃IP−1

)
,
(

1−
(

1− ηΞ̃RP−1

)ΦSC
)

e
i2π(1−(1−ηΞ̃IP−1

)ΦSC )

)
(5)

To find the order between any two CIFS, we review the idea of score value (SV) and
accuracy value (AV) based on CIFS, which are illustrated below. Without SV and AV, it is
difficult to compare the CIFSs.

Definition 4 ([17]). For two CIFNs Ξ̃CI−i =

(
µΞ̃RP−i

e
i2π(µΞ̃IP−i

)
, ηΞ̃RP−i

e
i2π(ηΞ̃IP−i

)
)

, i = 1, the

score value (SV) and accuracy value (AV) are demonstrated as:

SSV

(
Ξ̃CI−1

)
=

1
2

(
µΞ̃RP−1

+ µΞ̃RP−2
− ηΞ̃RP−1

− ηΞ̃RP−1

)
(6)

HAV

(
Ξ̃CI−1

)
=

1
2

(
µΞ̃RP−1

+ µΞ̃RP−2
+ ηΞ̃RP−1

+ ηΞ̃RP−1

)
(7)
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By using the above information, we can determine which CIFN is superior and which
one is inferior, for this purpose we must revise the rules for comparison between any
number of CIFNs such as:

1. When SSV

(
Ξ̃CI−1

)
> SSV

(
Ξ̃CI−2

)
=⇒ Ξ̃CI−1 > Ξ̃CI−2 ;

2. When SSV

(
Ξ̃CI−1

)
= SSV

(
Ξ̃CI−2

)
=⇒

(1) When HAV

(
Ξ̃CI−1

)
= HAV

(
Ξ̃CI−2

)
=⇒ Ξ̃CI−1 = Ξ̃CI−2 .

(2) When HAV

(
Ξ̃CI−1

)
= HAV

(
Ξ̃CI−2

)
=⇒ Ξ̃CI−1 = Ξ̃CI−2 .

To determine the exact value from the group of values, the aggregation operators are
more flexible and more dominant to find the reliability and consistency in genuine life
troubles. The prioritized aggregation operator is one of the most important and dominant
parts of the operators that perform mathematical operations, such as Average, Aggregate,
Count, Max, Min, and Sum, on the numeric property of the elements in the collection.

Definition 5 ([27]). By using any numbers of positive integers Ξ̃CI−i, i = 1, 2, . . . ,
︷︸︸︷

n , the PWA
operator is demonstrated by:

PWA
(

Ξ̃CI−1, Ξ̃CI−2, . . . , Ξ̃
CI−
︷︸︸︷

n

)
=

︷︸︸︷
n
∑
i=1

Zi

∑
︷︸︸︷

n
i=1 Zi

(8)

where Z1 = 1, with

Zi =
i−1

∏
k=1

Ξ̃CI−k (9)

Definition 6 ([32]). A CIFSS Ξ̃CI : E −→ CIFS
(︷ ︸︸ ︷
XUNI

)
is demonstrated by:

(
Ξ̃CI , E

)
=

{(
xi, Ξ̃CI−ej

(
^
x i

))
:
^
xl ∈

︷ ︸︸ ︷
XUNI

}
(10)

Definition 7 ([33]). A CIFSS Ξ̃CI : E −→ CIFS
(︷ ︸︸ ︷
XUNI

)
is demonstrated by:

Ξ̃CI(e) =

{(
µΞ̃RP−j

(
^
xl

)
e

i(µΞ̃IP−j
(
^
xl))

, ηΞ̃RP−j

(
^
xl

)
e

i(ηΞ̃IP−j
(
^
xl))
)

:
^
xl ∈

︷ ︸︸ ︷
XUNI

}
(11)

where µΞ̃IP−j

(
^
xl

)
, ηΞ̃IP−j

(
^
xl

)
∈ [0, 2π]. The ideas in Equations (10) and (11), encompass some

problems related to imaginary parts and their conditions. Similarly, no one elaborated on the
operational laws or score value and accuracy value, which are very useful and important for
developing aggregation operators. To resolve the above troubles, in the next study, we elaborated on
the idea of CIFSSs with the new structure and utilized their operational laws.

3. A Novel Complex Intuitionistic Fuzzy Soft Set

In this study, we will improve the existing principle of CIFSSs and elaborate on their
new fundamental laws. The proposed work is also justified with the help of some numerical
examples to show the reliability and effectiveness of the presented work. The existing
CIFSSs were explored by Kumar and Bajaj [32] and Quek et al. [33]. Based on the above
existing ideas, the novel approach is discussed below.
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Definition 8. A CIFSS Ξ̃CI : E −→ CIFS
(︷ ︸︸ ︷
XUNI

)
is demonstrated by:

Ξ̃CI−ej

(
^
x i

)
=

{(
µΞ̃CI−j

(
^
xl

)
, ηΞ̃CI−j

(
^
xl

))
:
^
xl ∈

︷ ︸︸ ︷
XUNI

}
(12)

where µΞ̃CI−j

(
^
xl

)
= µΞ̃RP−j

(
^
xl

)
e

i2π(µΞ̃IP−j
(
^
xl)) and ηΞ̃CI−j

(
^
xl

)
= ηΞ̃RP−j

(
^
xl

)
e

i2π(ηΞ̃IP−j
(
^
xl))

with the rules such that 0 ≤ µΞ̃RP−j

(
^
xl

)
+ ηΞ̃RP−j

(
^
xl

)
≤ 1 and 0 ≤ µΞ̃IP−j

(
^
xl

)
+ ηΞ̃IP−j

(
^
xl

)
≤ 1. Furthermore, the term LΞ̃CI−j

(
^
xl

)
= LΞ̃RP−j

(
^
xl

)
e

i2π(LΞ̃IP−j
(
^
xl))

=(
1− µΞ̃RP−j

(
^
xl

)
− ηΞ̃RP−j

(
^
xl

))
e

i2π(1−µΞ̃RP−j
(
^
xl)−ηΞ̃RP−j

(
^
xl)) expresses the refusal grade. Where

the symbol CIFS
(︷ ︸︸ ︷
XUNI

)
expresses the family of CQROFNs. Throughout this manuscript, the

complex intuitionistic fuzzy soft number (CIFSN) is expressed by: Ξ̃CI−eij =(
µΞ̃RP−ij

e
i2π(µΞ̃IP−ij

)
, ηΞ̃RP−ij

e
i2π(ηΞ̃IP−ij

)
)

, i, j = 1, 2, . . . ,
︷︸︸︷

n ,
︷︸︸︷

m .

Example 1. Among the main applications of radiophysics are radio communications, radiolocation,
radio astronomy, and radiology. Classical radiophysics deals with radio wave communications
and detection. This well-known experience of actual application of complex numbers in radio-
physics, optics, and energy systems naturally anticipates oscillating and periodic time parameters
for complex models of decision making and is more suitable for the complex module. For this,

we choose the family of a fixed set
︷ ︸︸ ︷
XUNI =

{
^
x1,

^
x2,

^
x3,

^
x4

}
and corresponding of parameters

E = {e1(Expensive), e2(Wooden), e3(Cheap), e4(Beauti f ul), e5(In good location)}, then the
rating values of each value of the fix set concerning parameters are discussed in Table 1.

Table 1. Expressions of the complex intuitionistic fuzzy soft numbers.

~
ΞCI e1 e2 e3 e4 e5

^
x1

(
0.2ei2π(0.2),
0.6ei2π(0.6)

) (
0.1ei2π(0.1),
0.5ei2π(0.5)

) (
0.9ei2π(0.9),
0.1ei2π(0.1)

) (
0.3ei2π(0.3),
0.4ei2π(0.4)

) (
0.6ei2π(0.6),
0.2ei2π(0.2)

)
^
x2

(
0.5ei2π(0.5),
0.4ei2π(0.4)

) (
0.2ei2π(0.2),
0.5ei2π(0.5)

) (
0.3ei2π(0.3),
0.7ei2π(0.7)

) (
0.6ei2π(0.6),
0.2ei2π(0.2)

) (
0.4ei2π(0.4),
0.4ei2π(0.4)

)
^
x3

(
0.6ei2π(0.6),
0.2ei2π(0.2)

) (
0.5ei2π(0.5),
0.4ei2π(0.4)

) (
0.8ei2π(0.8),
0.1ei2π(0.1)

) (
0.6ei2π(0.6),
0.4ei2π(0.4)

) (
0.2ei2π(0.2),
0.7ei2π(0.7)

)
^
x4

(
0.4ei2π(0.4),
0.5ei2π(0.5)

) (
0.3ei2π(0.3),
0.5ei2π(0.5)

) (
0.6ei2π(0.6),
0.1ei2π(0.1)

) (
0.4ei2π(0.4),
0.1ei2π(0.1)

) (
0.2ei2π(0.2),
0.4ei2π(0.4)

)

In the procedure to utilize the CQROFSSs in realistic troubles, it is necessary to
determine the ranking of these all numbers. For this, we develop the SV and AV, demon-
strated below.

Definition 9. For the CIFSNs, Ξ̃CI−eij =

(
µΞ̃RP−ij

e
i2π(µΞ̃IP−ij

)
, ηΞ̃RP−ij

e
i2π(ηΞ̃IP−ij

)
)

,

i, j = 1, 2, . . . ,
︷︸︸︷

n ,
︷︸︸︷

m their SV and AV are demonstrated by:

SSV

(
Ξ̃CI−eij

)
=

1
4

(
1 + µΞ̃RP−ij

+ µΞ̃RP−ij
− ηΞ̃RP−ij

− ηΞ̃RP−ij

)
(13)
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HAV

(
Ξ̃CI−eij

)
=

1
4

(
1 + µΞ̃RP−ij

+ µΞ̃RP−ij
+ ηΞ̃RP−ij

+ ηΞ̃RP−ij

)
(14)

By using the above information, we can determine which CIFSN is superior and
which one is inferior. We, thus, revise the rules for the comparison between any number of
CIFSNs such as:

1. When SSV

(
Ξ̃CI−eij

)
> SSV

(
Ξ̃′CI−eij

)
=⇒ Ξ̃CI−eij > Ξ̃′CI−eij ;

2. When SSV

(
Ξ̃CI−eij

)
= SSV

(
Ξ̃′CI−eij

)
=⇒

(1) When HAV

(
Ξ̃CI−eij

)
> HAV

(
Ξ̃′CI−eij

)
=⇒ Ξ̃CI−eij > Ξ̃′CI−eij ;

(2) When HAV

(
Ξ̃CI−eij

)
= HAV

(
Ξ̃′CI−eij

)
=⇒ Ξ̃CI−eij = Ξ̃′CI−eij .

Definition 10. By using two CIFSNs Ξ̃CI−e11 =

(
µΞ̃RP−11

e
i2π(µΞ̃IP−11

)
, ηΞ̃RP−11

e
i2π(ηΞ̃IP−11

)
)

and Ξ̃CI−e12 =

(
µΞ̃RP−12

e
i2π(µΞ̃IP−12

)
, ηΞ̃RP−12

e
i2π(ηΞ̃IP−12

)
)

, then

Ξ̃CI−e11

⊕
Ξ̃CI−e12 =

 (
µΞ̃RP−11

+ µΞ̃RP−12
− µΞ̃RP−11

µΞ̃RP−12

)
e

i2π(µΞ̃IP−11
+µΞ̃IP−12

−µΞ̃IP−11
µΞ̃IP−12

)
,

ηΞ̃RP−11
ηΞ̃RP−12

e
i2π(ηΞ̃IP−11

ηΞ̃IP−12
)

 (15)

Ξ̃CI−e11

⊗
Ξ̃CI−e12

=

 µΞ̃RP−11
µΞ̃RP−12

e
i2π(µΞ̃IP−11

µΞ̃IP−12
)
,(

ηΞ̃RP−11
+ ηΞ̃RP−12

− ηΞ̃RP−11
ηΞ̃RP−12

)
e

i2π(ηΞ̃IP−11
+ηΞ̃IP−12

−ηΞ̃IP−11
ηΞ̃IP−12

)

 (16)

ΦSCΞ̃CI−e11 =

((
1−

(
1− µΞ̃RP−11

)ΦSC
)

e
i2π(1−(1−µΞ̃IP−11

)ΦSC )
, η

ΦSC
Ξ̃RP−11

e
i2π(η

ΦSC
Ξ̃IP−11

)
)

(17)

Ξ̃ΦSC
CI−e11

=

(
µ

ΦSC
Ξ̃RP−11

e
i2π(µ

ΦSC
Ξ̃IP−11

)
,
(

1−
(

1− ηΞ̃RP−11

)ΦSC
)

e
i2π(1−(1−ηΞ̃IP−11

)ΦSC )

)
(18)

Theorem 1. By using CIFSNs Ξ̃CI−eij =

(
µΞ̃RP−ij

e
i2π(µΞ̃IP−ij

)
, ηΞ̃RP−ij

e
i2π(ηΞ̃IP−ij

)
)

,

i, j = 1, 2, . . . ,
︷︸︸︷

n ,
︷︸︸︷

m , then

1. Ξ̃CI−e11

⊕
Ξ̃CI−e12 = Ξ̃CI−e12

⊕
Ξ̃CI−e11 ;

2. Ξ̃CI−e11

⊗
Ξ̃CI−e12 = Ξ̃CI−e12

⊗
Ξ̃CI−e11 ;

3.
(

Ξ̃CI−e11

⊕
Ξ̃CI−e12

)⊕
Ξ̃CI−e13 = Ξ̃CI−e12

⊕(
Ξ̃CI−e11

⊕
Ξ̃CI−e13

)
;

4.
(

Ξ̃CI−e11

⊗
Ξ̃CI−e12

)⊗
Ξ̃CI−e13 = Ξ̃CI−e12

⊗(
Ξ̃CI−e11

⊗
Ξ̃CI−e13

)
;

5. ΦSC

(
Ξ̃CI−e11

⊕
Ξ̃CI−e12

)
= ΦSCΞ̃CI−e11

⊕
ΦSCΞ̃CI−e12 ;

6.
(

Ξ̃CI−e11

⊗
Ξ̃CI−e12

)ΦSC
= Ξ̃ΦSC

CI−e11

⊗
Ξ̃ΦSC

CI−e12
;

7. ΦSC−1Ξ̃CI−e11

⊕
ΦSC−2Ξ̃CI−e11 = (ΦSC−1 + ΦSC−2)Ξ̃CI−e11 ;

8. Ξ̃ΦSC−1
CI−e11

⊗
Ξ̃ΦSC−2

CI−e11
= Ξ̃(ΦSC−1+ΦSC−2)

CI−e11
.

Proof. Trivial. �

4. Averaging and Geometric Prioritized Aggregation Operators

As shown above, to find the relationship among any number of attributes the aggre-
gation operators are one the best technique to determine the consistency of the elaborated
operators. By using the advantages of the elaborated CIFSSs, in this study, we elaborated on
CIFSPWAO, CIFSPOWAO, CIFSPWGO, and CIFSPOWGO, and deliberated their properties.



Mathematics 2021, 9, 1922 9 of 30

Definition 11. For the CIFSNs Ξ̃CI−eij =

(
µΞ̃RP−ij

e
i2π(µΞ̃IP−ij

)
, ηΞ̃RP−ij

e
i2π(ηΞ̃IP−ij

)
)

,

i, j = 1, 2, . . . ,
︷︸︸︷

n ,
︷︸︸︷

m , their CIFSPWA operators are demonstrated by:

CIFSPWA

(
Ξ̃CI−e11 , Ξ̃CI−e12 , . . . , Ξ̃CI−e︷︸︸︷

m
︷︸︸︷

n

)
= ⊕

︷︸︸︷
m

i=1
Zi

∑
︷︸︸︷

m
i=1 Zi

⊕︷︸︸︷n
j=1

Zj

∑
︷︸︸︷

n
j=1 Zj

Ξ̃CI−eij

 (19)

where Z1 = Z1 = 1 and

Zj =
j−1

∏
l=1

SSV

(
Ξ̃CI−l

)
, j = 1, 2, . . . ,

︷︸︸︷
n (20)

Zi =
i−1

∏
k=1

SSV

(
Ξ̃CI−k

)
, i, j = 1, 2, . . . ,

︷︸︸︷
m (21)

By using Definition 11, we utilized the following results.

Theorem 2. For the CIFSNs Ξ̃CI−eij =

(
µΞ̃RP−ij

e
i2π(µΞ̃IP−ij

)
, ηΞ̃RP−ij

e
i2π(ηΞ̃IP−ij

)
)

, i, j = 1, 2,

. . . ,
︷︸︸︷

n ,
︷︸︸︷

m , thereby using Equation (19), we have

CIFSPWA

(
Ξ̃CI−e11 , Ξ̃CI−e12 , . . . , Ξ̃CI−e︷︸︸︷

m
︷︸︸︷

n

)
=

1−
︷︸︸︷

m
∏
i=1


︷︸︸︷

n
∏
j=1

(
1− µΞ̃RP−ij

) Zj

∑

︷︸︸︷
n

j=1 Zj


Zi

∑

︷︸︸︷
m

i=1 Zi

e

i2π(1−∏
︷︸︸︷

m
i=1 (∏

︷︸︸︷
n

j=1 (1−µΞ̃IP−ij
)

Zj

∑

︷︸︸︷
n

j=1 Zj )

Zi

∑

︷︸︸︷
m

i=1 Zi

)

,

︷︸︸︷
m
∏
i=1


︷︸︸︷

n
∏
j=1

ηΞ̃RP−ij

Zj

∑

︷︸︸︷
n

j=1 Zj


Zi

∑

︷︸︸︷
m

i=1 Zi

e
i2π(∏

︷︸︸︷
m

i=1 (∏
︷︸︸︷

n
j=1 ηΞ̃IP−ij

Zj

∑

︷︸︸︷
n

j=1 Zj )

Zi

∑

︷︸︸︷
m

i=1 Zi

)



(22)

Proof. See Appendix A. �

By using Theorem 2, we initiated the following properties such as idempotency,
boundedness, and monotonicity.

Theorem 3. For the CIFSNs Ξ̃CI−eij =

(
µΞ̃RP−ij

e
i2π(µΞ̃IP−ij

)
, ηΞ̃RP−ij

e
i2π(ηΞ̃IP−ij

)
)

, i, j = 1, 2,

. . . ,
︷︸︸︷

n ,
︷︸︸︷

m , if Ξ̃CI−eij = Ξ̃CI−e =
(

µΞ̃RP
e

i2π(µΞ̃IP
)
, ηΞ̃RP

e
i2π(ηΞ̃IP

)
)

, then

CIFSPWA

(
Ξ̃CI−e11 , Ξ̃CI−e12 , . . . , Ξ̃CI−e︷︸︸︷

m
︷︸︸︷

n

)
= Ξ̃CI−e (23)

Proof. See Appendix A. �
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Theorem 4. For the CIFSNs Ξ̃CI−eij =

(
µΞ̃RP−ij

e
i2π(µΞ̃IP−ij

)
, ηΞ̃RP−ij

e
i2π(ηΞ̃IP−ij

)
)

,

i, j = 1, 2, . . . ,
︷︸︸︷

n ,
︷︸︸︷

m , if Ξ̃−CI−eij
=(

min
i

min
j

µΞ̃RP−ij
e

i2π(min
i

min
j

µΞ̃IP−ij
)
, max

i
max

j
ηΞ̃RP−ij

e
i2π(max

i
max

j
ηΞ̃RP−ij

)
)

and

Ξ̃+
CI−eij

=

(
max

i
max

j
µΞ̃RP−ij

e
i2π(max

i
max

j
µΞ̃IP−ij

)
, min

i
min

j
ηΞ̃RP−ij

e
i2π(min

i
min

j
ηΞ̃RP−ij

)
)

, the

Ξ̃−CI−eij
≤ CIFSPWA

(
Ξ̃CI−e11 , Ξ̃CI−e12 , . . . , Ξ̃CI−e︷︸︸︷

m
︷︸︸︷

n

)
≤ Ξ̃+

CI−eij
(24)

Proof. See Appendix A. �

Theorem 5. For the CIFSNs Ξ̃CI−eij =

(
µΞ̃RP−ij

e
i2π(µΞ̃IP−ij

)
, ηΞ̃RP−ij

e
i2π(ηΞ̃IP−ij

)
)

, i, j = 1, 2,

. . . ,
︷︸︸︷

n ,
︷︸︸︷

m , if Ξ̃CI−eij ≤ Ξ̃′CI−eij
, then

CIFSPWA

(
Ξ̃CI−e11 , Ξ̃CI−e12 , . . . , Ξ̃CI−e︷︸︸︷

m
︷︸︸︷

n

)
≤ CIFSPWA

(
Ξ̃′CI−e11

, Ξ̃′CI−e12
, . . . , Ξ̃′CI−e︷︸︸︷

m
︷︸︸︷

n

)
(25)

Proof. The proof of this theorem is like the proof of Theorem 4. �

Definition 12. For the CIFSNs Ξ̃CI−eij =

(
µΞ̃RP−ij

e
i2π(µΞ̃IP−ij

)
, ηΞ̃RP−ij

e
i2π(ηΞ̃IP−ij

)
)

,

i, j = 1, 2, . . . ,
︷︸︸︷

n ,
︷︸︸︷

m , their CIFSPOWA operators is demonstrated by:

CIFSPOWA

(
Ξ̃CI−e11 , Ξ̃CI−e12 , . . . , Ξ̃CI−e︷︸︸︷

m
︷︸︸︷

n

)
= ⊕

︷︸︸︷
m

i=1
Zi

∑
︷︸︸︷

m
i=1 Zi

⊕︷︸︸︷n
j=1

Zj

∑
︷︸︸︷

n
j=1 Zj

Ξ̃CI−eσ(i)σ(j)

 (26)

where Z1 = Z1 = 1 and

Zj =
j−1

∏
l=1

SSV

(
Ξ̃CI−σ(l)

)
, j = 1, 2, . . . ,

︷︸︸︷
n (27)

Zi =
i−1

∏
k=1

SSV

(
Ξ̃CI−σ(k)

)
, i, j = 1, 2, . . . ,

︷︸︸︷
m (28)

Moreover, σ is a transformation function of i = 1, 2, . . . ,
︷︸︸︷

n such that σ(i− 1) ≥ σ(i).
By using Definition 12, we utilized the following results.

Theorem 6. For the CIFSNs Ξ̃CI−eij =

(
µΞ̃RP−ij

e
i2π(µΞ̃IP−ij

)
, ηΞ̃RP−ij

e
i2π(ηΞ̃IP−ij

)
)

, i, j = 1, 2,

. . . ,
︷︸︸︷

n ,
︷︸︸︷

m , then by using Equation (26), we have
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CIFSPOWA

(
Ξ̃CI−e11 , Ξ̃CI−e12 , . . . , Ξ̃CI−e︷︸︸︷

m
︷︸︸︷

n

)
=

1−
︷︸︸︷

m
∏
i=1


︷︸︸︷

n
∏
j=1

(
1− µΞ̃RP−σ(i)σ(j)

) Zj

∑

︷︸︸︷
n

j=1 Zj


Zi

∑

︷︸︸︷
m

i=1 Zi

e

i2π(1−∏
︷︸︸︷

m
i=1 (∏

︷︸︸︷
n

j=1 (1−µΞ̃IP−σ(i)σ(j)
)

Zj

∑

︷︸︸︷
n

j=1 Zj )

Zi

∑

︷︸︸︷
m

i=1 Zi

)

,

︷︸︸︷
m
∏
i=1


︷︸︸︷

n
∏
j=1

ηΞ̃RP−σ(i)σ(j)

Zj

∑

︷︸︸︷
n

j=1 Zj


Zi

∑

︷︸︸︷
m

i=1 Zi

e
i2π(∏

︷︸︸︷
m

i=1 (∏
︷︸︸︷

n
j=1 ηΞ̃IP−σ(i)σ(j)

Zj

∑

︷︸︸︷
n

j=1 Zj )

Zi

∑

︷︸︸︷
m

i=1 Zi

)



(29)

Proof. Trivial. �

By using Theorem 6, we utilized the following properties such as idempotency, bound-
edness, and monotonicity.

Theorem 7. For the CIFSNs Ξ̃CI−eij =

(
µΞ̃RP−ij

e
i2π(µΞ̃IP−ij

)
, ηΞ̃RP−ij

e
i2π(ηΞ̃IP−ij

)
)

, i, j = 1, 2,

. . . ,
︷︸︸︷

n ,
︷︸︸︷

m , if Ξ̃CI−eij = Ξ̃CI−e =
(

µΞ̃RP
e

i2π(µΞ̃IP
)
, ηΞ̃RP

e
i2π(ηΞ̃IP

)
)

, their

CIFSPOWA

(
Ξ̃CI−e11 , Ξ̃CI−e12 , . . . , Ξ̃CI−e︷︸︸︷

m
︷︸︸︷

n

)
= Ξ̃CI−e (30)

Proof. Trivial. �

Theorem 8. For the CIFSNs Ξ̃CI−eij =

(
µΞ̃RP−ij

e
i2π(µΞ̃IP−ij

)
, ηΞ̃RP−ij

e
i2π(ηΞ̃IP−ij

)
)

,

i, j = 1, 2, . . . ,
︷︸︸︷

n ,
︷︸︸︷

m , if Ξ̃−CI−eij
=(

min
i

min
j

µΞ̃RP−ij
e

i2π(min
i

min
j

µΞ̃IP−ij
)
, max

i
max

j
ηΞ̃RP−ij

e
i2π(max

i
max

j
ηΞ̃RP−ij

)
)

and

Ξ̃+
CI−eij

=

(
max

i
max

j
µΞ̃RP−ij

e
i2π(max

i
max

j
µΞ̃IP−ij

)
, min

i
min

j
ηΞ̃RP−ij

e
i2π(min

i
min

j
ηΞ̃RP−ij

)
)

, their

Ξ̃−CI−eij
≤ CIFSPOWA

(
Ξ̃CI−e11 , Ξ̃CI−e12 , . . . , Ξ̃CI−e︷︸︸︷

m
︷︸︸︷

n

)
≤ Ξ̃+

CI−eij
(31)

Proof. Trivial. �

Theorem 9. For the CIFSNs Ξ̃CI−eij =

(
µΞ̃RP−ij

e
i2π(µΞ̃IP−ij

)
, ηΞ̃RP−ij

e
i2π(ηΞ̃IP−ij

)
)

, i, j = 1, 2,

. . . ,
︷︸︸︷

n ,
︷︸︸︷

m , if Ξ̃CI−eij ≤ Ξ̃′CI−eij
, their

CIFSPOWA

(
Ξ̃CI−e11 , Ξ̃CI−e12 , . . . , Ξ̃CI−e︷︸︸︷

m
︷︸︸︷

n

)
≤ CIFSPOWA

(
Ξ̃′CI−e11

, Ξ̃′CI−e12
, . . . , Ξ̃′CI−e︷︸︸︷

m
︷︸︸︷

n

)
(32)
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Proof. Trivial. �

Definition. 13. For the CIFSNs Ξ̃CI−eij =

(
µΞ̃RP−ij

e
i2π(µΞ̃IP−ij

)
, ηΞ̃RP−ij

e
i2π(ηΞ̃IP−ij

)
)

,

i, j = 1, 2, . . . ,
︷︸︸︷

n ,
︷︸︸︷

m , their CIFSPWG operator is demonstrated by:

CIFSPWG

(
Ξ̃CI−e11 , Ξ̃CI−e12 , . . . , Ξ̃CI−e︷︸︸︷

m
︷︸︸︷

n

)
= ⊗

︷︸︸︷
m

i=1
Zi

∑
︷︸︸︷

m
i=1 Zi

⊗︷︸︸︷n
j=1

Zj

∑
︷︸︸︷

n
j=1 Zj

Ξ̃CI−eij

 (33)

where Z1 = Z1 = 1 and

Zj =
j−1

∏
l=1

SSV

(
Ξ̃CI−l

)
, j = 1, 2, . . . ,

︷︸︸︷
n (34)

Zi =
i−1

∏
k=1

SSV

(
Ξ̃CI−k

)
, i, j = 1, 2, . . . ,

︷︸︸︷
m (35)

By using Definition 13, we utilized the following results.

Theorem 10. For the CIFSNs Ξ̃CI−eij =

(
µΞ̃RP−ij

e
i2π(µΞ̃IP−ij

)
, ηΞ̃RP−ij

e
i2π(ηΞ̃IP−ij

)
)

,

i, j = 1, 2, . . . ,
︷︸︸︷

n ,
︷︸︸︷

m , then by using Equation (33), we have

CIFSPWA

(
Ξ̃CI−e11 , Ξ̃CI−e12 , . . . , Ξ̃CI−e︷︸︸︷

m
︷︸︸︷

n

)
=

︷︸︸︷
m
∏
i=1


︷︸︸︷

n
∏
j=1

µΞ̃RP−ij

Zj

∑

︷︸︸︷
n

j=1 Zj


Zi

∑

︷︸︸︷
m

i=1 Zi

e
i2π(∏

︷︸︸︷
m

i=1 (∏
︷︸︸︷

n
j=1 µΞ̃IP−ij

Zj

∑

︷︸︸︷
n

j=1 Zj )

Zi

∑

︷︸︸︷
m

i=1 Zi

),

1−
︷︸︸︷

m
∏
i=1


︷︸︸︷

n
∏
j=1

(
1− ηΞ̃RP−ij

) Zj

∑

︷︸︸︷
n

j=1 Zj


Zi

∑

︷︸︸︷
m

i=1 Zi

e

i2π(1−∏
︷︸︸︷

m
i=1 (∏

︷︸︸︷
n

j=1 (1−ηΞ̃IP−ij
)

Zj

∑

︷︸︸︷
n

j=1 Zj )

Zi

∑

︷︸︸︷
m

i=1 Zi

)



(36)

Proof. Trivial. �

By using Theorem 10, we utilized the following properties such as idempotency,
boundedness, and monotonicity.

Theorem 11. For the CIFSNs Ξ̃CI−eij =

(
µΞ̃RP−ij

e
i2π(µΞ̃IP−ij

)
, ηΞ̃RP−ij

e
i2π(ηΞ̃IP−ij

)
)

,

i, j = 1, 2, . . . ,
︷︸︸︷

n ,
︷︸︸︷

m , if Ξ̃CI−eij = Ξ̃CI−e =
(

µΞ̃RP
e

i2π(µΞ̃IP
)
, ηΞ̃RP

e
i2π(ηΞ̃IP

)
)

, their

CIFSPWG

(
Ξ̃CI−e11 , Ξ̃CI−e12 , . . . , Ξ̃CI−e︷︸︸︷

m
︷︸︸︷

n

)
= Ξ̃CI−e (37)



Mathematics 2021, 9, 1922 13 of 30

Proof. Trivial. �

Theorem 12. Neutrosophic sets Ξ̃CI−eij =

(
µΞ̃RP−ij

e
i2π(µΞ̃IP−ij

)
, ηΞ̃RP−ij

e
i2π(ηΞ̃IP−ij

)
)

,

i, j = 1, 2, . . . ,
︷︸︸︷

n ,
︷︸︸︷

m , if Ξ̃−CI−eij
=(

min
i

min
j

µΞ̃RP−ij
e

i2π(min
i

min
j

µΞ̃IP−ij
)
, max

i
max

j
ηΞ̃RP−ij

e
i2π(max

i
max

j
ηΞ̃RP−ij

)
)

and

Ξ̃+
CI−eij

=

(
max

i
max

j
µΞ̃RP−ij

e
i2π(max

i
max

j
µΞ̃IP−ij

)
, min

i
min

j
ηΞ̃RP−ij

e
i2π(min

i
min

j
ηΞ̃RP−ij

)
)

, their

Ξ̃−CI−eij
≤ CIFSPWG

(
Ξ̃CI−e11 , Ξ̃CI−e12 , . . . , Ξ̃CI−e︷︸︸︷

m
︷︸︸︷

n

)
≤ Ξ̃+

CI−eij
(38)

Proof. Trivial. �

Theorem 13. For the CIFSNs Ξ̃CI−eij =

(
µΞ̃RP−ij

e
i2π(µΞ̃IP−ij

)
, ηΞ̃RP−ij

e
i2π(ηΞ̃IP−ij

)
)

,

i, j = 1, 2, . . . ,
︷︸︸︷

n ,
︷︸︸︷

m , if Ξ̃CI−eij ≤ Ξ̃′CI−eij
, their

CIFSPWG

(
Ξ̃CI−e11 , Ξ̃CI−e12 , . . . , Ξ̃CI−e︷︸︸︷

m
︷︸︸︷

n

)
≤ CIFSPWG

(
Ξ̃′CI−e11

, Ξ̃′CI−e12
, . . . , Ξ̃′CI−e︷︸︸︷

m
︷︸︸︷

n

)
(39)

Proof. Trivial. �

Definition 14. For the CIFSNs Ξ̃CI−eij =

(
µΞ̃RP−ij

e
i2π(µΞ̃IP−ij

)
, ηΞ̃RP−ij

e
i2π(ηΞ̃IP−ij

)
)

,

i, j = 1, 2, . . . ,
︷︸︸︷

n ,
︷︸︸︷

m , their CIFSPOWG operators is demonstrated by:

CIFSPOWG

(
Ξ̃CI−e11 , Ξ̃CI−e12 , . . . , Ξ̃CI−e︷︸︸︷

m
︷︸︸︷

n

)
= ⊗

︷︸︸︷
m

i=1
Zi

∑
︷︸︸︷

m
i=1 Zi

⊗︷︸︸︷n
j=1

Zj

∑
︷︸︸︷

n
j=1 Zj

Ξ̃CI−eσ(i)σ(j)

 (40)

where and

Zj =
j−1

∏
l=1

SSV

(
Ξ̃CI−σ(l)

)
, j = 1, 2, . . . ,

︷︸︸︷
n (41)

Zi =
i−1

∏
k=1

SSV

(
Ξ̃CI−σ(k)

)
, i, j = 1, 2, . . . ,

︷︸︸︷
m (42)

Moreover, σ is a transformation function of i = 1, 2, . . . ,
︷︸︸︷

n such that σ(i− 1) ≥ σ(i).
By using Definition 14, we obtained the following results.

Theorem 14. For the CIFSNs Ξ̃CI−eij =

(
µΞ̃RP−ij

e
i2π(µΞ̃IP−ij

)
, ηΞ̃RP−ij

e
i2π(ηΞ̃IP−ij

)
)

,

i, j = 1, 2, . . . ,
︷︸︸︷

n ,
︷︸︸︷

m , then by using Equation (40), we have
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CIFSPOWA

(
Ξ̃CI−e11 , Ξ̃CI−e12 , . . . , Ξ̃CI−e︷︸︸︷

m
︷︸︸︷

n

)
=

︷︸︸︷
m
∏
i=1


︷︸︸︷

n
∏
j=1

µΞ̃RP−σ(i)σ(j)

Zj

∑

︷︸︸︷
n

j=1 Zj


Zi

∑

︷︸︸︷
m

i=1 Zi

e
i2π(∏

︷︸︸︷
m

i=1 (∏
︷︸︸︷

n
j=1 µΞ̃IP−σ(i)σ(j)

Zj

∑

︷︸︸︷
n

j=1 Zj )

Zi

∑

︷︸︸︷
m

i=1 Zi

),

1−
︷︸︸︷

m
∏
i=1


︷︸︸︷

n
∏
j=1

(
1− ηΞ̃RP−σ(i)σ(j)

) Zj

∑

︷︸︸︷
n

j=1 Zj


Zi

∑

︷︸︸︷
m

i=1 Zi

e

i2π(1−∏
︷︸︸︷

m
i=1 (∏

︷︸︸︷
n

j=1 (1−ηΞ̃IP−σ(i)σ(j)
)

Zj

∑

︷︸︸︷
n

j=1 Zj )

Zi

∑

︷︸︸︷
m

i=1 Zi

)



(43)

Proof. Trivial. �

By using Theorem 14, we utilized the following properties such as idempotency,
boundedness, and monotonicity.

Theorem 15. For the CIFSNs Ξ̃CI−eij =

(
µΞ̃RP−ij

e
i2π(µΞ̃IP−ij

)
, ηΞ̃RP−ij

e
i2π(ηΞ̃IP−ij

)
)

,

i, j = 1, 2, . . . ,
︷︸︸︷

n ,
︷︸︸︷

m , if Ξ̃CI−eij = Ξ̃CI−e =
(

µΞ̃RP
e

i2π(µΞ̃IP
)
, ηΞ̃RP

e
i2π(ηΞ̃IP

)
)

, then

CIFSPOWG

(
Ξ̃CI−e11 , Ξ̃CI−e12 , . . . , Ξ̃CI−e︷︸︸︷

m
︷︸︸︷

n

)
= Ξ̃CI−e (44)

Proof. Trivial. �

Theorem 16. For the CIFSNs Ξ̃CI−eij =

(
µΞ̃RP−ij

e
i2π(µΞ̃IP−ij

)
, ηΞ̃RP−ij

e
i2π(ηΞ̃IP−ij

)
)

,

i, j = 1, 2, . . . ,
︷︸︸︷

n ,
︷︸︸︷

m , if Ξ̃−CI−eij
=(

min
i

min
j

µΞ̃RP−ij
e

i2π(min
i

min
j

µΞ̃IP−ij
)
, max

i
max

j
ηΞ̃RP−ij

e
i2π(max

i
max

j
ηΞ̃RP−ij

)
)

and

Ξ̃+
CI−eij

=

(
max

i
max

j
µΞ̃RP−ij

e
i2π(max

i
max

j
µΞ̃IP−ij

)
, min

i
min

j
ηΞ̃RP−ij

e
i2π(min

i
min

j
ηΞ̃RP−ij

)
)

, then

Ξ̃−CI−eij
≤ CIFSPOWG

(
Ξ̃CI−e11 , Ξ̃CI−e12 , . . . , Ξ̃CI−e︷︸︸︷

m
︷︸︸︷

n

)
≤ Ξ̃+

CI−eij
(45)

Proof. Trivial. �

Theorem 17. For the CIFSNs Ξ̃CI−eij =

(
µΞ̃RP−ij

e
i2π(µΞ̃IP−ij

)
, ηΞ̃RP−ij

e
i2π(ηΞ̃IP−ij

)
)

,

i, j = 1, 2, . . . ,
︷︸︸︷

n ,
︷︸︸︷

m , if Ξ̃CI−eij ≤ Ξ̃′CI−eij
, then

CIFSPOWG

(
Ξ̃CI−e11 , Ξ̃CI−e12 , . . . , Ξ̃CI−e︷︸︸︷

m
︷︸︸︷

n

)
≤ CIFSPOWG

(
Ξ̃′CI−e11

, Ξ̃′CI−e12
, . . . , Ξ̃′CI−e︷︸︸︷

m
︷︸︸︷

n

)
(46)
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Proof. Trivial. �

The presented operators based on CIFSS are more powerful than the existing operators
based on fuzzy sets, soft sets, complex fuzzy sets, fuzzy soft sets, complex fuzzy soft sets,
intuitionistic fuzzy sets, intuitionistic fuzzy soft sets, and complex intuitionistic fuzzy sets.
If we are ignoring the value of soft sets, then the proposed operators based on CIFSSs are
converted for CIFSs. Similarly, if we are ignoring the imaginary part in truth and falsity
grades, then the presented operators based on CIFSSs are converted for intuitionistic fuzzy
soft sets. Additionally, if we chose the value of falsity is equal to zero, then the presented
operators based on CIFSSs are converted for complex fuzzy soft sets. The prioritized
aggregation operators based on fuzzy sets, soft sets, complex fuzzy sets, fuzzy soft sets,
complex fuzzy soft sets, intuitionistic fuzzy sets, intuitionistic fuzzy soft sets, and complex
intuitionistic fuzzy sets all are the special cases of the presented operators based on CIFSSs.

5. MADM Procedure Based on Investigated Operators

By using the investigated operators based on CIFSS, we develop a new process of strat-
egy to find the MADM technique by using the investigated approaches. For this, we choose

the family of alternatives and their attributes such that Ξ̃CI =

{
Ξ̃CI−1, Ξ̃CI−2, . . . , Ξ̃

CI−
︷︸︸︷

n

}
and Ξ̃AT =

{
Ξ̃AT−1, Ξ̃AT−2, . . . , Ξ̃

AT−
︷︸︸︷

m

}
. For this, we choose the family of parameters,

whose expressions are discussed as:
{
^
x 1,

^
x 2, . . . ,

^
x t

}
. For this, we create a decision matrix,

whose every item is in the form of CIFSNs such that Ξ̃CI−i =(
µΞ̃RP−ij

e
i2π(µΞ̃IP−ij

)
, ηΞ̃RP−ij

e
i2π(ηΞ̃IP−ij

)
)

, where µΞ̃CI
= µΞ̃RP

e
i2π(µΞ̃IP

)
and

ηΞ̃CI
= ηΞ̃RP

e
i2π(ηΞ̃IP

)
with the rules such that 0 ≤ µ1

Ξ̃RP
+ η1

Ξ̃RP
≤ 1 and 0 ≤ µ1

Ξ̃IP
+ η1

Ξ̃IP
≤ 1.

Furthermore, the refusal grade is demonstrated in the form of LΞ̃CI
= LΞ̃RP

e
i2π(LΞ̃IP

)
=(

1− µ1
Ξ̃RP
− η1

Ξ̃RP

)
e

i2π(1−µ1
Ξ̃IP
−η1

Ξ̃IP
)
. As shown above, the procedure of the decision-making

technique is digested in the ensuing ways:
Step 1: By using the family of CIFSNs, we construct the decision matrix, which

includes the CIFSNs.
Step 2: By using Equation (22), we aggregate the constructed matrix.
Step 3: By using Equation (13), we determine the score standards of the collected beliefs.
Step 4: Rank all options and discover the best option.
Step 5: Finished.

5.1. Illustrated Example

In this study, we present a pragmatic numerous trait dynamic technique to outline
the use of the new strategy. There is an organization that needs to contribute a lot of
cash to the accompanying conceivable region: Ξ̃CI−1 : gold, Ξ̃CI−2 : the travel industry,
Ξ̃CI−3 : real bequest, and Ξ̃CI−4 : energy industry. The organization welcomes some expert
venture associations to help with dynamic decision making. The task group thinks about
the accompanying attributes: Ξ̃AT−1 : market potential, Ξ̃AT−2 : the measure of interests
obtained, Ξ̃AT−3 : growth potential, Ξ̃AT−4 : danger of losing capital whole, and Ξ̃AT−5 :
other. For this, we choose the family of parameters whose expressions are discussed as:{
^
x 1,

^
x 2,

^
x 3,

^
x 4,

^
x 5

}
. The proposed technique is applied to choose the best speculation

choice and the solid choices are as follows.
As shown above, the procedure of the decision-making technique is condensed in the

following ways:
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Step 1: For the family of CIFSNs, we construct the decision matrix, which includes the
CIFSNs that are discussed in Tables 2–5.

Table 2. Original decision matrix for candidates Ξ̃CI−1.

^
x 1

^
x 2

^
x 3

^
x 4

^
x 5

~
ΞAT−1

(
0.3ei2π(0.3),
0.4ei2π(0.4)

) (
0.5ei2π(0.5),
0.1ei2π(0.1)

) (
0.6ei2π(0.6),
0.2ei2π(0.2)

) (
0.7ei2π(0.7),
0.1ei2π(0.1)

) (
0.6ei2π(0.6),
0.2ei2π(0.2)

)
~
ΞAT−2

(
0.6ei2π(0.6),
0.1ei2π(0.1)

) (
0.6ei2π(0.6),
0.2ei2π(0.2)

) (
0.2ei2π(0.2),
0.4ei2π(0.4)

) (
0.5ei2π(0.5),
0.1ei2π(0.1)

) (
0.7ei2π(0.7),
0.3ei2π(0.3)

)
~
ΞAT−3

(
0.5ei2π(0.5),
0.1ei2π(0.1)

) (
0.7ei2π(0.7),
0.2ei2π(0.2)

) (
0.5ei2π(0.5),
0.4ei2π(0.4)

) (
0.2ei2π(0.2),
0.2ei2π(0.2)

) (
0.4ei2π(0.4),
0.2ei2π(0.2)

)
~
ΞAT−4

(
0.2ei2π(0.2),
0.4ei2π(0.4)

) (
0.5ei2π(0.5),
0.1ei2π(0.1)

) (
0.6ei2π(0.6),
0.1ei2π(0.1)

) (
0.4ei2π(0.4),
0.1ei2π(0.1)

) (
0.6ei2π(0.6),
0.2ei2π(0.2)

)
~
ΞAT−5

(
0.6ei2π(0.6),
0.1ei2π(0.1)

) (
0.3ei2π(0.3),
0.4ei2π(0.4)

) (
0.4ei2π(0.4),
0.3ei2π(0.3)

) (
0.6ei2π(0.6),
0.1ei2π(0.1)

) (
0.5ei2π(0.5),
0.2ei2π(0.2)

)

Table 3. Original decision matrix for candidates Ξ̃CI−2.

^
x 1

^
x 2

^
x 3

^
x 4

^
x 5

~
ΞAT−1

(
0.4ei2π(0.4),
0.3ei2π(0.3)

) (
0.5ei2π(0.5),
0.1ei2π(0.1)

) (
0.6ei2π(0.6),
0.2ei2π(0.2)

) (
0.7ei2π(0.7),
0.1ei2π(0.1)

) (
0.7ei2π(0.7),
0.2ei2π(0.2)

)
~
ΞAT−2

(
0.6ei2π(0.6),
0.1ei2π(0.1)

) (
0.5ei2π(0.5),
0.3ei2π(0.3)

) (
0.4ei2π(0.4),
0.3ei2π(0.3)

) (
0.4ei2π(0.4),
0.3ei2π(0.3)

) (
0.4ei2π(0.4),
0.1ei2π(0.1)

)
~
ΞAT−3

(
0.5ei2π(0.5),
0.3ei2π(0.3)

) (
0.5ei2π(0.5),
0.1ei2π(0.1)

) (
0.5ei2π(0.5),
0.3ei2π(0.3)

) (
0.3ei2π(0.3),
0.2ei2π(0.2)

) (
0.6ei2π(0.6),
0.2ei2π(0.2)

)
~
ΞAT−4

(
0.5ei2π(0.5),
0.3ei2π(0.3)

) (
0.7ei2π(0.7),
0.3ei2π(0.3)

) (
0.4ei2π(0.4),
0.2ei2π(0.2)

) (
0.5ei2π(0.5),
0.1ei2π(0.1)

) (
0.5ei2π(0.5),
0.2ei2π(0.2)

)
~
ΞAT−5

(
0.4ei2π(0.4),
0.2ei2π(0.2)

) (
0.5ei2π(0.5),
0.2ei2π(0.2)

) (
0.3ei2π(0.3),
0.3ei2π(0.3)

) (
0.6ei2π(0.6),
0.1ei2π(0.1)

) (
0.4ei2π(0.4),
0.2ei2π(0.2)

)

Table 4. Original decision matrix for candidates Ξ̃CI−3.

^
x 1

^
x 2

^
x 3

^
x 4

^
x 5

~
ΞAT−1

(
0.4ei2π(0.4),
0.3ei2π(0.3)

) (
0.5ei2π(0.5),
0.4ei2π(0.4)

) (
0.5ei2π(0.5),
0.2ei2π(0.2)

) (
0.6ei2π(0.6),
0.1ei2π(0.1)

) (
0.4ei2π(0.4),
0.2ei2π(0.2)

)
~
ΞAT−2

(
0.5ei2π(0.5),
0.1ei2π(0.1)

) (
0.3ei2π(0.3),
0.2ei2π(0.2)

) (
0.3ei2π(0.3),
0.2ei2π(0.2)

) (
0.4ei2π(0.4),
0.2ei2π(0.2)

) (
0.3ei2π(0.3),
0.2ei2π(0.2)

)
~
ΞAT−3

(
0.5ei2π(0.5),
0.3ei2π(0.3)

) (
0.5ei2π(0.5),
0.1ei2π(0.1)

) (
0.4ei2π(0.4),
0.2ei2π(0.2)

) (
0.2ei2π(0.2),
0.2ei2π(0.2)

) (
0.5ei2π(0.5),
0.4ei2π(0.4)

)
~
ΞAT−4

(
0.5ei2π(0.5),
0.1ei2π(0.1)

) (
0.4ei2π(0.4),
0.5ei2π(0.5)

) (
0.3ei2π(0.3),
0.2ei2π(0.2)

) (
0.7ei2π(0.7),
0.2ei2π(0.2)

) (
0.3ei2π(0.3),
0.2ei2π(0.2)

)
~
ΞAT−5

(
0.7ei2π(0.7),
0.1ei2π(0.1)

) (
0.4ei2π(0.4),
0.6ei2π(0.6)

) (
0.4ei2π(0.4),
0.2ei2π(0.2)

) (
0.3ei2π(0.3),
0.1ei2π(0.1)

) (
0.6ei2π(0.6),
0.1ei2π(0.1)

)
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Table 5. Original decision matrix for candidates Ξ̃CI−4.

^
x 1

^
x 2

^
x 3

^
x 4

^
x 5

~
ΞAT−1

(
0.3ei2π(0.3),
0.4ei2π(0.4)

) (
0.8ei2π(0.8),
0.1ei2π(0.1)

) (
0.7ei2π(0.7),
0.1ei2π(0.1)

) (
0.4ei2π(0.4),
0.3ei2π(0.3)

) (
0.2ei2π(0.2),
0.3ei2π(0.3)

)
~
ΞAT−2

(
0.5ei2π(0.5),
0.1ei2π(0.1)

) (
0.4ei2π(0.4),
0.2ei2π(0.2)

) (
0.4ei2π(0.4),
0.2ei2π(0.2)

) (
0.6ei2π(0.6),
0.1ei2π(0.1)

) (
0.2ei2π(0.2),
0.6ei2π(0.6)

)
~
ΞAT−3

(
0.2ei2π(0.2),
0.1ei2π(0.1)

) (
0.4ei2π(0.4),
0.2ei2π(0.2)

) (
0.5ei2π(0.5),
0.4ei2π(0.4)

) (
0.4ei2π(0.4),
0.2ei2π(0.2)

) (
0.5ei2π(0.5),
0.2ei2π(0.2)

)
~
ΞAT−4

(
0.7ei2π(0.7),
0.2ei2π(0.2)

) (
0.5ei2π(0.5),
0.1ei2π(0.1)

) (
0.6ei2π(0.6),
0.1ei2π(0.1)

) (
0.4ei2π(0.4),
0.1ei2π(0.1)

) (
0.7ei2π(0.7),
0.1ei2π(0.1)

)
~
ΞAT−5

(
0.5ei2π(0.5),
0.2ei2π(0.2)

) (
0.5ei2π(0.5),
0.4ei2π(0.4)

) (
0.4ei2π(0.4),
0.2ei2π(0.2)

) (
0.3ei2π(0.3),
0.2ei2π(0.2)

) (
0.7ei2π(0.7),
0.1ei2π(0.1)

)

Step 2: By using Equation (22), we aggregate the constructed matrix.

Z1
j =



1

1

1

1

1

0.2

0.5

0.45

0.15

0.5

0.45

0.45

0.5

0.45

0.2

0.45

0.15

0.3

0.5

0.3

0.55

0.45

0.25

0.4

0.5


,Z2

j =



1

1

1

1

1

0.3

0.5

0.35

0.35

0.35

0.45

0.35

0.45

0.45

0.4

0.45

0.3

0.35

0.35

0.25

0.55

0.3

0.3

0.45

0.5


,Z3

j =



1

1

1

1

1

0.3

0.45

0.35

0.45

0.55

0.3

0.3

0.45

0.2

0.15

0.4

0.3

0.35

0.3

0.35

0.5

0.35

0.25

0.5

0.35



Z3
j =


1
1
1
1
1

0.2
0.45
0.3
0.5
0.4

0.6
0.35
0.35
0.45
0.3

0.55
0.35
0.3
0.5

0.35

0.3
0.5
0.35
0.4
0.3



Z1
i =


1

0.55
0.2475
0.1013
0.0456

,Z2
i =


1

0.55
0.165
0.0709
0.0319

,Z3
i =


1

0.5
0.175

0.0473
0.0219

,Z4
i =


1

0.6
0.21

0.0735
0.0331


Ξ̃AT−1 =

(
0.0248ei2π(0.0248), 0.2979ei2π(0.2979)

)
, Ξ̃AT−2 =

(
0.1764ei2π(0.1764), 0.4615ei2π(0.4615)

)
, Ξ̃AT−3=

(
0.4711ei2π(0.4711), 0.7388ei2π(0.7388)

)
, Ξ̃AT−4 =

(
0.1527ei2π(0.1527), 0.3097ei2π(0.3097)

)
, Ξ̃AT−5=

(
0.0703ei2π(0.0703), 0.3189ei2π(0.3189)

)
Step 3: By using Equation (13), we determine the score standards of the collected

beliefs that are discussed in Table 6.

Table 6. By using the information in step 2, we obtain the score values.

Methods Score Values

CIFSPWA operator Ξ̃AT−1 = 0.1135, Ξ̃AT−2 = 0.1075, Ξ̃AT−3 = 0.1162, Ξ̃AT−4 = 0.1715, Ξ̃AT−5 = 0.1257

Step 4: Rank all options and discover the best option.

Ξ̃AT−4 ≥ Ξ̃AT−5 ≥ Ξ̃AT−3 ≥ Ξ̃AT−1 ≥ Ξ̃AT−2

Therefore, the alternative Ξ̃AT−4 is the best option.
Step 5: Finished.



Mathematics 2021, 9, 1922 18 of 30

As shown above, if we prefer the CIFSSs sorts of material, then the existing operators
based on IFSs and IFSSs are unable to resolve it. However, if we prefer the existing sorts of
material, then the elaborated operators based on CIFSSs can resolve it. To further justify
the quality of the elaborated operators based on CIFSSs, we choose the IFSSs sorts of
information and resolve it by using the elaborated operators. The graphical expressions of
the information in Table 6 are explained in Figure 2.
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The IFSSs sorts of information are discussed in Tables 7–10.

Table 7. Original decision matrix for candidates Ξ̃CI−1.

^
x 1

^
x 2

^
x 3

^
x 4

^
x 5

~
ΞAT−1

(
0.3ei2π(0),
0.4ei2π(0)

) (
0.5ei2π(0),
0.1ei2π(0)

) (
0.6ei2π(0),
0.2ei2π(0)

) (
0.7ei2π(0),
0.1ei2π(0)

) (
0.6ei2π(0),
0.2ei2π(0)

)
~
ΞAT−2

(
0.6ei2π(0),
0.1ei2π(0)

) (
0.6ei2π(0),
0.2ei2π(0)

) (
0.2ei2π(0),
0.4ei2π(0)

) (
0.5ei2π(0),
0.1ei2π(0)

) (
0.7ei2π(0),
0.3ei2π(0)

)
~
ΞAT−3

(
0.5ei2π(0),
0.1ei2π(0)

) (
0.7ei2π(0),
0.2ei2π(0)

) (
0.5ei2π(0),
0.4ei2π(0)

) (
0.2ei2π(0),
0.2ei2π(0)

) (
0.4ei2π(0),
0.2ei2π(0)

)
~
ΞAT−4

(
0.2ei2π(0),
0.4ei2π(0)

) (
0.5ei2π(0),
0.1ei2π(0)

) (
0.6ei2π(0),
0.1ei2π(0)

) (
0.4ei2π(0),
0.1ei2π(0)

) (
0.6ei2π(0),
0.2ei2π(0)

)
~
ΞAT−5

(
0.6ei2π(0),
0.1ei2π(0)

) (
0.3ei2π(0),
0.4ei2π(0)

) (
0.4ei2π(0),
0.3ei2π(0)

) (
0.6ei2π(0),
0.1ei2π(0)

) (
0.5ei2π(0),
0.2ei2π(0)

)
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Table 8. Original decision matrix for candidates Ξ̃CI−2.

^
x 1

^
x 2

^
x 3

^
x 4

^
x 5

~
ΞAT−1

(
0.4ei2π(0),
0.3ei2π(0)

) (
0.5ei2π(0),
0.1ei2π(0)

) (
0.6ei2π(0),
0.2ei2π(0)

) (
0.7ei2π(0),
0.1ei2π(0)

) (
0.7ei2π(0),
0.2ei2π(0)

)
~
ΞAT−2

(
0.6ei2π(0),
0.1ei2π(0)

) (
0.5ei2π(0),
0.3ei2π(0)

) (
0.4ei2π(0),
0.3ei2π(0)

) (
0.4ei2π(0),
0.3ei2π(0)

) (
0.4ei2π(0),
0.1ei2π(0)

)
~
ΞAT−3

(
0.5ei2π(0),
0.3ei2π(0)

) (
0.5ei2π(0),
0.1ei2π(0)

) (
0.5ei2π(0),
0.3ei2π(0)

) (
0.3ei2π(0),
0.2ei2π(0)

) (
0.6ei2π(0),
0.2ei2π(0)

)
~
ΞAT−4

(
0.5ei2π(0),
0.3ei2π(0)

) (
0.7ei2π(0),
0.3ei2π(0)

) (
0.4ei2π(0),
0.2ei2π(0)

) (
0.5ei2π(0),
0.1ei2π(0)

) (
0.5ei2π(0),
0.2ei2π(0)

)
~
ΞAT−5

(
0.4ei2π(0),
0.2ei2π(0)

) (
0.5ei2π(0),
0.2ei2π(0)

) (
0.3ei2π(0),
0.3ei2π(0)

) (
0.6ei2π(0),
0.1ei2π(0)

) (
0.4ei2π(0),
0.2ei2π(0)

)

Table 9. Original decision matrix for candidates Ξ̃CI−3.

^
x 1

^
x 2

^
x 3

^
x 4

^
x 5

~
ΞAT−1

(
0.4ei2π(0),
0.3ei2π(0)

) (
0.5ei2π(0),
0.4ei2π(0)

) (
0.5ei2π(0),
0.2ei2π(0)

) (
0.6ei2π(0),
0.1ei2π(0)

) (
0.4ei2π(0),
0.2ei2π(0)

)
~
ΞAT−2

(
0.5ei2π(0),
0.1ei2π(0)

) (
0.3ei2π(0),
0.2ei2π(0)

) (
0.3ei2π(0),
0.2ei2π(0)

) (
0.4ei2π(0),
0.2ei2π(0)

) (
0.3ei2π(0),
0.2ei2π(0)

)
~
ΞAT−3

(
0.5ei2π(0),
0.3ei2π(0)

) (
0.5ei2π(0),
0.1ei2π(0)

) (
0.4ei2π(0),
0.2ei2π(0)

) (
0.2ei2π(0),
0.2ei2π(0)

) (
0.5ei2π(0),
0.4ei2π(0)

)
~
ΞAT−4

(
0.5ei2π(0),
0.1ei2π(0)

) (
0.4ei2π(0),
0.5ei2π(0)

) (
0.3ei2π(0),
0.2ei2π(0)

) (
0.7ei2π(0),
0.2ei2π(0)

) (
0.3ei2π(0),
0.2ei2π(0)

)
~
ΞAT−5

(
0.7ei2π(0),
0.1ei2π(0)

) (
0.4ei2π(0),
0.6ei2π(0)

) (
0.4ei2π(0),
0.2ei2π(0)

) (
0.3ei2π(0),
0.1ei2π(0)

) (
0.6ei2π(0),
0.1ei2π(0)

)

Table 10. Original decision matrix for candidates Ξ̃CI−4.

^
x 1

^
x 2

^
x 3

^
x 4

^
x 5

~
ΞAT−1

(
0.3ei2π(0),
0.4ei2π(0)

) (
0.8ei2π(0),
0.1ei2π(0)

) (
0.7ei2π(0),
0.1ei2π(0)

) (
0.4ei2π(0),
0.3ei2π(0)

) (
0.2ei2π(0),
0.3ei2π(0)

)
~
ΞAT−2

(
0.5ei2π(0),
0.1ei2π(0)

) (
0.4ei2π(0),
0.2ei2π(0)

) (
0.4ei2π(0),
0.2ei2π(0)

) (
0.6ei2π(0),
0.1ei2π(0)

) (
0.2ei2π(0),
0.6ei2π(0)

)
~
ΞAT−3

(
0.2ei2π(0),
0.1ei2π(0)

) (
0.4ei2π(0),
0.2ei2π(0)

) (
0.5ei2π(0),
0.4ei2π(0)

) (
0.4ei2π(0),
0.2ei2π(0)

) (
0.5ei2π(0),
0.2ei2π(0)

)
~
ΞAT−4

(
0.7ei2π(0),
0.2ei2π(0)

) (
0.5ei2π(0),
0.1ei2π(0)

) (
0.6ei2π(0),
0.1ei2π(0)

) (
0.4ei2π(0),
0.1ei2π(0)

) (
0.7ei2π(0),
0.1ei2π(0)

)
~
ΞAT−5

(
0.5ei2π(0),
0.2ei2π(0)

) (
0.5ei2π(0),
0.4ei2π(0)

) (
0.4ei2π(0),
0.2ei2π(0)

) (
0.3ei2π(0),
0.2ei2π(0)

) (
0.7ei2π(0),
0.1ei2π(0)

)
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Step 2: By using Equation (22), we aggregate the constructed matrix.

Z1
j =



1

1

1

1

1

0.225

0.375

0.35

0.2

0.375

0.35

0.35

0.375

0.35

0.275

0.35

0.2

0.275

0.375

0.275

0.4

0.35

0.25

0.325

0.375


,Z2

j =



1

1

1

1

1

0.275

0.375

0.3

0.3

0.3

0.35

0.3

0.35

0.35

0.325

0.35

0.375

0.3

0.3

0.25

0.4

0.275

0.275

0.35

0.375


,Z3

j =



1

1

1

1

1

0.275

0.35

0.3

0.35

0.4

0.275

0.275

0.35

0.225

0.2

0.275

0.3

0.275

0.3

0.25

0.3

0.25

0.375

0.3

0.25



Z3
j =


1
1
1
1
1

0.225
0.35

0.275
0.375
0.325

0.425
0.3
0.3
0.35

0.275

0.4
0.3

0.275
0.375
0.3

0.275
0.375
0.3

0.325
0.275



Z1
i =


1
0.

0.14
0.0459
0.0161

,Z2
i =


1

0.4
0.11

0.0368
0.0129

,Z3
i =


1

0.375
0.1125
0.0289
0.0105

,Z4
i =


1

0.425
0.1275
0.0383
0.0134


Ξ̃AT−1 = (0.0582, 0.3332), Ξ̃AT−2 = (0.3844, 0.5671), Ξ̃AT−3 = (0.7042, 0.8367), Ξ̃AT−4 = (0.2485, 0.298), Ξ̃AT−5 = (0.1227, 0.3065)

Step 3: By using Equation (13), we determined the score standards of the collected
beliefs that are discussed in Table 11.

Table 11. By using the information in step 2, we obtain the score values.

Methods Score Values

CIFSPWA operator Ξ̃AT−1 = 0.1812, Ξ̃AT−2 = 0.2043, Ξ̃AT−3 = 0.2169, Ξ̃AT−4 = 0.2376, Ξ̃AT−5 = 0.204

Step 4: Rank all options and discover the best option.

Ξ̃AT−4 ≥ Ξ̃AT−3 ≥ Ξ̃AT−2 ≥ Ξ̃AT−5 ≥ Ξ̃AT−1

Therefore, the alternative Ξ̃AT−4 is the best option.
Step 5: Finished. The graphical expressions of the information in Table 11 are explained

in Figure 3.
As shown above, we chose different sorts of information and resolved it by using

elaborated operators based on improved CIFSSs. In both examples, we received the same
best option, which is Ξ̃AT−4. Therefore, the elaborated operators based on CIFSSs are
extensively valuable and more valid than the existing theories.
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5.2. Comparative Analysis

Based on the investigated CIFSPWAO, CIFSPOWAO, CIFSPWGO, and CIFSPOWGO
operators, we determined the reliability and consistency of the developed operators with
the help of comparative analysis by using the information of Tables 2–5 and 7–10 shown
in Section 5.1. The information related to existing theories is as follows: Prioritized
averaging/geometric aggregation operators for IFSSs were investigated by Arora and
Garg [27]. Bonferroni mean operators for IFSS were introduced by Garg and Arora [28].
Robust aggregation operators for IFSSs were discovered by Arora and Garg [29]. Prioritized
intuitionistic fuzzy soft interaction averaging aggregation operators were developed by
Garg and Arora [30]. The comparative analysis of the investigated operators and existing
operators are discussed in Table 12 by using the information in Tables 2–5.

Table 12. Comparative analysis of the existing and elaborated operators.

Methods Score Values Ranking Values

Arora and Garg [27] Cannot be Calculated Nil

Garg and Arora [28] Cannot be Calculated Nil

Arora and Garg [29] Cannot be Calculated Nil

Garg and Arora [30] Cannot be Calculated Nil

Proposed Operators

PWA Ξ̃AT−1 = 0.1135, Ξ̃AT−2 = 0.1075, Ξ̃AT−3 = 0.1162,
Ξ̃AT−4 = 0.1715, Ξ̃AT−5 = 0.1257

Ξ̃AT−4 ≥ Ξ̃AT−5 ≥ Ξ̃AT−3
≥ Ξ̃AT−1 ≥ Ξ̃AT−2

POWA Ξ̃AT−1 = 0.1255, Ξ̃AT−2 = 0.1195, Ξ̃AT−3 = 0.1282,
Ξ̃AT−4 = 0.1825, Ξ̃AT−5 = 0.1377

Ξ̃AT−4 ≥ Ξ̃AT−5 ≥ Ξ̃AT−3
≥ Ξ̃AT−1 ≥ Ξ̃AT−2

PWG Ξ̃AT−1 = 0.5022, Ξ̃AT−2 = 0.3859, Ξ̃AT−3 = 0.3288,
Ξ̃AT−4 = 0.3396, Ξ̃AT−5 = 0.4365

Ξ̃AT−1 ≥ Ξ̃AT−5 ≥ Ξ̃AT−2
≥ Ξ̃AT−4 ≥ Ξ̃AT−3

POWG Ξ̃AT−1 = 0.1346, Ξ̃AT−2 = 0.1286, Ξ̃AT−3 = 0.1373,
Ξ̃AT−4 = 0.1926, Ξ̃AT−5 = 0.1468

Ξ̃AT−4 ≥ Ξ̃AT−5 ≥ Ξ̃AT−3
≥ Ξ̃AT−1 ≥ Ξ̃AT−2

The above information gives different sorts of ranking values, which are Ξ̃AT−1 and
Ξ̃AT−4. The graphical expressions of the information in Table 12 are explained in Figure 4.
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As shown above, we choose numerous sorts of materials in the form of elaborated and
existing operators and by using the information of Tables 2–5 we were able to obtain the
information in Table 12. As shown above, it is clear that, the existing sorts of information
are not able to cope with this problem. Therefore, the elaborated operators based on the
CIFSSs are more useful and extensively validated to manage awkward and inconsistent
information in realistic problems. The comparative analysis of the investigated operators
and existing operators is discussed in Table 13 by using the information form Tables 7–10.

Table 13. Comparative analysis of the existing and elaborated operators.

Methods Score Values Ranking Values

Arora and Garg [27] Ξ̃AT−1 = 0.2912, Ξ̃AT−2 = 0.3143, Ξ̃AT−3 = 0.3269,
Ξ̃AT−4 = 0.3476, Ξ̃AT−5 = 0.3141

Ξ̃AT−4 ≥ Ξ̃AT−3 ≥ Ξ̃AT−2
≥ Ξ̃AT−5 ≥ Ξ̃AT−1

Garg and Arora [28] Ξ̃AT−1 = 0.1702, Ξ̃AT−2 = 0.2033, Ξ̃AT−3 = 0.2059,
Ξ̃AT−4 = 0.2266, Ξ̃AT−5 = 0.2031

Ξ̃AT−4 ≥ Ξ̃AT−3 ≥ Ξ̃AT−2
≥ Ξ̃AT−5 ≥ Ξ̃AT−1

Arora and Garg [29] Ξ̃AT−1 = 0.3922, Ξ̃AT−2 = 0.4253, Ξ̃AT−3 = 0.4279,
Ξ̃AT−4 = 0.4486, Ξ̃AT−5 = 0.4151

Ξ̃AT−4 ≥ Ξ̃AT−3 ≥ Ξ̃AT−2
≥ Ξ̃AT−5 ≥ Ξ̃AT−1

Garg and Arora [30] Ξ̃AT−1 = 0.1834, Ξ̃AT−2 = 0.2065, Ξ̃AT−3 = 0.2191,
Ξ̃AT−4 = 0.2398, Ξ̃AT−5 = 0.2261

Ξ̃AT−4 ≥ Ξ̃AT−3 ≥ Ξ̃AT−2
≥ Ξ̃AT−5 ≥ Ξ̃AT−1

Proposed Operators

PWA Ξ̃AT−1 = 0.1812, Ξ̃AT−2 = 0.2043, Ξ̃AT−3 = 0.2169,
Ξ̃AT−4 = 0.2376, Ξ̃AT−5 = 0.204

Ξ̃AT−4 ≥ Ξ̃AT−3 ≥ Ξ̃AT−2
≥ Ξ̃AT−5 ≥ Ξ̃AT−1

POWA Ξ̃AT−1 = 0.1024, Ξ̃AT−2 = 0.1064, Ξ̃AT−3 = 0.1051,
Ξ̃AT−4 = 0.1604, Ξ̃AT−5 = 0.1146

Ξ̃AT−4 ≥ Ξ̃AT−5 ≥ Ξ̃AT−3
≥ Ξ̃AT−1 ≥ Ξ̃AT−2

PWG Ξ̃AT−1 = 0.3538, Ξ̃AT−2 = 0.282, Ξ̃AT−3 = 0.2662,
Ξ̃AT−4 = 0.2622, Ξ̃AT−5 = 0.3115

Ξ̃AT−1 ≥ Ξ̃AT−5 ≥ Ξ̃AT−2
≥ Ξ̃AT−3 ≥ Ξ̃AT−4

POWG Ξ̃AT−1 = 0.4135, Ξ̃AT−2 = 0.4075, Ξ̃AT−3 = 0.4162,
Ξ̃AT−4 = 0.4715, Ξ̃AT−5 = 0.4257

Ξ̃AT−4 ≥ Ξ̃AT−5 ≥ Ξ̃AT−3
≥ Ξ̃AT−1 ≥ Ξ̃AT−2
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As shown in Figures 4 and 5, we see that it contains four existing sorts of operators
and four elaborated sorts of operators. Both figures contain five alternatives in the form of
different colors. For simplicity and better understanding, we have drawn these figures.
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The above information gives different sorts of ranking values, which are Ξ̃AT−1 and
Ξ̃AT−4 The graphical expressions of the information in Table 13 are explained in Figure 5.

As shown above, we choose numerous sorts of materials in the form of elaborated
and existing operators and by using the information from Tables 2–5 and 7–10, obtained
in the form of the information from Tables 12 and 13. As shown above, it is clear that the
existing sorts of information are unable to cope with this problem. Therefore, the elaborated
operators based on the CIFSSs are more useful and extensively valid to manage awkward
and inconsistent information in realistic problems.

6. Conclusions

A prioritized aggregation operator is one of the most flexible and more dominant
techniques to determine the interrelationship among any number of attributes. In this
manuscript, we elaborated on the notion of CIFSS, which includes the grade of truth and
falsity with the rule that the sum of the real and imaginary part of both grades is confined
to [0, 1]. CIFSS is a valuable procedure to determine the authenticity and consistency of
the elaborated approaches. The principle of CIFSS is more powerful and modified from
the existing ideas such as fuzzy sets, complex fuzzy sets, soft sets, complex fuzzy soft sets,
intuitionistic fuzzy sets, intuitionistic fuzzy soft sets, and complex intuitionistic fuzzy sets.
The fundamental laws and their related examples are also determined. Moreover, by using
these laws, we investigated the notions of CIFSPWAO, CIFSPOWAO, CIFSPWGO, and
CIFSPOWGO, and their related properties are also developed. Based on the developed
operators, a MADM tool is developed by using the explored operators based on CIFSS.
Some numerical examples are also illustrated by using the investigated operators to deter-
mine the feasibility and consistency of the developed approaches. Finally, the comparative
analysis and their geometrical manifestations are also determined to enhance the excellence
of the performed explorations.
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In the future, we will encompass the investigated ideas in the environment of complex
q-rung orthopair fuzzy sets [32–36], spherical and T-spherical fuzzy sets [37], complex
T-spherical fuzzy sets [38], and complex neutrosophic sets [39,40], etc. We will use [41–43]
to enhance the excellence of the scrutinized approaches. Furthermore, we may also apply
the proposed aggregation operators to two-sided matching decision-making problems or
consider the consensus reaching process with complex intuitionistic fuzzy soft sets in group
decision making by referring to two-sided matching decision making with multigranular
hesitant fuzzy linguistic term sets and incomplete criteria weight information [44–46].
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Similarly, when we chose
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∑

︷︸︸︷
n

j=1 Zj )

Zi

∑

︷︸︸︷
m

i=1 Zi

)

,

k1
∏
i=1

k2+!
∏
j=1

ηΞ̃RP−ij

Zj

∑

︷︸︸︷
n

j=1 Zj


Zi

∑

︷︸︸︷
m

i=1 Zi

e
i2π(∏

k1
i=1 (∏

k2+1
j=1 ηΞ̃IP−ij

Zj

∑

︷︸︸︷
n

j=1 Zj )

Zi

∑

︷︸︸︷
m

i=1 Zi

)


and

⊕k1+1
i=1

Zi

∑
k1+1
i=1 Zi

(
⊕k2+1

j=1
Zj

∑
k2+1
j=1 Zj

Ξ̃CI−eij

)
= ⊕k1+1

i=1
Zi

∑
k1+1
i=1 Zi

(
⊕k2

j=1
Zj

∑
k2
j=1 Zj

Ξ̃CI−eij ⊕
Zk2+1

∑
k2+1
j=1 Zj

Ξ̃CI−e(k2+1)j

)

=

(
⊕k1+1

i=1
Zi

∑
k1+1
i=1 Zi

(
⊕k2

j=1
Zj

∑
k2
j=1 Zj

Ξ̃CI−eij

))
⊕
(
⊕k1+1

i=1
Zi

∑
k1+1
i=1 Zi

(
Zk2+1

∑
k2+1
j=1 Zj

Ξ̃CI−e(k2+1)j

))

=



1−
k1+1
∏
i=1

 k2
∏
j=1

(
1− µΞ̃RP−ij

) Zj

∑

︷︸︸︷
n

j=1 Zj


Zi

∑

︷︸︸︷
m

i=1 Zi

e

i2π(1−∏
k1+1
i=1 (∏

k2
j=1 (1−µΞ̃IP−ij

)

Zj

∑

︷︸︸︷
n

j=1 Zj )

Zi

∑

︷︸︸︷
m

i=1 Zi

)

,

k1+1
∏
i=1

 k2
∏
j=1

ηΞ̃RP−ij

Zj

∑

︷︸︸︷
n

j=1 Zj


Zi

∑

︷︸︸︷
m

i=1 Zi

e
i2π(∏

k1+1
i=1 (∏

k2
j=1 ηΞ̃IP−ij

Zj

∑

︷︸︸︷
n

j=1 Zj )

Zi

∑

︷︸︸︷
m

i=1 Zi

)



⊕



1−
k1+1
∏
i=1

 k2
∏
j=1

(
µΞ̃RP−ij

) Zk2+1

∑
k2+1
j=1 Zj


Zi

∑
k2+!
i=1 Zi

e

i2π(1−∏
k1+1
i=1 (∏

k2
j=1 (µΞ̃IP−ij

)

Zk2+1

∑
k2+1
j=1 Zj )

Zi

∑
k2+!
i=1 Zi

)

,

k1+1
∏
i=1

ηΞ̃RP−ij

Zk2+1

∑
k2+1
j=1 Zj


Zi

∑
k2+1
i=1 Zi

e
i2π(∏

k1+1
i=1 (ηΞ̃IP−ij

Zk2+1

∑
k2+1
j=1 Zj )

Zi

∑
k2+1
i=1 Zi

)



=



1−
k1+1
∏
i=1

k2+1
∏
j=1

(
1− µΞ̃RP−ij

) Zj

∑
k2+1
j=1 Zj


Zi

∑
k1+1
i=1 Zi

e

i2π(1−∏
k1+1
i=1 (∏

k2+!
j=1 (1−µΞ̃IP−ij

)

Zj

∑
k2+1
j=1 Zj )

Zi

∑
k1+1
i=1 Zi

)

,

k1+1
∏
i=1

k2+1
∏
j=1

ηΞ̃RP−ij

Zj

∑
k2+1
j=1 Zj


Zi

∑
k1+1
i=1 Zi

e
i2π(∏

k1+1
i=1 (∏

k2+1
j=1 ηΞ̃IP−ij

Zj

∑
k2+1
j=1 Zj )

Zi

∑
k1+1
i=1 Zi

)
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Thus, Equation (22), is satisfied for all
︷︸︸︷

n . �

Proof of Theorem 3. As shown above, if Ξ̃CI−eij = Ξ̃CI−e =(
µΞ̃RP

e
i2π(µΞ̃IP

)
, ηΞ̃RP

e
i2π(ηΞ̃IP

)
)

, then

CIFSPWA

(
Ξ̃CI−e11 , Ξ̃CI−e12 , . . . , Ξ̃CI−e︷︸︸︷

m
︷︸︸︷

n

)

=



1−
︷︸︸︷

m
∏
i=1


︷︸︸︷

n
∏
j=1

(
1− µΞ̃RP

) Zj

∑

︷︸︸︷
n

j=1 Zj


Zi

∑

︷︸︸︷
m

i=1 Zi

e
i2π(1−∏

︷︸︸︷
m

i=1 (∏
︷︸︸︷

n
j=1 (1−µΞ̃IP

)

Zj

∑

︷︸︸︷
n

j=1 Zj )

Zi

∑

︷︸︸︷
m

i=1 Zi

)
,

︷︸︸︷
m
∏
i=1


︷︸︸︷

n
∏
j=1

ηΞ̃RP

Zj

∑

︷︸︸︷
n

j=1 Zj


Zi

∑

︷︸︸︷
m

i=1 Zi

e
i2π(∏

︷︸︸︷
m

i=1 (∏
︷︸︸︷

n
j=1 ηΞ̃IP

Zj

∑

︷︸︸︷
n

j=1 Zj )

Zi

∑

︷︸︸︷
m

i=1 Zi

)



=




1−


(

1− µΞ̃RP

) ∑

︷︸︸︷
n

j=1 Zj

∑

︷︸︸︷
n

j=1 Zj



∑

︷︸︸︷
m

i=1 Zi

∑

︷︸︸︷
m

i=1 Zi


e

i2π(1−((1−µΞ̃IP
)

∑

︷︸︸︷
n

j=1 Zj

∑

︷︸︸︷
n

j=1 Zj )

∑

︷︸︸︷
m

i=1 Zi

∑

︷︸︸︷
m

i=1 Zi

)
,

ηΞ̃RP

∑

︷︸︸︷
n

j=1 Zj

∑

︷︸︸︷
n

j=1 Zj



∑

︷︸︸︷
m

i=1 Zi

∑

︷︸︸︷
m

i=1 Zi

e
i2π(ηΞ̃IP

∑

︷︸︸︷
n

j=1 Zj

∑

︷︸︸︷
n

j=1 Zj )

∑

︷︸︸︷
m

i=1 Zi

∑

︷︸︸︷
m

i=1 Zi


=
(

µΞ̃RP
e

i2π(µΞ̃IP
)
, ηΞ̃RP

e
i2π(ηΞ̃IP

)
)
= Ξ̃CI−e

�

Proof of Theorem 4. As shown above, if Ξ̃−CI−eij
=(

min
i

min
j

µΞ̃RP−ij
e

i2π(min
i

min
j

µΞ̃IP−ij
)
, max

i
max

j
ηΞ̃RP−ij

e
i2π(max

i
max

j
ηΞ̃RP−ij

)
)

and Ξ̃+
CI−eij

=(
max

i
max

j
µΞ̃RP−ij

e
i2π(max

i
max

j
µΞ̃IP−ij

)
, min

i
min

j
ηΞ̃RP−ij

e
i2π(min

i
min

j
ηΞ̃RP−ij

)
)

, then
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min
i

min
j

µΞ̃RP−ij
≤ µΞ̃RP−ij

≤ max
i

max
j

µΞ̃RP−ij
=⇒ 1−min

i
min

j
µΞ̃RP−ij

≥ 1− µΞ̃RP−ij
≥ 1−max

i
max

j
µΞ̃RP−ij

⇔
(

1−min
i

min
j

µΞ̃RP−ij

) Zj

∑

︷︸︸︷
n

j=1 Zj ≥
(

1− µΞ̃RP−ij

) Zj

∑

︷︸︸︷
n

j=1 Zj ≥
(

1−max
i

max
j

µΞ̃RP−ij

) Zj

∑

︷︸︸︷
n

j=1 Zj

⇔ 1−min
i

min
j

µΞ̃RP−ij
≥
︷︸︸︷

n
∏
j=1

(
1− µΞ̃RP

) Zj

∑

︷︸︸︷
n

j=1 Zj ≥ 1−max
i

max
j

µΞ̃RP−ij

⇔ 1−min
i

min
j

µΞ̃RP−ij
≥

e
m
∏
i=1

 e
n
∏
j=1

(
1− µΞ̃RP

) Zj

∑
e
n
j=1 Zj


Zi

∑
e
m
i=1 Zi

≥ 1−max
i

max
j

µΞ̃RP−ij

⇔ 1−min
i

min
j

µΞ̃RP−ij
≤ 1−

︷︸︸︷
m
∏
i=1


︷︸︸︷

n
∏
j=1

(
1− µΞ̃RP

) Zj

∑

︷︸︸︷
n

j=1 Zj


Zi

∑

︷︸︸︷
m

i=1 Zi

≤ 1−max
i

max
j

µΞ̃RP−ij

Similarly, for the imaginary part, we obtain

1−min
i

min
j

µΞ̃IP−ij
≤ 1−

︷︸︸︷
m
∏
i=1


︷︸︸︷

n
∏
j=1

(
1− µΞ̃IP

) Zj

∑

︷︸︸︷
n

j=1 Zj


Zi

∑

︷︸︸︷
m

i=1 Zi

≤ 1−max
i

max
j

µΞ̃IP−ij

Similarly, for real and imaginary parts, we obtain

min
i

min
j

ηΞ̃RP−ij
≤

︷︸︸︷
m
∏
i=1


︷︸︸︷

n
∏
j=1

ηΞ̃RP

Zj

∑

︷︸︸︷
n

j=1 Zj


Zi

∑

︷︸︸︷
m

i=1 Zi

≤ max
i

max
j

ηΞ̃RP−ij

min
i

min
j

ηΞ̃IP−ij
≤

︷︸︸︷
m
∏
i=1


︷︸︸︷

n
∏
j=1

ηΞ̃IP

Zj

∑

︷︸︸︷
n

j=1 Zj


Zi

∑

︷︸︸︷
m

i=1 Zi

≤ max
i

max
j

ηΞ̃IP−ij

Then, by using Equation (6), we obtain

SSV

(
Ξ̃CI−e

)
= 1

4

(
1 + µΞ̃RP

+ µΞ̃RP
− ηΞ̃RP

− ηΞ̃RP

)
= 1

4

(
1 + max

i
max

j
µΞ̃RP−ij

+ max
i

max
j

µΞ̃IP−ij
−min

i
min

j
ηΞ̃RP−ij

−min
i

min
j

ηΞ̃IP−ij

)
= SSV

(
Ξ̃+

CI−eij

)
SSV

(
Ξ̃CI−e

)
= 1

4

(
1 + µΞ̃RP

+ µΞ̃RP
− ηΞ̃RP

− ηΞ̃RP

)
= 1

4

(
1 + min

i
min

j
µΞ̃RP−ij

+ min
i

min
j

µΞ̃IP−ij
−max

i
max

j
ηΞ̃RP−ij

−max
i

max
j

ηΞ̃IP−ij

)
= SSV

(
Ξ̃−CI−eij

)
As shown above, we elaborate on the following cases:
Case 1: If SSV

(
Ξ̃+

CI−eij

)
> SSV

(
Ξ̃CI−eij

)
and SSV

(
Ξ̃−CI−eij

)
< SSV

(
Ξ̃CI−eij

)
,

then based on the comparison rule, we obtain

Ξ̃−CI−eij
≤ CIFSPWA

(
Ξ̃CI−e11 , Ξ̃CI−e12 , . . . , Ξ̃CI−e︷︸︸︷

m
︷︸︸︷

n

)
≤ Ξ̃+

CI−eij
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Case 2: If SSV

(
Ξ̃+

CI−eij

)
= SSV

(
Ξ̃CI−eij

)
and SSV

(
Ξ̃−CI−eij

)
= SSV

(
Ξ̃CI−eij

)
, then

based on Equation (7), we obtain

HAV

(
Ξ̃CI−e

)
= 1

4

(
1 + µΞ̃RP

+ µΞ̃RP
+ ηΞ̃RP

+ ηΞ̃RP

)
= 1

4

(
1 + max

i
max

j
µΞ̃RP−ij

+ max
i

max
j

µΞ̃IP−ij
+ min

i
min

j
ηΞ̃RP−ij

+ min
i

min
j

ηΞ̃IP−ij

)
= HAV

(
Ξ̃+

CI−eij

)
HAV

(
Ξ̃CI−e

)
= 1

4

(
1 + µΞ̃RP

+ µΞ̃RP
+ ηΞ̃RP

+ ηΞ̃RP

)
= 1

4

(
1 + min

i
min

j
µΞ̃RP−ij

+ min
i

min
j

µΞ̃IP−ij
+ max

i
max

j
ηΞ̃RP−ij

+ max
i

max
j

ηΞ̃IP−ij

)
= HAV

(
Ξ̃−CI−eij

)
As shown above, we obtain

Ξ̃−CI−eij
= CIFSPWA

(
Ξ̃CI−e11 , Ξ̃CI−e12 , . . . , Ξ̃CI−e︷︸︸︷

m
︷︸︸︷

n

)
= Ξ̃+

CI−eij

Therefore, we obtained the result such that

Ξ̃−CI−eij
≤ CIFSPWA

(
Ξ̃CI−e11 , Ξ̃CI−e12 , . . . , Ξ̃CI−e︷︸︸︷

m
︷︸︸︷

n

)
≤ Ξ̃+

CI−eij

�
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