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Abstract: In this paper, we are interested in the study of a Caputo time fractional advection–
diffusion equation with nonhomogeneous boundary conditions of integral types

∫ 1
0 v(x, t)dx and∫ 1

0 xnv(x, t)dx. The existence and uniqueness of the given problem’s solution is proved using the
method of the energy inequalities known as the “a priori estimate” method relying on the range
density of the operator generated by the considered problem. The approximate solution for this
problem with these new kinds of boundary conditions is established by using a combination of the
finite difference method and the numerical integration. Finally, we give some numerical tests to
illustrate the usefulness of the obtained results.

Keywords: fractional derivatives; Caputo derivative; fractional advection–diffusion equation; finite
difference schemes; integral conditions

1. Introduction

Fractional Partial Differential Equations (FPDEs) have become very important in re-
cent years due to their use in several mathematical models. FPDEs are considered as the
generalization of a partial differential equation (PDE) of an integer order of an arbitrary
order. These generalizations play an essential role in engineering, physics and applied
mathematics. Due to the properties of Fractional Differential Equations (FDE), different
models are created for complex phenomena using FPDEs, for example, in electroanalyti-
cal chemistry, viscoelasticity [1,2], porous environment, fluid flow, thermodynamic [3,4],
diffusion transport, rheology [5–7], electromagnetism, signal processing [8], electrical net-
work [9] and others [10–12]. Some relevant applications of fractional differential equations
in the modeling of tribo-fatigue systems and new materials can be mentioned as methods
for the experimental study of friction in an active system [13], the volumetric damage state
of the tribofatigue system in [14], the tribo-fatigue damage transition and mapping for
wheel material under rolling–sliding contact condition [15]; this study is based on construc-
tion of a tribo-fatigue damage map of high-speed railway wheel material under different
tangential forces and contact pressure conditions through JD-1 testing equipment. Several
problems have been mentioned in modern physics and technology using partial differential
equations where the nonlocal conditions are described by integrals as

∫ 1
0 v(x, t)dx, and∫ 1

0 ϕ(x)v(x, t)dx. These integral conditions are of great interest due to their applications
in many fields: In population dynamics, heat diffusion–advection, models of blood circu-
lation, chemical engineering thermoelasticity [16]. The existence and uniqueness of the
solution of these problems have been studied by many authors [17–20]. Some results have
been obtained by construction of a variational formulation which depends on the choice of
spaces and their norms, Lax–Milgram theorem, Poincaré theorem, fixed point theory and
Laplace transforms. For the numerical study of FPDE with classical boundary nonlocal
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conditions, we can cite the works of A. Alikhanov [21–23], Meerschaert, M.M, S. Shen and
F Liu [24,25], El-Nabulsi, R.A [26–28] and others [29–33]. Among these authors we can
cite Yuriy Povstenko [34] who studied the time fractional diffusion-wave equation with
classic boundary conditions. Taki and Bouziani [35] have studied a problem of FPDE which
has the boundary condition of integral type

∫ 1
0 v(x, t)dx with respect to time derivative of

order α (0 < α < 1). In this paper, we are interested in a new problem of FPDE with two
boundary conditions of integrals types;

∫ 1
0 v(x, t)dx, and

∫ 1
0 xnv(x, t)dx. We consider the

time fractional advection–diffusion equation, obtained by replacing the second-order time
derivative in standard wave equation with a fractional derivative of order α (1 < α < 2),
and classical boundary conditions with integral boundary conditions. The physical in-
terpretation of the fractional derivative is that it represents a degree of memory in the
diffusing material. For the theoretical study, we use the energy inequalities method to
prove the existence and the uniqueness. The numerical study is based on the application
of a combination of the finite difference method with a numerical integration method to
obtain an approximate solution of the proposed problem. We use a uniform space–time
discretization. The Caputo fractional operator of order α (1 < α < 2) is approximated by a
scheme called L2, and the integer-order differential operators are approximated by central
and advanced numerical schemes. Stability and convergence of the numerical scheme ob-
tained show that the method used is conditionally stable and convergent. Numerical tests
carried out give very satisfactory results; that is, the values of the approximate solution are
very close to the exact solution. All numerical and graphical results obtained are produced
using MATLAB software.

2. Notions and Preliminaries

First we need a definition of Caputo derivative to explain the problem that we shall
study in this work: Let Γ(.) denote the gamma function. For any positive non-integer value
1 < α < 2, the Caputo derivative is defined as follows:

Definition 1 (See [17]). Let us denote by C0(0, 1) the space of continuous functions with compact
support in (0, 1), and its bilinear form is given by

(u, w) =
∫ 1

0
=m

x u.=m
x wdx (m ∈ N∗), (1)

where

=m
x u =

∫ x

0

(x− ξ)m−1

(m− 1)!
u(ξ, t)dξ (m ∈ N∗).

For m = 1, we have =xu =
∫ x

0 u(ξ, t)dξ and =tu =
∫ t

0 u(x, τ)dτ. The bilinear form (1)
is considered as scalar product on C0(0, 1) when it is not complete.

Definition 2 (See [18]). We denote by

Bm
2 (0, 1) =

{
L2(0, 1) f or m = 0

u mesurable /=m
x u ∈ L2(0, 1) f or m ∈ N∗,

the completion of C0(0, 1) for the scalar product defined by (1).The norm associated to the scalar
product is

‖u‖Bm
2 (0,1) = ‖=

m
x u‖L2(0,1) =

(∫ T

0
(=m

x u)2dx
) 1

2

.

Lemma 1 (See [12]). For all m ∈ N∗, we obtain

‖u‖Bm
2 (0,1) ≤

(
1
2

)m
‖u‖2

L2(0,1). (2)
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Definition 3 (See [12]). Let X be a Banach space with the norm ‖u‖X , and let u :(0, T)→ X be
an abstract function; by ‖u(., t)‖X we denote the norm of the element u(., t) ∈ X at a fixed t.

We denote by L2(0, T; X) the set of all measurable abstract functions u(., t) from (0, T)
into X such that

‖u‖L2(0,T;X) =

(∫ T

0
‖u(., t)‖Xdt

) 1
2

< ∞.

Lemma 2. (Cauchy inequality with ε) (See [12]). For all ε � 0 and arbitrary variables a,b ∈ R,
we have the following inequality:

|ab| ≤ ε

2
|a|2 + 1

2ε
|b|2. (3)

Definition 4 (See [2]). The left Caputo derivative for 1 < α < 2 can be expressed as

c
0∂α

t f (t) =
1

Γ(2− α)

∫ t

0

f ”(s)

(t− s)α−1 ds; t > 0.

Definition 5 (See [2]). The integral of order α of the function f ∈ L1[a, b] is defined by:

Iα
0 f (t) =

1
Γ(α)

∫ t

0

f (s)

(t− s)1−α
ds; t > 0.

Lemma 3 (See [12]). For all real 1 < α < 2 we have the inequality∫ 1

0

c
0∂α

t (=xu)2dx ≤ 2
∫ 1

0
(c

0∂α
t u)(=xu)dx.

Lemma 4 (See [35]). For all real 1 < α < 2 we have the inequality∫
Q
(c

0∂α
t u)(=xu)dxdt ≤

∫
Q

(
c
0∂

α
2
t =xu

)2
dxdt.

3. Theoretical Study

In this section, we prove the existence and uniqueness of the strong solution and its
dependence on the data of the problem of fractional partial differential equations (FPDEs)
with boundary conditions of integral type.

3.1. Position of the Problem

In the rectangular domain

Q =
{
(x, t) ∈ R2 : 0 < x < 1, 0 < t < T

}
, where T > 0,

we consider the fractional differential equation:

£v =c
0 ∂α

t v + a(x, t)
∂2v
∂x2 + b(x, t)

∂v
∂x

+ c(x, t)v = g(x, t), where 1 < α < 2. (4)

With Equation (4), we associate the initial conditions:{
`v = v(x, 0) = Φ(x), x ∈ (0, 1),
qv = ∂v(x,0)

∂t = Ψ(x), x ∈ (0, 1),
(5)
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and the purely integral conditions{ ∫ 1
0 v(x, t)dx = µ(t), t ∈ (0, T),∫ 1

0 xv(x, t)dx = E(t), t ∈ (0, T),
(6)

where Φ, Ψ, µ, E, a, b, c et g are known continuous functions.

Hypothesis 1. (1) For all x, t ∈ Q, we assume that

sup
Q

a(x, t) ≤ 0, sup
Q

∂4a(x, t)
∂x4 ≥ 0, inf

Q

∂3b(x, t)
∂x3 ≤ 0, c(x, t) ≥ 0, sup

Q

∂2c(x, t)
∂x2 ≥ 0. (7)

(2) For all x, t ∈ Q there exist M > 0 and ε > 0 such that

0 < M ≤ 4
∂2a(x, t)

∂x2 − 4sup
Q

a(x, t)− 1
2

sup
Q

∂4a(x, t)
∂x4 +

1
2

inf
Q

∂3b(x, t)
∂x3

−1
2

sup
Q

∂2c(x, t)
∂x2 − 3

∂b(x, t)
∂x

+ 2c(x, t)− 1
2ε

(8)

this hypothesis is equivalent to the following one.
There exists M > 0 such that: Every positive number M′ > 0 could be written as M + 1

2ε
with M > 0 and ε > 0

0 < M′ ≤ 4
∂2a(x, t)

∂x2 − 4sup
Q

a(x, t)− 1
2

sup
Q

∂4a(x, t)
∂x4 +

1
2

inf
Q

∂3b(x, t)
∂x3

−1
2

sup
Q

∂2c(x, t)
∂x2 − 3

∂b(x, t)
∂x

+ 2c(x, t). (9)

(3) The functions Φ(x) and Ψ(x) satisfy the following compatibility conditions∫ 1

0
Φdx = µ(0),

∫ 1

0
xΦdx = E(0),

∫ 1

0
Ψdx = µ′(0),

∫ 1

0
xΨdx = E′(0). (10)

Our proof consists of three essential steps:

1. Reformulation of the problem into a problem with homogeneous conditions.
2. The uniqueness of the solution to the problem using the a priori estimate method.
3. The existence of the solution of the problem based on the density of the range of the

operator generated by the abstract formulation of the problem.

3.2. Reformulation of the Problem

We transform a problem ((4)–(6)) with nonhomogeneous integral conditions to the
equivalent problem with homogeneous integral conditions by introducing a new unknown
function ũ defined by

v(x, t) = ũ(x, t) + U(x, t), (11)

where
U(x, t) = 2(2− 3x)µ(t) + 6(2x− 1)E(t). (12)
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Now we study a new problem with homogeneous integral conditions

£ũ =c
0 ∂α

t ũ + a(x, t) ∂2ũ
∂x2 + b(x, t) ∂ũ

∂x + c(x, t)ũ = h(x, t),
`v = ũ(x, 0) = ϕ(x), x ∈ (0, 1),
qv = ∂ũ(x,0)

∂t = ψ(x), x ∈ (0, 1),∫ 1
0 ũ(x, t)dx = 0, t ∈ (0, T),∫ 1

0 xũ(x, t)dx = 0, t ∈ (0, T),

(13)

where

h(x, t) = g(x, t)− £U(x, t),

ϕ(x) = Φ(x)− `U,

ψ(x) = Ψ(x)− qU.

and ∫ 1

0
ϕ(x)dx = 0,

∫ 1

0
xϕ(x)dx = 0,

∫ 1

0
ψ(x) = 0,

∫ 1

0
xψ(x) = 0.

Again we introduce a new function u defined by

u(x, t) = ũ(x, t)− ψ(x)t− ϕ(x), (14)

therefore problem (13) is given as follow

£u =c
0 ∂α

t u + a(x, t) ∂2u
∂x2 + b(x, t) ∂u

∂x + c(x, t)u = f (x, t),
`u = u(x, 0) = 0, x ∈ (0, 1),
qu = ∂u(x,0)

∂t = 0, x ∈ (0, 1),∫ 1
0 u(x, t)dx = 0, t ∈ (0, T),∫ 1

0 xu(x, t)dx = 0, t ∈ (0, T).

(15)

Thus, instead of seeking for solution v of problems (4)–(6), we establish the existence
and the uniqueness of the solution u of problem (15)

The solution v is simply given by:

v(x, t) = ũ(x, t) + U(x, t). (16)

3.3. Energy Inequality Method and Consequences

To prove the existence of the solution, we use the energy inequality method known also
as the “a priori estimate” method, which consists mainly of reformulating problem (15) in an
equivalent operational form:

Lu = F ,

where the operator L = (£, `, q) acts from B to F, where B is a Banach space of functions
u ∈ L2(Q) with the finite norm:

‖u‖B =

(∫
Q

(
c
0∂

α
2
t (=xu)

)2
dxdt +

∫
Q
(=xu)2dxdt

) 1
2
, (17)

and F is a Hilbert space consisting of all the elements F = ( f , 0, 0) with the finite norm:

‖F‖F =

(∫
Q

f 2dxdt
) 1

2
. (18)

Let D(L), the domain of the operator L, be the set of all functions u such that =xu,
=x
(c

0∂α
t u
)
, =x

∂u
∂x , =x

∂2u
∂x2 ∈ L2(Q) and u satisfy the integral conditions (6).
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Theorem 1. Under assumptions (7) and (8), for all u ∈ D(L) we have the estimate

‖u‖B ≤ C‖Lu‖F, (19)

where C is a positive constant independent of u, u ∈ D(L).

Proof. Multiplying the fractional differential equation in problem (15) by Mu = −2=2
xu

and integrating it on Q we find

−2
∫

Q
(c

0∂α
t u)=2

xudxdt− 2
∫

Q
a(x, t)

∂2u
∂x2=

2
xudxdt

−2
∫

Q
b(x, t)

∂u
∂x
=2

xudxdt− 2
∫

Q
c(x, t)u=2

xudxdt

= −2
∫

Q
f =2

xudxdt. (20)

Integrating by parts the four integrals on the left side of (20), we obtain

− 2
∫

Q
(c

0∂α
t u)=2

xudxdt = 2
∫

Q
(c

0∂α
t=xu)(=xu)dxdt, (21)

−2
∫

Q
a(x, t)

∂2u
∂x2=

2
xudxdt = 4

∫
Q

∂2a
∂x2 (=xu)2dx− 2

∫
Q

au2dxdt

−
∫

Q

∂a4

∂x4

(
=2

xu
)2

dx, (22)

− 2
∫

Q
b(x, t)

∂u
∂x
=2

xudx =
∫

Q

∂3b
∂x3

(
=2

xu
)2

dx− 3
∫

Q

∂b
∂x

(=xu)2dx, (23)

− 2
∫

Q
c(x, t)u=2

xudx = −
∫

Q

∂2c
∂x2

(
=2

xu
)2

dx + 2
∫

Q
c(=xu)2dx. (24)

Substituting (21)–(24) into (20) yields

2
∫

Q
(c

0∂α
t=xu)(=xu)dx + 4

∫
Q

∂2a
∂x2 (=xu)2dx− 2

∫
Q

au2dx

−
∫

Q

∂a4

∂x4

(
=2

xu
)2

dx +
∫

Q

∂3b
∂x3

(
=2

xu
)2

dx− 3
∫

Q

∂b
∂x

(=xu)2dx

−
∫

Q

∂2c
∂x2

(
=2

xu
)2

dx + 2
∫

Q
c(=xu)2dx

= −2
∫

Q
f =2

xudx. (25)

By the elementary inequalities in Lemmas 3 and 4 and assumptions (7) and (8) we obtain

2
∫

Q

(
c
0∂

α
2
t (=xu)

)2
dxdt +

∫
Q
(4

∂2a
∂x2 − 4 sup au

−1
2

∂a4

∂x4 +
1
2

inf
∂3b
∂x3 − 3

∂b
∂x

−1
2

sup
∂2c
∂x2 + 2c)(=xu)2dxdt

≤ −2
∫

Q
f =2

xudxdt. (26)
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The estimate of the right side of (26) gives:

∫
Q

(
c
0∂

α
2
t (=xu)

)2
dxdt +

∫
Q
(4

∂2a
∂x2 − 4 sup au

−1
2

∂a4

∂x4 dxdt +
1
2

inf
∂3b
∂x3 − 3

∂b
∂x

−2 sup
∂2c
∂x2 + 2c− 1

2ε
)(=xu)2dxdt

≤ ε
∫

Q
f 2dxdt. (27)

So, by using assumptions (7) and (8) we find

2
∫

Q

(
c
0∂

α
2
t (=xu)

)2
dxdt + M

∫
Q
(=xu)2dxdt

≤ ε
∫

Q
f 2dxdt. (28)

Finally, we obtain a priori estimate

‖u‖B ≤ C‖Lu‖F, (29)

where

C =

(
ε

min(2, M)

) 1
2
.

We proved the uniqueness of the solution in the case of existence, and we have

Corollary 1. The operator L from B to F has a closure L.

Proof. See [18].

The a priori estimate (19) can be extended to cover the strong solution of problem (15)
by passing to the limit.

Corollary 2. The range of the operator L is closed in F and R(L) = R(L).

Consequently, the strong solution of the problem is unique if it exists, and depends
continuously on F = ( f , 0, 0).

3.4. Existence of the Solution

To prove the existence, it suffices to prove that R(L) is dense in F; that is, its orthogonal
is reduced to the singleton {0}.

Theorem 2. Let us suppose that assumptions (7) and (8) and integral conditions (6) are filled, and
for ω ∈ L2(Q) and for all u ∈ D(L), we have∫

Q
£u.ωdxdt = 0, (30)

then ω is almost everywhere in Q.
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Proof. We can rewrite Equation (30) as follows

∫
Q
(c

0∂α
t uω)dxdt = −

∫
Q

a(x, t)
∂2u
∂x2 ωdxdt−

∫
Q

b(x, t)
∂u
∂x

ωdxdt

−
∫

Q
c(x, t)uωdxdt. (31)

We express the function ω in terms of u as follows:

ω = −2=2
xu. (32)

Substituting ω by its representation (32) into (31), integrating by parts and taking into
account conditions (6) and assumptions (7) and (8), we obtain:

2
∫

Q
(c

0∂α
t=xu)=xudxdt = −4

∫
Q

∂2a
∂x2 (=xu)2dxdt + 2

∫
Q

au2dxdt +
∫

Q

∂4a
∂x4 (=xu)2dxdt

−
∫

Q

∂3b
∂x3 (=xu)2dxdt + 3

∫
Q

∂b
∂x

(=xu)2dxdt +
∫

Q

∂2c
∂x2 (=xu)2dxdt− 2

∫
Q

c(=xu)2dxdt.

Under assumptions (7) and (8) and conditions (6), we obtain

2
∫

Q
(c

0∂α
t=xu)=xudxdt = −

∫
Q
(4

∂2a
∂x2 + 4 sup au

+
1
2

∂4a
∂x4 −

1
2

inf
∂3b
∂x3 + 3

∂b
∂x

+ 2 sup
∂2c
∂x2 − 2c)(=xu)2dxdt.

Using condition (6) under assumptions, we find

2
∫

Q
(c

0∂α
t=xu)=xudxdt ≤ −

(
1
2ε

+ M
) ∫

Q
(=xu)2dxdt.

By Lemmas 2–4 we obtain

2
∫

Q

(
c
0∂

α
2
t (=xu)

)2
dxdt ≤ −

(
1
2ε

+ M
) ∫

Q
(=xu)2dxdt.

Then
(=xu)2 = 0. (33)

We obtain
u = 0.

So u = 0 in Ω which gives ω = 0 in L2(Q).

4. Numerical Study

In this section we present the numerical technique that we will apply to the problem
considered above, and we illustrate the schemes obtained with well-chosen applications.

4.1. Finite Difference Method
4.1.1. Discretization of the Problem

We consider a uniform subdivision of intervals [0, 1] and [0, T] as follows

xi = ih; i = 0, . . . , N and tk = kht; k = 0, . . . , M.

We denote by vk
i the approximate solution of v(xi, tk) at point (xi, tk), and L the

operator defined by
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L = a
∂2

∂x2 + b
∂

∂x
+ c, L(.)k

i = ak
i

∂2(.)
∂x2 + bk

i
∂(.)
∂x

+ ck
i (34)

where
ak

i = a
(
xi , tk

)
, bk

i = b
(

xi , tk

)
, ck

i = c
(
xi , tk

)
.

From the Taylor development of function v at the point (xi, tk) we have(
∂2v
∂x2

)k

i
=

1
h2

(
vk

i−1 − 2vk
i + vk

i+1

)
+ O

(
h2
)

,
(

∂v
∂x

)k

i
=

vk
i+1 − vk

i
h

+ O(h). (35)

Substituting (35) in the operator Lk
i expressed in (34) gives

Lvk+1
i =

(
ak+1

i
h2 +

bk+1
i
h

)
vk+1

i+1 +

(
ck+1

i − 2
ak+1

i
h2 −

bk+1
i
h

)
vk+1

i +
ak+1

i
h2 vk+1

i−1 . (36)

The discretization of Caputo derivative fractional operator c
0∂α

t v [25] with 1 < α < 2 is
defined by

(c
0∂α

t v)k+1
i
' γ

k

∑
j=0

(
v k−j−1

i
− 2v k−j

i
+ v k−j+1

i

)
dj (37)

where

{
dj = (j + 1)2−α − j2−α

d0 = 1; k = 1, . . . , M
, γ =

h− α
t

Γ(3− α)
.

Writing fractional differential Equation (4) in point (ih, (k + 1)ht), we find

γ
k

∑
j = 0

(
v k−j−1

i
− 2v k−j

i
+ v k−j+1

i

)
dj + Lvk+1

i = g k+1
i , i = 1, N − 1. (38)

Then

Fk+1
i vk+1

i−1
+ Ak+1

i vk+1
i

+ Bk+1
i vk+1

i +1
− 2γdkvk

i
+ γdkvk−1

i
+ γ

k−1

∑
j=1

Sjdj

+γ
(

v−1
i − 2v0

i + v1
i

)
dk = gk+1

i (39)

where

Ak+1
i = γ + ck+1

i − 2
ak+1

i
h2 −

bk+1
i
h

, Bk+1
i =

ak+1
i
h2 +

bk+1
i
h

,

Fk+1
i =

ak+1
i
h2 , Sj = v k−j−1

i
− 2v k−j

i
+ v k−j+1

i
.

To eliminate v−1
i , we use initial condition (5); we find(

∂v
∂t

)n

i
'

vn
i − vn−1

i
ht

.

Therefore,
v−1

i ' Φi − htΨi = v0
i − htΨi, i = 1, N − 1. (40)
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Substituting (40) into (39), we obtain

Fk+1
i vk+1

i−1 + Ak+1
i vk+1

i + Bk+1
i vk+1

i+1 − 2γdkvk
i + γdkvk−1

i + γ
k−1

∑
j=1

Sjdj

= dkγv0
i + dkγhtΨi − dkγv1

i + gk+1
i . (41)

For k = 0, relation (41) gives

F1
i v1

i−1 + A1
i v1

i + B1
i v1

i+1 = γv0
i + γhtΨi + g1

i with i = 1, N − 1. (42)

By conditions (6), and the trapeze method we obtain,

v1
0 =

2µ(ht)− 2E(ht)

h
+ 2

N−1

∑
j=1

(jh− 1)v1
j , v1

N =
2E(ht)

h
− 2

N−1

∑
j=1

jhv1
j .

For i = 1(
A1

1 + 2F1
1 (h− 1)

)
v1

1 +
(

B1
1 + 2F1

1 (2h− 1)
)

v1
2 + 2F1

1

N−1

∑
j=3

(jh− 1)v1
j

= γv0
1 + γhtΨ1 + g1

1 +
2F1

1
h

(E(ht)− µ(ht)). (43)

For i = N − 1

−2B1
N−1

N−3

∑
j=1

jhv1
j +

(
F1

N−1 − 2B1
N−1(N − 2)h

)
v1

N−2 +
(

A1
N−1 − 2B1

N−1(N − 1)h
)

v1
N−1

= γv0
N−1 + γhtΨN−1 + g1

N−1 −
2B1

N−1
h

E(ht). (44)

Matrix’s form
We denote by

wi = γv0
i + γhtΨi + g1

i , y1
1 =

2F1
1

h
(E(ht)− µ(ht)), z1

N−1 = −
2B1

N−1
h

E(ht),

P1 =
(
li,j
)

N−1,N−1 is square matrix defined by

l1,1 = A1
1 + 2F1

1 (h− 1), l1,2 = B1
1 + 2F1

1 (2h− 1),

lN−1,N−2 = F1
N−1 − 2B1

N−1(N − 2)h, lN−1,N−1 = A1
N−1 − 2B1

N−1(N − 1)h ,

li,j =



2F1
1 (jh− 1) when i = 1, j = 3, N − 1

0 when |i− j| ≥ 2 , i = 2, N − 2
A1

i when i = j, i = 2, N − 2
B1

i when i = j− 1, i = 1, N − 2
F1

i when i = j + 1, i = 2, N − 1
−2B1

N−1 jh when i = N − 1, j = 1, N − 3.

Taking into account (42)–(44), we obtain the matricial system

P1.V1 = H1 (45)

where

H1 = W 1 + R1, W 1 =
(

w1
1, w1

2, . . . , w1
N−1

)T
, R1 =

(
y1

1, 0, 0, . . . , 0, z1
N−1

)T
.
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To solve the system (45) we can apply one of the direct methods.

4.1.2. General Case

It is readily seen that, for k ≥ 1

k−1

∑
j=1

Sjdj = (d2 − 2d1)vk−1
i + d1vk

i + dk−1v0
i + (dk−2 − 2dk−1)v1

i +
k−2

∑
m=2

σmvk−m
i (46)

where
σm = dm−1 − 2dm + dm+1, m = 2, k− 2.

Lemma 5. If k ≥ 1; the numerical scheme (41) is equivalent to

Fk+1
i vk+1

i−1
+ Ak+1

i vk+1
i

+ Bk+1
i vk+1

i+1
= −γ

k−1

∑
m=1

σmvk−m
i + γ(2− d1)vk

i
+ γ(dk − dk−1)v0

i

+ γdkhtΨi + gk+1
i , for i = 1, . . . , N − 1. (47)

Proof. From scheme (41), we have

Fk+1
i vk+1

i−1 + Ak+1
i vk+1

i + Bk+1
i vk+1

i+1 − 2γdkvk
i + γdkvk−1

i + γ
k−1

∑
j=1

Sjdj

= dkγv0
i + dkγhtΨi − dkγv1

i + gk+1
i .

So

Fk+1
i vk+1

i−1 + Ak+1
i vk+1

i + Bk+1
i vk+1

i+1 + γ
k−2

∑
j=2

Sjdi

+γ(vk+1
i − 2vk

i + vk−1
i ) d0 + γ(v1

i − 2v0
i + v−1

i )dk = gk+1
i . (48)

Using (46) we obtain

Fk+1
i vk+1

i−1 + Ak+1
i vk+1

i + Bk+1
i vk+1

i+1 = −γ
k−1

∑
m=1

σmvk−m
i + γ(2− d1)vk

i + γ(dk − dk−1)v0
i

+ γdkhtΨi + gk+1
i , for i = 1, . . . , N − 1. (49)

Using conditions (6), and by trapeze method we obtain,
For i = 1(

Ak+1
1 + 2Fk+1

1 (h− 1)
)

vk+1
1 +

(
Bk+1

1 + 2Fk+1
1 (2h− 1)

)
vk+1

2 + 2Fk+1
1

N−1

∑
j=3

(jh− 1)vk+1
j

=
2Fk+1

1
h

(E((k + 1)ht)− µ((k + 1)ht))− γ
k−1

∑
m=1

σmvk−m
1 + γ(dk − dk−1)v0

1 + γdkhtΨ1 + gk+1
1 . (50)

For i = N − 1

−2Bk+1
N−1

N−3

∑
j=1

jhvk+1
j +

(
Fk+1

N−1 − 2Bk+1
N−1(N − 2)h

)
vk+1

N−2 +
(

Ak+1
N−1 − 2Bk+1

N−1(N − 1)h
)

vk+1
N−1
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= −
2Bk+1

N−1
h

E((k + 1)ht)− γ
k−1

∑
m=1

σmvk−m
N−1 + γ(2− d1)vk

N−1

+γ(dk − dk−1)v0
N−1 + γdkhtΨN−1 + gk+1

N−1. (51)

Matrix’s form
We take expression (49) for i = 2, N − 2 and Equations (50) and (51) to formulate the

matrix systems: 
Pk+1Vk+1 = Hk+1; k ≥ 1

V0, V1 are known
(52)

where

Pk+1 =
(

lk+1
i,j

)
N−1,N−1

is square matrix defined by

lk+1
1,1 = Ak+1

1 + 2Fk+1
1 (h− 1), lk+1

1,2 = Bk+1
1 + 2Fk+1

1 (2h− 1),

lk+1
N−1,N−2 = Fk+1

N−1 − 2Bk+1
N−1(N − 2)h, lk+1

N−1,N−1 = Ak+1
N−1 − 2Bk+1

N−1(N − 1)h ,

lk+1
i,j =



2Fk+1
1 (jh− 1) when i = 1, j = 3, N − 1

0 when |i− j| ≥ 2 , i = 2, N − 2
Ak+1

i when i = j, i = 2, N − 2
Bk+1

i when i = j− 1, i = 1, N − 2
Fk+1

i when i = j + 1, i = 2, N − 1
−2Bk+1

N−1 jh when i = N − 1, j = 1, N − 3

and

V k+1 =
(

vk+1
1 , . . . , vk+1

N−1

)T
; Hk+1 = −γ

k−1

∑
m=1

σmV k−m + W k+1 + R k+1; k ≥ 1

W k+1 =
(

wk+1
1 , wk+1

2 , . . . , wk+1
N−1

)T
, Rk+1 =

(
yk+1

1 , 0, 0, . . . , 0, zk+1
N−1

)T
,

wk+1
i = γ(2− d1)vk

i + γ(dk − 2dk−1)v0
i + γdkhtΨi + gk+1

i ,

yk+1
1 =

2Fk+1
1
h

(E((k + 1)ht)− µ((k + 1)ht)); zk+1
N−1 = −

2Bk+1
N−1
h

E((k + 1)ht).

In order to prove system (52) has a unique solution we denote ρ as an eigenvalue of
the matrix Pk, and X = (x1, x2, . . . , xN−1)

T is a nonzero eigenvector corresponding to ρ
We choose i such that

|xi| = max{|xj| : j = 1; . . . ; N − 1}.

Then
N−1

∑
j=1

li,jxj = ρxi; i = 1; N − 1.

Therefore

ρ = li,i +
N−1

∑
j=1
j 6=i

li, j
xj

xi
. (53)

Substituting the values of li,j into (53), and taking into account that Fk
i , ak

i are negative

and
∣∣∣ xj

xi

∣∣∣ ≤ 1 we get:
For i = 1
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ρ =
(

Ak+1
1 + 2Fk+1

1 (h− 1)
)
+
(

Bk+1
1 + 2Fk+1

1 (2h− 1)
) x2

x1
+ 2Fk+1

1

N−1

∑
j=3

(jh− 1)
xj

x1
(54)

= γ + ck+1
i − Fk+1

1 − Bk+1
1

(
1− x2

x1

)
+ 2Fk+1

1

N−1

∑
j=2

(jh− 1)
xj

x1
.

For i = N − 1

ρ = li,i +
N−1

∑
j=1
j 6=i

li, j
xj

xi
(55)

= Ak+1
N−1 − 2Bk+1

N−1(N − 1)h +
(

Fk+1
N−1 − 2Bk+1

N−1(N − 2)h
)( xN−2

xN−1

)
− 2Bk+1

N−1

N−3

∑
j=1

jh
xj

xN−1

= γ + ck+1
N−1 − Bk+1

N−1 + Fk+1
N−1

(
xN−2

xN−1
− 1
)
− 2Bk+1

N−1(N − 1)h− 2Bk+1
N−1

N−2

∑
j=1

jh
xj

xN−1
.

For i = 2, N − 2

ρ = li,i +
N−1

∑
j=1
j 6=i

li,j
xj

xi

= Ak+1
i + Fk+1

i
xi−1

xi
+ Bk+1

i
xi+1

xi

= γ + ck+1
i − Bk+1

i − Fk+1
i + Fk+1

i
xi−1

xi
+ Bk+1

i
xi+1

xi

= γ + ck+1
i + Fk+1

i

(
xi−1

xi
− 1
)
+

ak+1
i + hbk+1

i
h2

(
xi+1

xi
− 1
)

. (56)

From the above we conclude for i = 1, N − 1,
If bk+1

i < 0, Bk+1
N−1 < 0 then ρ > 0.

If bk+1
i > 0 and h ≤min1≤i≤N−1

(
−ak+1

i
bk+1

i

)
, ρ > 0, then all eigenvalues of matrix Pk+1

are strictly positive; therefore, Pk+1 is invertible.

4.2. Stability and Convergence
4.2.1. Stability

We have

Fk+1
i + Ak+1

i + Bk+1
i = γ + ck+1

i , Fk+1
i ≤ 0, Ak+1

i + Bk+1
i ≥ 0.

Let uk+1
i be the approximate solution of (49), and ek+1

i the error at point (xi, tk+1)
defined by

vk+1
i − uk+1

i = ek+1
i , and

∥∥∥Ek
∥∥∥ = max

1≤i≤N−1
|ek

i |, Ek =
(

ek
1, . . . , ek

N−1

)T
.



Mathematics 2021, 9, 1987 14 of 26

For k = 0 we apply (42) and we get∥∥∥E1
∥∥∥ ≤

(
γ + c1

i

)∥∥∥E1
∥∥∥ =

(
F1

i + A1
i + B1

i

)∥∥∥E1
∥∥∥

=
(

F1
i

∥∥∥E1
∥∥∥+ (A1

i + B1
i

)∥∥∥E1
∥∥∥)

≤
((

A1
i + B1

i

)∥∥∥E1
∥∥∥+ F1

i

∣∣∣e1
i−1

∣∣∣)
≤ max

1 ≤ i ≤ N−1

∣∣∣F1
i e1

i−1 + A1
i e1

i + B1
i e1

i+1

∣∣∣ = γ
∥∥∥E0

∥∥∥.

So ∥∥∥E1
∥∥∥ � γ

γ + c1
i

∥∥∥E0
∥∥∥ � ∥∥∥E0

∥∥∥. (57)

Therefore the method is stable.

Lemma 6. For k ≥ 1 the scheme (48) is stable and we have∥∥∥Ek+1
∥∥∥ ≤ C

∥∥∥E0
∥∥∥, C > 0, for all k ≥ 1.

Proof. We use mathematical induction.

We assume
∥∥Ej
∥∥ ≤ cj

∥∥E0
∥∥, and Cmax = max cj; where cj � 0, j = 1, k.

From (49), where i = 1, N − 1, we get

Fk+1
i ek+1

i−1 + Ak+1
i ek+1

i + Bk+1
i ek+1

i+1 = −γ
k−1

∑
m=1

σmek−m
i + γ(2− d1)ek

i
+ γ(dk − dk−1)e0

i ,

so(
γ + ck+1

i

)∥∥∥Ek+1
∥∥∥ ≤

((
Ak+1

i + Bk+1
i

)∥∥∥Ek+1
∥∥∥+ Fk+1

i

∣∣∣ek+1
i−1

∣∣∣)
≤

∥∥∥∥∥−γ
k−1

∑
m=1

σmek−m
i + γ(2− d1)ek

i
+ γ(dk − dk−1)e0

i

∥∥∥∥∥
≤ γ

(
k−1

∑
m=1
|σm|

∥∥∥Ek−m
i

∥∥∥+ (2− d1)
∥∥∥ek

i

∥∥∥+ (dk−1 − dk)
∥∥∥e0

i

∥∥∥)

≤ γCmax

(
k−1

∑
m=1
|σm|+ 2− d1 + dk−1 − dk

)∥∥∥E0
∥∥∥

≤ γCmax

(
5− 23−α

)∥∥∥E0
∥∥∥

where
k−1

∑
m=1
|σm|+ 2− d1 + dk−1 − dk = 5− 23−α, 0 < σm < 1, − 1 < dk − dk−1 < 0, 1 < 2− d1 < 2.

Then ∥∥∥Ek+1
∥∥∥ ≤ C

∥∥∥E0
∥∥∥; C = Cmax

(
5− 23−α

)
. (58)

Therefore, the method is stable.

4.2.2. Convergence

Let v(xi; tk+1) be the exact solution and vk+1
i be the approximate solution of scheme (38);

we put v(xi; tk+1)− vk+1
i = εk+1

i for i = 1, N − 1, k = 1, M− 1 .

The scheme L2 defined in (37) verifed [25].
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∣∣∣∣∣∂αv
∂tα
−
(

∂αv
∂tα

)
L2

∣∣∣∣∣ ≤ O(ht). (59)

Substituting into (38) and using (35) and (59) leads to

γ
k

∑
j = 0

(
v(xi; tk−j−1)− ε

k−j−1
i − 2

(
v(xi; tk−j)− ε

k−j
i

)
+
(

v(xi; tk−j+1)− ε
k−j+1
i

))
dj

+L
(

v(xi; tk+1)− εk+1
i

)
= g k+1

i .

Then

γ
k

∑
j = 0

(
v(xi; tk−j−1)− 2v(xi; tk−j) +

(
v(xi; tk−j+1)

))
dj + Lv(xi; tk+1)

−γ
k

∑
j = 0

(
ε

k−j−1
i − 2ε

k−j
i + ε

k−j+1
i

)
dj − Lεk+1

i = g k+1
i .

So
∂αv(x, t)

∂tα
+ O(ht) + Lv(x; t) + O(h)− γ

k

∑
j = 0

(
ε

k−j−1
i − 2ε

k−j
i + ε

k−j+1
i

)
dj − Lεk+1

i = g k+1
i .

Hence

γ
k

∑
j = 0

(
ε

k−j−1
i − 2ε

k−j
i + ε

k−j+1
i

)
dj + Lεk+1

i = O(h + ht). (60)

Taking ∣∣∣εk
l

∣∣∣ = ∥∥∥εk
∥∥∥ = max

1 ≤ i ≤ N−1

∣∣∣εk
i

∣∣∣; εk =
(

εk
1, , . . . , εk

N−1

)T
;
∥∥∥ε0

i

∥∥∥ = 0

for k = 0, we get

F1
i ε1

i−1 + A1
i ε1

i + B1
i ε1

i+1 = γε0
i + O(h + ht) with i = 1, N − 1. (61)

We have ∥∥∥ε1
∥∥∥ =

∣∣∣ε1
l

∣∣∣ ≤ (F1
i + A1

i + B1
i

)∣∣∣ε1
l

∣∣∣
≤

((
A1

i + B1
i

)∣∣∣ε1
l

∣∣∣+ F1
i

∣∣∣ε1
l

∣∣∣)
≤ max

1 ≤ i ≤ N−1

∣∣∣F1
i ε1

i−1 + A1
i ε1

l + B1
i ε1

l

∣∣∣ = O(h + ht).

Hence ∥∥∥ε1
∥∥∥ ≤ O(h + ht). (62)

We assume :
∣∣∣εj

l

∣∣∣ ≤ O(h + ht); j = 1, k.
From (60), we get

Fk+1
i εk+1

i−1 + Ak+1
i εk+1

i + Bk+1
i εk+1

i+1 = −γ
k−1

∑
m=1

σmεk−m
i + γ(2− d1)ε

k
i + O(h + ht). (63)
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We have∥∥∥εk+1
∥∥∥ ≤

(
γ + ck+1

i

)∣∣∣εk+1
l

∣∣∣ = (Fk+1
i + Ak+1

i + Bk+1
i

)∣∣∣εk+1
l

∣∣∣
≤

(
Fk+1

i

∣∣∣εk+1
i−1

∣∣∣+ (Ak+1
i + Bk+1

i

)∣∣∣εk+1
l

∣∣∣)
≤ max

1 ≤ i ≤ N−1

∣∣∣∣∣−γ
k−1

∑
m=1

σmεk−m
i + γ(2− d1)ε

k
i + O(h + ht)

∣∣∣∣∣
≤ γ

k−1

∑
m=1

σm

∥∥∥εk−m
∥∥∥+ γ(2− d1)

∥∥∥εk
∥∥∥+ O(h + ht)

≤ γ

(
k−1

∑
m=1

σm + (2− d1)

)
O(h + ht) + O(h + ht).

Hence ∥∥∥εk+1
∥∥∥ ≤ γ

γ + ck+1
i

O(h + ht) +
1

γ + ck+1
i

O(h + ht) ≤ O(h + ht). (64)

Therefore, the method is convergent.

4.3. Applications

In this section, we give some numerical investigation tests.

Example 1. We consider problems (4)–(6) with
α = 3

2 , a(x, t) = −x− t,
b(x, t) = x + t, c(x) = 2, g(x, t) = ( 3

4
√

π + 2t
√

t)ex, φ(x) = ψ(x) = 0,

µ(t) = (e− 1)t
3
2 , E(t) = t

3
2 .

The analytical solution is given by v(x, t) = t
3
2 ex.

The approximate solution u(x, t) where A.E is the absolute error.
We see in Figures 1–3 and Tables 1–3 that the absolute error(A.E) gradually decreases

when the step ht takes small values and getting very close to zero. That is, for ht = 0.01,
ht = 0.001, and ht = 0.0001 the absolute error(A.E) decreases towards zero and the
approximate solution tends towards the exact solution with the convergence order of
O(h + ht).

Figure 1. h = 0.1, ht = 0.01.



Mathematics 2021, 9, 1987 17 of 26

Figure 2. ht = 10−3.

Figure 3. ht = 10−4.

For k = 1 (second iteration),
Table 4 shows the absolute error decrease to zero and Figures 4–6 show the approxi-

mate solution u2 after two steps 2ht tend towards the exact solution when ht close to zero,
with convergence order O(h + ht).

Table 1. h = 0.1; ht = 0.01.

xi u1(x, t) v1(x, t) A.E

0.1 1.1052× 10−3 1.3042× 10−3 1.99× 10−4

0.2 1.2214× 10−3 1.4523× 10−3 2.30× 10−4

0.3 1.3499× 10−3 1.6038× 10−3 2.53× 10−4

0.4 1.4918× 10−3 1.7710× 10−3 2.79× 10−4

0.5 1.6487× 10−3 1.9558× 10−3 3.07× 10−4

0.6 1.8221× 10−3 2.1600× 10−3 3.38× 10−4

0.7 2.0138× 10−3 2.3851× 10−3 3.71× 10−4

0.8 2.2255× 10−3 2.6235× 10−3 3.98× 10−4

0.9 2.4596× 10−3 2.7079× 10−3 2.48× 10−4
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Table 2. h = 0.1, ht = 0.001.

xi u1(x, t) v1(x, t) A.E

0.1 3.4949× 10−5 4.1175× 10−5 6.23× 10−6

0.2 3.8624× 10−5 4.5515× 10−5 6.89× 10−6

0.3 4.2686× 10−5 5.0301× 10−5 7.61× 10−6

0.4 4.7176× 10−5 5.5590× 10−5 8.41× 10−6

0.5 5.2137× 10−5 6.1435× 10−5 9.30× 10−6

0.6 5.7620× 10−5 6.7895× 10−5 1.03× 10−5

0.7 6.3680× 10−5 7.5034× 10−5 1.14× 10−5

0.8 7.0378× 10−5 8.2923× 10−5 1.25× 10−5

0.9 7.7802× 10−5 9.1415× 10−5 1.36× 10−5

Table 3. h = 0.1, ht = 0.0001.

xi u1(x, t) v1(x, t) A.E

0.1 1.1052× 10−6 1.3020× 10−6 1× 10−7

0.2 1.2214× 10−6 1.4389× 10−6 2× 10−7

0.3 1.3499× 10−6 1.5903× 10−6 2× 10−7

0.4 1.4918× 10−6 1.7575× 10−6 2× 10−7

0.5 1.6487× 10−6 1.9424× 10−6 2× 10−7

0.6 1.8221× 10−6 2.1466× 10−6 3× 10−7

0.7 2.0138× 10−6 2.3724× 10−6 3× 10−7

0.8 2.2255× 10−6 2.6219× 10−6 3× 10−7

0.9 2.4596× 10−6 2.8974× 10−6 4× 10−7

Table 4. h = 0.1, ht = 10−2, 10−3, 10−5.

xi ht = 10−2 ht = 10−3 ht = 10−5

0.1 1.84× 10−3 5.80× 10−5 5.80× 10−8

0.2 1.74× 10−3 5.45× 10−5 5.45× 10−8

0.3 1.62× 10−3 5.06× 10−5 5.06× 10−8

0.4 1.49× 10−3 4.63× 10−5 4.63× 10−8

0.5 1.33× 10−3 4.15× 10−5 4.16× 10−8

0.6 1.17× 10−3 3.63× 10−5 3.63× 10−8

0.7 9.82× 10−4 3.05× 10−5 3.05× 10−8

0.8 7.40× 10−4 2.40× 10−5 2.41× 10−8

0.9 1.26× 10−4 1.64× 10−5 1.69× 10−8

Figure 4. ht = 10−2.
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Figure 5. ht = 10−3.

Figure 6. ht = 10−5.

Remark 1. For space step h = 0.01 we find Figures A1 and A2 in Appendix A.

Example 2. We take: α = 3
2 , a(x, t) = −x2 − t, b(x, t) = x− t,

c(x) = x + 2t, g(x, t) = (4
√

t + (t + 1)2(x2 + 2t)ex, Φ(x) = ex;
ψ(x) = 2ex, µ(t) = (t + 1)2, E(t) = (t + 1)2.

The analytical solution of this problem is given by v(x, t) = (t + 1)2ex.
Tables 5–7 show the values of the absolute error.
In this example from Tables 5–7 and Figures 7–9 we see again for space step h = 0.1 the

absolute error tends to zero when the time step ht (10−2, 10−3, 10−4) takes a value close to
zero, with convergence order O(h+ ht). In Figure 9 we take into account x ∈ [0.8965, 0.9000]
to see the variation of error because it is very close to zero when x ∈ [0.1, 0.8].
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Table 5. h = 0.1, ht = 10−2.

xi A.E

0.1 6.72× 10−4

0.2 2.47× 10−3

0.3 2.44× 10−3

0.4 2.41× 10−3

0.5 2.39× 10−3

0.6 2.38× 10−3

0.7 1.84× 10−3

0.8 1.40× 10−2

0.9 2.06× 10−1

Table 6. h = 0.1, ht = 10−3.

xi A.E

0.1 1.22× 10−5

0.2 4.28× 10−5

0.3 4.24× 10−5

0.4 4.20× 10−5

0.5 4.15× 10−5

0.6 4.10× 10−5

0.7 4.03× 10−5

0.8 4.83× 10−5

0.9 5.48× 10−3

Table 7. h = 0.1, ht = 10−4.

xi A.E

0.1 3.75× 10−7

0.2 1.26× 10−6

0.3 1.24× 10−6

0.4 1.25× 10−6

0.5 1.23× 10−6

0.6 1.22× 10−6

0.7 1.20× 10−6

0.8 1.19× 10−6

0.9 1.72× 10−4
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Figure 7. h = 0.1, ht = 10−2.

Figure 8. h = 0.1, ht = 10−3.

Figure 9. h = 0.1, ht = 10−4, x ∈ [0.8965, 0.9000].

Remark 2. For the space step h = 0.01 we find Figures A3–A5 in Appendix A.

Table 8 shows the error norm
∥∥∥Ek

∥∥∥
∞

for different values of α defined by

∥∥∥Ek
∥∥∥

∞
= max

1 ≤ i ≤ N−1
|ei|, where Ek = V k −U k =

(
ek

1, . . . , ek
N−1

)T
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Table 8. h = 0.1.

Value of ht 10−3 10−5 10−7

∥∥E1
∥∥

∞ for

α = 1.2 9.5736 × 10−4 1.3196× 10−6 5.2768× 10−9

α = 1.4 1.1294× 10−4 1.2671× 10−7 2.0154× 10−10

α = 1.6 2.3162× 10−5 1.2692× 10−8 7.9794× 10−12

α = 1.8 1.53× 10−4 1.4449 × 10−9 3.4062× 10−13

α = 1.9 4.7963× 10−6 6.2306× 10−10 8.6153× 10−14

We see in Table 8, for the space step h = 0.1, and for the different values of α, the error
keeps the same behavior; that is, the error norm tends towards zero when the time step ht
takes values close to zero, with an order of convergence O(h + ht). For α = 1.2 (value close
to 1) the error is greater compared to the case α = 1.9 (value close to 2) due of the fractional
operator being approximated by the formula called L2.

5. Conclusions

In this paper, the existence and uniqueness of the solution of a Caputo time fractional
problem with nonhomogeneous boundary integral conditions are established. We use the
“energy inequality” method which is an efficient functional analysis method.

For the numerical study, these kinds of boundary conditions have been applied for
the first time to such problems, where we combined the finite difference method with the
numerical integration to obtain the approximate solution. The results obtained by this
technique are very encouraging from the point of view that the numerical schemes are
stable and convergent.

As further research directions, we aim at studying the same problem using the com-
pact finite difference method in order to obtain more precise results, change the sense of
fractional derivatives and/or extend the study to time–space fractional derivatives.
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Appendix A

In Example 1 for h = 0.01
From Tables A1 and A2 and Figures A1 and A2 with space step h = 0.01, we see that

the approximate solution u1 tends to the exact solution v1 when ht (ht = 10−3, ht = 10−5)
takes values close to zero, with convergence order O(h + ht).
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Table A1. The absolute error for h = 0.01; ht = 10−3.

i = 1, 9 10, 18 19, 27 28, 36 37, 45 46, 54 55, 63 64, 72 73, 81 82, 89 90, 99

5 × 10−6 6 × 10 −6 6 × 10−6 7 × 10−6 8 × 10−6 9 × 10−6 10 −5 10−5 10−5 10−5 10−5

5 × 10−6 6 × 10 −6 7 × 10−6 7 × 10−6 8 × 10−6 9 × 10−6 10 −5 10−5 10−5 10−5 10−5

5 × 10−6 6 × 10 −6 7 × 10−6 7 × 10−6 8 × 10−6 9 × 10−6 10 −5 10−5 10−5 10−5 10−5

6 × 10−6 6 × 10 −6 7 × 10−6 7 × 10−6 8 × 10−6 9 × 10−6 10 −5 10−5 10−5 10−5 10−5

6 × 10−6 6 × 10 −6 7 × 10−6 7 × 10−6 8 × 10−6 9 × 10−6 10 −5 10−5 10−5 10−5 10−5

6 × 10−6 6 × 10 −6 7 × 10−6 7 × 10−6 8 × 10−6 9 × 10−6 10 −5 10−5 10−5 10−5 10−5

6 × 10−6 6 × 10 −6 7 × 10−6 8 × 10−6 8 × 10−6 9 × 10−6 10 −5 10−5 10−5 10−5 10−5

6 × 10−6 6 × 10 −6 7 × 10−6 8 × 10−6 8 × 10−6 9 × 10−6 10 −5 10−5 10−5 10−5 10−5

6 × 10−6 6 × 10−6 7 × 10−6 8 × 10−6 8 × 10−6 9 × 10−6 10 −5 10−5 10−5 10−5 10−5

Figure A1. ht = 10−3.

Table A2. The absolute error for h = 0.01, ht = 10−5.

i = 1, 9 10, 18 19, 27 28, 36 37, 45 46, 54 55, 63 64, 72 73, 81 82, 89 90, 99

5 × 10−9 6 × 10−9 6 × 10−9 7 × 10−9 8 × 10−9 8 × 10−9 9 × 10−9 10−8 10−8 10−8 10−8

5 × 10−9 6 × 10−9 6 × 10−9 7 × 10−9 8 × 10−9 9 × 10−9 9 × 10−9 10−8 10−8 10−8 10−8

5 × 10−9 6 × 10−9 6 × 10−9 7 × 10−9 8 × 10−9 9 × 10−9 9 × 10−9 10−8 10−8 10−8 10−8

5 × 10−9 6 × 10−9 7 × 10−9 7 × 10−9 8 × 10−9 9 × 10−9 10−9 10−8 10−8 10−8 10−8

5 × 10−9 6 × 10−9 7 × 10−9 7 × 10−9 8 × 10−9 9 × 10−9 10−9 10−8 10−8 10−8 10−8

5 × 10−9 6 × 10−9 7 × 10−9 7 × 10−9 8 × 10−9 9 × 10−9 10−9 10−8 10−8 10−8 10−8

6 × 10−9 6 × 10−9 7 × 10−9 7 × 10−9 8 × 10−9 9 × 10−9 10−9 10−8 10−8 10−8 10−8

6 × 10−9 6 × 10−9 7 × 10−9 7 × 10−9 8 × 10−9 9 × 10−9 10−9 10−8 10−8 10−8 10−8

6 × 10−9 6 × 10−9 7 × 10−9 8 × 10−9 8 × 10−9 9 × 10−9 10−9 10−8 10−8 10−8 10−8
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Figure A2. ht = 10−5.

In Example 2, for h = 0.01, α = 1.5
The Figures A3–A5 show where the space step is fixed at h = 0.01 and the time step ht

decreases towards zero (ht = 0.001, ht = 0.0001, ht = 0.00001), the approximate solution
u1 tends to the exact solution v1, in the case where ht = 0.00001 we see that the two curves
of u1 and v1 are almost identical.

Figure A3. ht = 0.001.

Figure A4. ht = 0.0001.



Mathematics 2021, 9, 1987 25 of 26

Figure A5. ht = 0.00001.
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