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Abstract: In basketball, the offensive movements on both strong and weak sides and tactical behavior
play major roles in the effectiveness of a team’s offense. In the literature, studies are mostly focused
on offensive actions, such as ball screens on the strong side. In the present paper, for the first time a
second-order Markov model is defined to evaluate players’ interactions on the weak side, particularly
for exploring the effectiveness of tactical structures and off-ball screens regarding the final outcome.
The sample consisted of 1170 possessions of the FIBA Basketball Champions League 2018–2019. The
variables of interest were the type of screen on the weak side, the finishing move, and the outcome of
the shot. The model incorporates partial non-homogeneity according to the time of the execution
(0–24′′) and the quarter of playtime, and it is conditioned on the off-ball screen type. Regarding the
overall performance, the results indicated that the outcome of each possession was influenced not
only by the type of the executed shot, but also by the specific type of screen that took place earlier on
the weak side of the offense. Thus, the proposed model could operate as an advisory tool for the
coach’s strategic plans.

Keywords: basketball; Markov chain; second order; off-ball screens; performance

1. Introduction

Basketball is a team sport that is constantly evolving due to the changes in regulations,
the faster pace, the increasing physical abilities of the players, and the upgrading of training
methods. Offensive movements and players’ tactical cooperation play major roles in both
individual and team performance concerning offense [1,2]. The most frequent offensive
movement between two players on the strong side is the ball screen. Ball screens are
important coordinated movements used in offense, providing enhanced strategy on the
court [3]. During the action of ball screen, one player is the screener, who blocks the
defensive movements of the opponents from an appropriate area, and the other is the ball
handler, who creates opportunities by either passing to the screener-cutter (roll or pop out
to the basket) or becoming the cutter by executing a shot himself [4,5]. Previous studies
have indicated that the effectiveness of the screen is affected by time-related characteristics,
such as the offense’s remaining time, the type of screen and the area of execution [1]. In
addition, coordinated movements on the weak side are also extremely important for the
overall offensive performance of each team. According to previous findings, the most
common offensive tactics used on the weak side are the off-ball screens [6]. The continuous
movements and screen types on the weak side are crucial factors in allowing advantageous
positions while executing the shots. Previous results in NCAA basketball league have
shown that the winning teams had approximately 11 off-ball screens less than the losing
teams [7].

Statistical and stochastic modelling has already been applied to model performance in
basketball. The most common approach is to apply linear or generalized linear regression
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models to box-score data, while considering each individual player’s statistics and overall
team statistics [8]. Furthermore, researchers have applied quantile regression methods,
which can provide more specific descriptions of the relationships between key performance
indicators and the outcome of a basketball game compared to multiple regression [9]. These
approaches lack the detail of the evolution of the match, as they mainly focus on overall
performance. Other studies have used discriminant analysis to obtain the most dominant
factors that could potentially lead a team to victory in both the Basketball World Cup and
domestic leagues [10–12]. Play-by-play data have more recently been included in basketball
research and expanded the traditional use of summary statistics of tournaments. Such data
can be used for more detailed illustrations of the evolution of basketball matches [13].

Markov models are useful for modelling play-by-play data, as they effectively describe
the evolution of future successive possession by each of the two competing teams. One
of the earliest attempts was the application of a Markov chain with state space consisting
of the team that had the possession, how the possession was taken, and the points scored
during the previous possession. This model could derive the progression of the basketball
match over time [14]. In NCAA, a combination of logistic regression and Markov modelling
has been used to evaluate the rankings of the teams and predict the final standings of
the tournament [15]. Furthermore, researchers have applied a Markov model to simulate
a basketball match in the NBA and forecast the outcome of the match and the points
scored, based on the transition matrix [13]. This model captured the non-homogeneity of
a basketball match, which was mainly observed in the first and last minutes of playtime,
and provided a more detailed state space, including time, the difference in points and
characteristics of the teams. Basketball formations also play a crucial role in the overall
performance of a team, as different positions exhibit different characteristics and should
optimally cooperate with the rest of the team. Markov chain modelling has been used
to compare the offensive and defensive performances of different formations, and the
performance of these formations over time [16]. Finally, Markov chains have been used as
modelling tools in various other domains, such as manpower planning, finance, healthcare,
biology, and others [17–28].

The class of high-order Markov chains is an essential stochastic tool, which fits more
adequately when the phenomena under investigation incorporate longer dependencies.
One of the earliest studies with high-order Markov chains applied them in manpower
systems, and they presented a considerably better fit compared to first-order Markov
models [29]. A major problem of high-order Markov chains is the great number of the
parameters that must be estimated, which increases geometrically according to the order
of the model. Raftery, in 1985, was the first to propose a high-order Markov model,
called the mixture transition distribution (MTD) model, where each transition probability
is a weighted linear combination of the previous transition probabilities [30]. In this
formulation, one can estimate a smaller number of parameters by solving a linear system,
as in the well-known Yule–Walker system of equations found in time-series analysis.
The limiting distribution of high-order Markov chains was studied in [31]. Ching and
his colleagues extended Raftery’s model by introducing variability into the transition
probability matrices, and proved that, given some mild conditions, the proposed model
has a stationary distribution [32]. More recently, in the field of the mixture transition
probability models for high-order Markov chains, the G-inhomogeneous Markov system
was introduced, and its asymptotic behavior, under assumptions easily met in practice, was
studied [33]. Applications of high-order Markov chains can be found in various domains,
such as DNA analysis [34,35], analysis of wind speed [36], and manpower planning [29].

To our knowledge, there exist limited studies concerning basketball screens on the
weak side of the court and their influences on a game’s outcome. The purpose of the
present study was to develop a second-order Markov modelling framework that would
evaluate the characteristics of off-ball screens that positively affect the finishing move and
the outcome of the offensive movement, thus improving the performance of the team.
Apart from the overall performance, the aim of the current paper is to examine how time,
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expressed either as the quarter of play or as the time clock (0–24 s), could influence the
transition probabilities from screens and finishing moves to outcomes. Section 2 presents
the main methodological tools adopted in this paper. More specifically, Section 2.1 presents
the theoretical background and definitions of high-order Markov chains. Section 2.2
presents the description of the data and the measured variables, embeds the second-order
Markov theory in the basketball context, where the state space and the basic parameters of
the Markov modelling are provided. Section 3 provides the results of the analysis. Section 4
discusses the obtained results from a basketball viewpoint and finally, the conclusions are
provided in Section 5.

2. Modelling Framework
2.1. Second-Order Markov Modelling

A first-order Markov chain {Xn}, n = 0, 1, . . . , with state space V = {1, 2, . . . , m} is a
discrete stochastic process, in which the transition to the next state is governed only by the
current state of the process and it is independent of the past states. This property, called
Markovian, could be written as

P(Xn+1 = j|Xn = i, Xn−1 = in−1, . . . , X0 = i0) = P(Xn+1 = j|Xn = i) = pij(n),

where i, j, i0, . . . , in−1 ∈ V and
m
∑

i=1
pij(n) = 1, pij(n) ≥ 0. The matrix P(n), which contains

the probabilities pij(n) is called the transition probability matrix. If the probabilities pij(n)
are independent of time, i.e., pij(n) = pij, ∀ n ∈ N, then the Markov chain is called
time homogeneous. If we consider a first-order Markov chain, then the k-order Markov chain
(Xn) with state space S = {1, 2, . . . , M}, where the states of S are k-tuples of the elements
of V, is a discrete stochastic process, for which the k-order Markovian property holds:

P(Xn+1 = j|Xn = i, . . . , X0 = i0) = P(Xn+1 = j|Xn = i, . . . , Xn−k+1 = in−k+1),

and the number of states is equal to M = (m− 1)mk. In general, the transition probability
matrix of the high-order Markov chain will contain many zero cells, as it is impossible to
transition to states where the past observations do not overlap. To present the transition
probabilities in a more elegant way, we can use the reduced transition probability matrix,
which contains only the non-zero probabilities [37]. For example, the reduced transition
probability matrix for a second-order Markov chain with state space S = {1, 2} is presented
in Table 1. Note that in a second-order Markov chain, the subscript of the probabilities
contain three states, where the first two refer to past states and the last one to the next state.

Table 1. Transition probability matrix of a second-order two-state Markov chain in reduced form.

Xt

Xt−2 Xt−1 1 2

1 1 p111 p112
2 1 p211 p212
1 2 p121 p122
2 2 p221 p222

By using this technique, we can transform any Markov chain of order n to a first-order
model, by appropriately changing the state space and keeping all the n-tuples. The high-
order Markov chains are, in general, more efficient as they acquire memory and can capture
longer dependencies compared to the first order; however, the number of parameters
increases with geometric growth with respect to the order. This leads to computational
problems while estimating all the parameters. Some alternative specifications of the n-
order model have been proposed, which reduce the set of parameters by applying linear
dependencies between the n-step probabilities [30]. These MTD models are, in general,
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more practical to estimate, however the assumption of dependent transition probabilities
may not be necessary, especially when we are dealing with short-term correlations. In the
basketball context, the outcome of each possession could be influenced by two preceding
events, namely, the type of screen on the weak side of the court and the finishing action.
Thus, a second-order Markov chain could be more feasible for estimation, as the number
of varying parameters is reasonable for direct estimations of the transition probabilities.
Hence, the model could examine the relationship between those past movements and the
final outcome of the offense. In this scenario, the transition probabilities pkij(n) denote
the probability that the Markov chain will transition to state j, while currently it is at state
i at time n and the previous state was k. With inclusion of the second-order transition
probabilities, we can arrange the non-homogeneous second-order transition matrix P(n),
which is the basic parameter of the process. The maximum likelihood estimates (MLE) for
the transition probabilities of a second-order Markov chain are given by

p̂kij(n) =
N(k, i(n)→ j)

∑x∈M N(k, i(n)→ x)
,

where N(k, i(n)→ j) denotes the number of transitions from the pair (k, i) to state j, starting
from the position n. Please note that if we assume that the transition probabilities are time-
invariant, that is P(n) = P, then the MLE estimates for the transition probabilities are
given by

p̂kij =
N(k, i→ j)

∑x∈M N(k, i→ x)
,

where (k, i→ j) denotes the number of transitions from the pair (k, i) to state j.

2.2. Basketball Modelling

In the context of basketball, assume that {Xn} is a discrete first-order Markov chain
that denotes the current event taking place during the offense. The events that happen
are the screen type (TS), the finishing move type (TF) and the outcome (O). Hence, the
process takes values in the three-dimensional state space, which is V = {TS, TF, O}. For
example, consider the scenario where a team obtains possession and screens outside the
paint with a staggered screen and the player that gets the ball shoots from inside the paint
with a lay-up and scores a 2-pt shot; then, the associated transitions of this scenario will be,
“Staggered screen outside the paint, 0, 0→ 0, Lay-up, 0→ 0,0, Successful 2-pt shot”.

To model the successive events during each offense, we have used a sample of 1170
possessions by 16 competing teams of the FIBA Basketball Champions League 2018–2019.
The recordings of the possessions were made using the “SportScout” video-analysis soft-
ware. The possessions were observed by three assistant coaches, with at least 5 years of
experience in professional basketball. Cohen’s kappa (κ) correlation coefficient was used to
assess the inter-rater reliability. The values obtained displayed a high degree of agreement
(κmin = 0.91). For each possession, the events were recorded, as well as the time of the shot
clock (T) and the quarter of playtime (Q1–Q4). The levels of each of the recorded variables
are presented in Table 2. The possible outcomes consisted of successful and unsuccessful 2-
and 3-pt shots and possession change, which includes turnovers, steals, blocks, offensive
fouls, and the violation of the 24 s duration of offense.

The screen types were defined using standard basketball terminology. More specifi-
cally, two consecutive screens for a player, in the same direction away from the ball were
defined as a staggered screen. A flare screen was defined as a screen set at the elbow of the
free throw line where the player fades out on the weak side. Screen the screener occurs
when an offensive player sets a screen and, at the same time, receives a screen from a
teammate. To pass on the side and set a screen for a player in the opposite direction was
described as a screen away. Down screen is a screen where an offensive player sets himself
in a position away from the ball. Back screen occurs when an offensive player stands
behind the defensive player with his back toward the basket. Single- and double-staggered
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screens were combined into one category, as well as the single- and double- high-cross
screens. Examples of screen types under consideration are presented in Figure 1.

Table 2. Recorded variables, levels, and coding indices.

Variables Levels Level Coding

Type of screen (TS) Staggered screen TS1
Flare screen TS2
Screen the screener TS3
Back screen TS4
Down screen TS5
High cross screen TS6
Screen away TS7

Type of finishing move (TF) Dunk TF1
Lay-up TF2
2-pt shot TF3
3-pt shot TF4
None TF5

Outcome (O) Successful 2-pt shot O1
Missed 2-pt shot O2
Successful 3-pt shot O3
Missed 3-pt shot O4
Possession change O5

Time (T) 0–8 s T1
8–24 s T2

Quarter (Q) First Quarter Q1
Second Quarter Q2
Third Quarter Q3
Fourth Quarter Q4
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(top right), flare screens (bottom left) and screen away (bottom right).

We shall note here that not all transitions were observed, for example if the finishing
move was a middle-range shot (2-pt), the only possible outcomes would be either a suc-
cessful or unsuccessful 2-pt shot. For the first-order Markov chain, the possible transitions
between states are presented in Table 3. Apparently, the Markov chain exhibits periodic
behavior with period d = 3, as each screen is always followed by a finishing move and each
finishing move is only followed by the outcome of the possession.
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Table 3. Possible transitions between the states in the first-order Markov chain.

TS1 TS2 TS3 TS4 TS5 TS6 TS7 TF1 TF2 TF3 TF4 TF5 O1 O2 O3 O4 O5

TS1 0 0 0 0 0 0 0 X X X X X 0 0 0 0 0

TS2 0 0 0 0 0 0 0 X X X X X 0 0 0 0 0

TS3 0 0 0 0 0 0 0 X X X X X 0 0 0 0 0

TS4 0 0 0 0 0 0 0 X X X X X 0 0 0 0 0

TS5 0 0 0 0 0 0 0 X X X X X 0 0 0 0 0

TS6 0 0 0 0 0 0 0 X X X X X 0 0 0 0 0

TS7 0 0 0 0 0 0 0 X X X X X 0 0 0 0 0

TF1 0 0 0 0 0 0 0 0 0 0 0 0 X X 0 0 X

TF2 0 0 0 0 0 0 0 0 0 0 0 0 X X 0 0 X

TF3 0 0 0 0 0 0 0 0 0 0 0 0 X X 0 0 X

TF4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X X X

TF5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X

O1 X X X X X X X 0 0 0 0 0 0 0 0 0 0

O2 X X X X X X X 0 0 0 0 0 0 0 0 0 0

O3 X X X X X X X 0 0 0 0 0 0 0 0 0 0

O4 X X X X X X X 0 0 0 0 0 0 0 0 0 0

O5 X X X X X X X 0 0 0 0 0 0 0 0 0 0

TS: Type of screen, TF: Type of finishing move, O: Outcome, X: Non-zero probability.

It is of interest to examine whether the process {Xn} incorporates memory, i.e., a
higher-order Markov model would provide a more adequate fit. In relation to basketball,
a coach may assume that the outcome of a possession does not only depend on the type
of the executed shot, but on the previous characteristics of the phase, such as the type of
screen, as it could probably alter the evolution of the possession and provide more space
and freedom for a well-executed shot. Hence, we would like to test the null hypothesis
that the process is of order r = 1 versus the alternative hypothesis, r = 2. For testing this
hypothesis, we used the likelihood ratio test (LRT). The likelihood ratio (LR) is given by

LR = −2(LL1 − LL2),

where LL1 and LL2 denote the log-likelihood of models of order 1 and order 2, respectively.
The log-likelihood ratio is an essential tool for the comparison of two competing Markov
models [38] and can be used to evaluate well-known goodness-of-fit metrics, such as the
AIC and BIC [39]. The likelihood ratio asymptotically follows a chi-squared distribution
with degrees of freedom (df) equal to the difference of degrees of freedom of the two
models, thus it can provide a p-value that can lead to the rejection of the null hypothesis,
if it is smaller than a predefined cut-off value α (commonly α is set to 0.05). Adopting
the notations of a previous work, where the authors assessed the order of a Markov chain
applied in DNA sequences [40], one can formulate the likelihood ratio for two competing
Markov models by

LR = −2

(
∑

a2,a3

na2,a3 log
(

na2,a3

na2

)
− ∑

a1,a2,a3

na1,a2,a3 log
(

na1,a2,a3

na1a2

))
,

where

na1,a2,a3 =
n−2

∑
k=1

I(Xk = a1, Xk+1 = a2, Xk+2 = a3),
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na2,a3 =
n−1

∑
k=1

I(Xk = a2, Xk+1 = a3),

denote the number of observed triplets and pairs of a1, a2, a3 ε S, respectively. Also, we note
that the ratios

na2,a3
na2

and
na1,a2,a3

na1a2
are the empirical estimators of the transition probabilities,

e.g., p̂a2,a3 and p̂a1,a2,a3 , respectively. The LR could be simplified as

LR = −2

(
∑

a2,a3

na2,a3 log( p̂a2,a3)− ∑
a1,a2,a3

na1,a2,a3 log( p̂a1,a2,a3)

)
.

In general, a Markov chain of order r with state space S has (|S| − 1)|S|r varying
parameters. However, in our case, the number of varying parameters would be less, since
in the basketball context the transition probability matrix prohibited some transitions. For
example, when the offensive player shoots a 3-pt shot, the possible transitions would not
include any other outcome, apart from a successful or missed 3-pt shot. More specifically,
the numbers of estimated transition probabilities were 82 and 354 for the first- and second-
order Markov chain, respectively. The likelihood ratio value was calculated equal to
395.242, which resulted in p < 0.001, therefore the likelihood ratio test indicated to reject
the null hypothesis, in favor of r = 2.

The results of the significant relationships between the three components (screen
type, finishing move and outcome) lead to establishing a model that includes second-
order dependencies, therefore a second-order Markov chain is proposed to study the
effect of screen type and finishing move on the outcome of the possession. The state
space S = {(TS, TF), (TF, O), (O, TS)} of the second-order Markov chain consists of the
ordered pairs of events that belong in the state-space V of the first-order Markov chain. The
transition probabilities are presented in Table 4, in reduced form. Several considerations
were made regarding the time, as a parameter that influences the frequency of specific
off-ball screens and outcomes. First, the off-ball screen possessions were designated into
two categories, 0–8 s and 8–24 s, according to the shot clock time at the time of the finishing
move. For each subsample, the transition probabilities were estimated and the asymptotic
probability vectors were also estimated. Second, we differentiated the offensive movements
between the first three quarters and the last quarter of the game, where in the last quarter,
as the pace of the game increases, the losing team can make a comeback.

Table 4. Transition probability matrix of the second-order Markov chain in reduced form.

O (Xt)

TS (Xt−2) TF (Xt−1) O1 O2 . . . O5

TS1 TF1 pTS1 TF1 O1 pTS1 TF1 O2 . . . pTS1 TF1 O5
TS2 TF1 pTS2 TF1 O1 pTS2 TF1 O2 . . . pTS2 TF1 O5
TS3 TF1 pTS3 TF1 O1 pTS3 TF1 O2 . . . pTS3 TF1 O5
TS4 TF1 pTS4 TF1 O1 pTS4 TF1 O2 . . . pTS4 TF1 O5
TS5 TF1 pTS5 TF1 O1 pTS5 TF1 O2 . . . pTS5 TF1 O5
TS6 TF1 pTS6 TF1 O1 pTS6 TF1 O2 . . . pTS6 TF1 O5
TS7 TF1 pTS7 TF1 O1 pTS7 TF1 O2 . . . pTS7 TF1 O5
TS1 TF2 pTS1 TF2 O1 pTS1 TF2 O2 . . . pTS1 TF2 O5
TS2 TF2 pTS2 TF2 O1 pTS2 TF2 O2 . . . pTS2 TF2 O5
TS3 TF2 pTS3 TF2 O1 pTS3 TF2 O2 . . . pTS3 TF2 O5
TS4 TF2 pTS4 TF2 O1 pTS4 TF2 O2 . . . pTS4 TF2 O5
TS5 TF2 pTS5 TF2 O1 pTS5 TF2 O2 . . . pTS5 TF2 O5
TS6 TF2 pTS6 TF2 O1 pTS6 TF2 O2 . . . pTS6 TF2 O5
TS7 TF2 pTS7 TF2 O1 pTS7 TF2 O2 . . . pTS7 TF2 O5

...
...

...
... . . . ...

TS1 TF5 pTS1 TF5 O1 pTS1 TF5 O2 . . . pTS1 TF5 O5
TS2 TF5 pTS2 TF5 O1 pTS2 TF5 O2 . . . pTS2 TF5 O5
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Table 4. Cont.

O (Xt)

TS (Xt−2) TF (Xt−1) O1 O2 . . . O5

TS3 TF5 pTS3 TF5 O1 pTS3 TF5 O2 . . . pTS3 TF5 O5
TS4 TF5 pTS4 TF5 O1 pTS4 TF5 O2 . . . pTS4 TF5 O5
TS5 TF5 pTS5 TF5 O1 pTS5 TF5 O2 . . . pTS5 TF5 O5
TS6 TF5 pTS6 TF5 O1 pTS6 TF5 O2 . . . pTS6 TF5 O5
TS7 TF5 pTS7 TF5 O1 pTS7 TF5 O2 . . . pTS7 TF5 O5

3. Results
3.1. Overall Performance

The screens with the highest frequency were staggered screens (41%), followed by flare
screens (15%). Furthermore, offensive players decided to execute their offense by using 3-pt
shots (57%), followed by making use of 2-pt shots (22%); conversely, the lay-up frequency
appeared lower (10%). The estimated transition probabilities of the first-order Markov chain
showed that, on average, the probability of a successful outcome was less when compared
to a missed attempt. Except for dunks, where the success was assured, 2-pt shots showed
the highest probability of success (p = 0.48), followed by 3-pt shots (p = 0.41) and lay-ups
(p = 0.35). Lay-ups also showed the highest probability of a possession change, caused by a
block, turnover, or foul (p = 0.27). Table 5 presents the second-order transition probabilities
between finishing moves and successful 2- or 3-point shots, conditional on screen type.
Schematically, Figure 2 visualizes the relationship between the pairs: screen type/finishing
move and screen type/outcome. Lay-ups were mainly enhanced by back screens, as it was
found that the succession of back screens and lay-ups results in 0.78 probability of scoring
a 2-pt shot. Most 2-pt shots were successfully executed, when the preceding off-ball screen
was flare, staggered or down screen. Concerning 3-pt shots, the two types of screens where
the outcome was optimal, were the high-cross and screen the screener.

Table 5. Overall transition probability estimates between finishing moves and screens to successful shots.

Screen Type (Xt−2) Finishing Move (Xt−1) Successful Shot (Xt)

Staggered Lay-up 0.27
Flare 1 Lay-up 0.17
Screen the screener Lay-up 0.44
Back screen Lay-up 0.78
Down screen Lay-up 0.45
High cross Lay-up 0.47
Screen away Lay-up 0.15
Staggered 2-pt shot 0.51
Flare 1 2-pt shot 0.56
Screen the screener 2-pt shot 0.30
Back screen 2-pt shot 0.47
Down screen 2-pt shot 0.50
High cross 2-pt shot 0.39
Screen away 2-pt shot 0.48
Staggered 3-pt shot 0.41
Flare 1 3-pt shot 0.34
Flare 2 3-pt shot 0.33
Screen the screener 3-pt shot 0.52
Back screen 3-pt shot 0.29
Down screen 3-pt shot 0.42
High cross 3-pt shot 0.67
Screen away 3-pt shot 0.40

1: inside the paint, 2: perimeter area.
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3.2. Time Comparison

Table 6 presents the transition probabilities of the second-order Markov chain, that
were estimated separately for the outcomes that took place in the first eight seconds of the
possession and the last sixteen seconds of the possession. Screen the screener enhanced
both 2- and 3-pt shots during the 0–8 s compared to the last seconds of the possession.
High-cross screens were effectively beneficial for 3-pt shots during the interval 0–8 s,
on the other hand screen-away was associated with well-executed 3-pt shots in the last
seconds of the possession. Table 7 presents the comparison of the successful outcomes
between the first to third and fourth quarters of playtime. In general, in the last quarter,
the efficiency of the most frequently used screens was elevated, as the probabilities to
successfully execute a shot were greater compared to the first three quarters. Flare screens
inside the perimeter area and high-cross screen in the last quarter, according to our data,
guaranteed the outcome of a 2- and 3-pt shots, respectively.

Table 6. Transition probabilities between finishing moves and screens to successful shots.

Successful Outcome (Xt)

Screen Type (Xt−2) Finishing Move (Xt−1) T1 T2

Down screen Lay-up 0.50 0.43
Staggered 2-pt shot 0.58 0.47
Flare 2-pt shot 0.33 0.50
Screen the screener 2-pt shot 1.00 0.67
Back screen 2-pt shot 0.36 0.56
Down screen 2-pt shot 0.66 0.47
Screen away 2-pt shot 0.55 0.42
Staggered 3-pt shot 0.56 0.38
Flare 1 3-pt shot 0.35 0.33
Screen the screener 3-pt shot 0.77 0.36
Down screen 3-pt shot 0.52 0.37
High cross 3-pt shot 1.00 0.66
Screen away 3-pt shot 0.17 0.44

1: inside the paint.

The asymptotic probabilities of the most-used pairs of screens/finishing moves and
finishing moves/outcomes are presented in Table 8. Regarding screens and finishing moves,
the most frequent pairs in the court were staggered screens followed by 3-pt shots and flare
screens with 3-pt shots. Concerning finishing moves and outcomes, most 3-pt shots were
unsuccessful, while the successful and missed 2-pt shots had the same frequency.
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Table 7. Comparison of the probability estimates between finishing moves and screens to successful
outcomes in the first three vs. last quarter.

Successful Outcome (Xt)

Screen Type (Xt−2) Finishing Move (Xt−1) Q1–Q3 Q4

Staggered Lay-up 0.30 0.20
Down screen Lay-up 0.20 0.50
Staggered 2-pt shot 0.52 0.40
Flare 1 2-pt shot 0.33 1.00
Down screen 2-pt shot 0.30 0.50
Staggered 3-pt shot 0.38 0.59
Flare 1 3-pt shot 0.37 0.14
Screen the screener 3-pt shot 0.52 0.50
Back screen 3-pt shot 0.20 0.50
Down screen 3-pt shot 0.37 0.58
High cross 3-pt shot 0.63 1.00
Screen away 3-pt shot 0.34 0.69

1: inside the paint.

Table 8. Asymptotic probabilities of frequent screens, finishing moves and outcomes.

TF-O p TS-TF p

TF4-O4 0.33 TS1-TF4 0.24
TF4-O3 0.23 TS2-TF4 0.09
TF3-O1 0.11 TS7-TS4 0.08
TF3-O2 0.11 TS1-TF3 0.08
TF5-O5 0.05 TS5-TF4 0.07
TF2-O1 0.04 TS6-TF4 0.04
TF2-O2 0.04
TF2-O5 0.03
TF4-O5 0.01
TF1-O1 0.01

Probabilities lower than 0.01 were excluded.

4. Discussion

The aim of the present study is to develop a second-order Markov modelling frame-
work that would evaluate the efficiency of off-ball screens that positively affect the finishing
move and the outcome. Relevant literature regarding the strong side of the offense have
indicated that screens on the strong side were beneficial for the offense [41]; however,
limited studies were conducted concerning the weak side. The outcome of every action
in the basketball context depends on several factors, such as the type of defense, the
characteristics of the players involved, the scoreboard, and the finishing moves and the
screen types on the strong and weak side. The present paper, focusing on offensive actions,
attempts to investigate the decision taken by the players on the weak side of the offense.
While executing weak side offensive movements, it was found that the two screens that
had the highest frequency were staggered screens, followed by flare screens. This occurs
because in the first type of screen, there are two consecutive screens in the same direction
for a teammate away from the ball. A stagger screen creates more space and allows the
cutter to rub the defensive player on the first or second screen for a middle range or 3-pt
shot. Conversely, flare screens create clear out situations on the perimeter for a 2-pt or 3-pt
shot. According to [42], which undertook an analysis of basketball at the Olympic Games,
the findings showed that the successful or unsuccessful 2-pt or 3-pt shots are the most
important indicators for winning teams.

Our findings also revealed that the players, during off-ball screens, decide to execute
their offense more by using 3-pt shots, followed by making use of a middle-range 2-pt shot;
conversely, the lay-up option was not frequent. This is in line with [10], in which research at
the World Cup 2019 pointed out that winning teams were more successful on their 3-pt shot
attempts, on equally competitive teams. Regarding the effectiveness in the variations of
executing the off-ball screens and finishing the offense, greater success is observed in using
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back screens and lay-ups, followed by flare screens and 2-pt shot; whereas the combination
of high-cross screens and 3-pt shots was advantageous. Back screens are movements that
take place on the “back” of the defensive player while playing defense on the weak side
area. Offensive players, executing this type of screen use back door movements to receive
the ball for a lay-up. However, although the combination of back screens and lay-ups
lead to higher probability of successfully executing the offense, only a few instances of
the above actions were observed in the court. Furthermore, flare screen is a collaboration
in which the screener sets up a screen at the corner of the free-throw line and the cutter,
instead of moving towards the basket, takes the screen and fades out to open space, away
from the ball, for a middle-range shot. Moreover, a cross screen appears when a player cuts
to the opposite side of the floor to set a screen for a teammate. Predominantly, this happens
at the top of the key and gets a player who was on the strong side of the floor open for a
quick 3-pt shot. For the execution of this screen, the coach can use two power forwards
players, and additionally, a guard one with a center. The results agree with [16], which
presented those different formations wherein the players achieved different effectiveness
while leading to a basket.

The present study, by applying a second-order Markov model, demonstrated interest-
ing findings, which confirmed that the offense is influenced by specific screens on the weak
side of the court. Using staggered screens, it was shown that when the players executed
2-pt shots, they were led to more successful outcomes. This type of screen can be used
inside the paint, where the cutter can go into the corner for a 3-pt shot, whenever the
attacking player can go out on different sides of the perimeter for a 3-pt shot. The flare
screen, executed either inside or outside the perimeter area, provided equal results with
regards to successful 3-pt shots. The above combinations could be interpreted by the arrival
of American players in European basketball, indicating that the European basketball has
become more unrestrained, such as the NBA. Finally, the Markovian model also predicted
that a successful offensive combination is a down screen followed by the execution of a 2-pt
shot. The latter combination is probably explained by the fact that the attacks take place
inside the paint, as the down screen is made to release mainly the taller players and make
a flash movement towards the ball, leading to a better position while leading to a basket.

Concerning the shot clock, the results indicated that specific screen types, such as
screen the screener and high-cross, that occur rapidly before the set-play of the offense
at the top of the key area during the transition game led to more successful offensive
movements in the first 8 s of the possession. On the other hand, during the interval 8–24 s
of the offense, the players achieved greater mobility, thus they used screen away to provide
the perimeter shooter with an optimal area to execute the 3-pt shot. This result confirms
previous findings, which showed that defenders have more fatigue during the last seconds
of the offense, thus the resulting offensive screen could be successful [43]. The results in
the last quarter, showed that 3-pt shots were positively influenced by high-cross, staggered,
screen away, back, and down screens. This can be explained by the fact that in the last
minutes of playtime, the players using the aforementioned screens aim to optimize their
final score. Previous studies suggested that possession effectiveness was found to be
elevated by using different tactical strategies during the last minutes of playtime [41]. On
the contrary, in the first three quarters, staggered screens, which consist of two consecutive
screens from different offensive players, provided the opportunity to a teammate to receive
the ball for an easy lay-up or 2-pt shot. In general, in the last quarter, the efficiency of the
most frequently-used screens was elevated, as the probabilities to successfully execute a
shot were greater, compared to the first three quarters.

5. Conclusions

In the recent years, the study of performance indicators and their use in the strategy
of basketball teams to maximize performance has been the subject of extended research.
Via second-order Markov modelling, this paper provided insights into the behaviors and
interactions of the players using the screens, and the final attempt of the shots on the
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weak side. In conclusion, attacks away from the ball are movements without prior verbal
signals in which players must perform a specific screen with great speed and accuracy. It
is worth noting that this study provides useful information for coaches who may have
the opportunity to use it in training programs aimed at the individual improvement of
players, and also to improve and maximize the team’s offense. We suggest further research
that could bring about advances in play, including the area of execution or screen, as a
covariate that would influence the outcome of the offense, the cutting movements, or the
characteristics of the line-ups on the weak side of the offensive team. In addition, a semi-
Markov model could provide a more detailed picture of the offense, incorporating sojourn
times between offensive movements, if appropriate data were available. By knowing
the strengths and weaknesses of the attack, the coach can have a complete picture of the
offense on both sides and adjust the preparation for the next movement to succeed in a
basketball game.

Author Contributions: Conceptualization, N.S., A.P. and P.K.; Methodology, N.S., A.P. and P.K.;
Software, A.P. and P.K.; Validation, N.S., A.P. and P.K.; Formal analysis, N.S., A.P. and P.K.; Investi-
gation, N.S., A.P. and P.K.; Data curation, N.S., A.P. and P.K.; Writing—original draft preparation,
N.S., A.P. and P.K.; Writing—review and editing, N.S., A.P. and P.K.; Visualization, N.S., A.P. and
P.K.; Supervision, N.S. and A.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy restrictions.

Acknowledgments: The authors greatly acknowledge the comments and suggestions of the three
anonymous referees, which improved the quality and the presentation of the current paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gómez, M.; Battaglia, O.; Lorenzo, A.; Lorenzo, J.; Jimenez, S.L.; Sampaio, J. Effectiveness during ball screens in elite basketball

games. J. Sports Sci. 2015, 33, 1844–1852. [CrossRef] [PubMed]
2. Lamas, L.; Junior, D.D.R.; Santana, F.; Rostaiser, E.; Negretti, L.; Ugrinowitsch, C. Space creation dynamics in basketball offence:

Validation and evaluation of elite teams. Int. J. Perform. Anal. Sport 2011, 11, 71–84. [CrossRef]
3. Vaquera, A.; García-Tormo, J.V.; Ruano, M.G.; Morante, J. An exploration of ball screen effectiveness on elite basketball teams. Int.

J. Perform. Anal. Sport 2016, 16, 475–485. [CrossRef]
4. Lamas, L.; Santana, F.; Heiner, M.; Ugrinowitsch, C.; Fellingham, G. Modeling the Offensive-Defensive Interaction and Resulting

Outcomes in Basketball. PLoS ONE 2015, 10, e0144435. [CrossRef] [PubMed]
5. Calvo, J.L.; García, A.M.; Navandar, A. Analysis of mismatch after ball screens in Spanish professional basketball. Int. J. Perform.

Anal. Sport 2017, 17, 555–562. [CrossRef]
6. Bazanov, B.; Võhandu, P.; Haljand, R. Factors influencing the teamwork intensity in basketball. Int. J. Perform. Anal. Sport 2006, 6,

88–96. [CrossRef]
7. Conte, D.; Tessitore, A.; Gjullin, A.; MacKinnon, D.; Lupo, C.; Favero, T. Investigating the game-related statistics and tactical

profile in NCAA division I men’s basketball games. Biol. Sport 2018, 35, 137–143. [CrossRef]
8. Kubatko, J.; Oliver, D.; Pelton, K.; Rosenbaum, D.T. A Starting Point for Analyzing Basketball Statistics. J. Quant. Anal. Sports

2007, 3. [CrossRef]
9. Zhang, S.; Gomez, M.; Yi, Q.; Dong, R.; Leicht, A.; Lorenzo, A. Modelling the Relationship between Match Outcome and Match

Performances during the 2019 FIBA Basketball World Cup: A Quantile Regression Analysis. Int. J. Environ. Res. Public Health
2020, 17, 5722. [CrossRef]

10. Stavropoulos, N.; Kolias, P.; Papadopoulou, A.; Stavropoulou, G. Game related predictors discriminating between winning and
losing teams in preliminary, second and final round of basketball world cup 2019. Int. J. Perform. Anal. Sport 2021, 21, 383–395.
[CrossRef]

11. Ibáñez, S.J.; Sampaio, J.; Sáenz-López, P.; Giménez, J.; Janeira, M.A. Game statistics discriminating the final outcome of junior
world basketball championship matches (Portugal 1999). J. Hum. Mov. Stud. 2003, 45, 1–20.

12. Sampaio, J.; Janeira, M. Statistical analyses of basketball team performance: Understanding teams’ wins and losses according to a
different index of ball possessions. Int. J. Perform. Anal. Sport 2003, 3, 40–49. [CrossRef]
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