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Abstract: This paper deals with the existence of traveling wave solutions to a delayed temporally
discrete non-local reaction diffusion equation model, which has been derived recently for a single
species with age structure. When the birth function satisfies monotonic condition, we obtained the
traveling wavefront by using upper and lower solution methods together with monotonic iteration
techniques. Otherwise, without the monotonicity assumption for birth function, we constructed
two auxiliary equations. By means of the traveling wavefronts of the auxiliary equations, using the
Schauder’ fixed point theorem, we proved the existence of a traveling wave solution to the equation
under consideration with speed c > c∗, where c∗ > 0 is some constant. We found that the delayed
temporally discrete non-local reaction diffusion equation possesses the dynamical consistency with
its time continuous counterpart at least in the sense of the existence of traveling wave solutions.

Keywords: temporally discrete; reaction-diffusion equation; traveling wave solutions; upper-lower
solution; Schauder’s fixed point; delay

1. Introduction

Very recently, we derived in [1] the following delayed temporally discrete non-local
reaction-diffusion equation

w(n + 1, x) = D∆xw(n + 1, x) + (1− d)w(n, x) + η
∫ +∞
−∞ KDi (r− 1, x− y)b(w(n + 1− r, y))dy, (1)

where w(n, x) denotes the density of the total matured population of a single species at
time n ∈ N, location x ∈ R, N represents the set of non-negative integers. D > 0 is the
diffusion rate of matured individuals. ∆x is the Laplacian operator with respect to x ∈ R,
r ≥ 2 is a positive integer, which denotes the maturation time for the species. 0 < d < 1
represents the death rate of matured individuals. 0 < η < 1 is the survival rate of an
individual from birth to maturation. b(·) is the birth function. The integral kernel function
KDi reads as

KDi (r− 1, x) =
1√
Di

e
− |x|√

Di
r−2

∑
m=0

(r− 1) · r · · · (r + m− 2)
m!(r− 2−m)!2r+m−1

(
|x|√

Di

)r−2−m
, (2)

where Di is the diffusion rate of immatured individuals. In particular, we use the conven-
tion that if m = 0 then m! = 1 and (r− 1)r · · · (r + m− 2) = 1.

For the case r = 1, KDi (r − 1, x) = KDi (0, x) = δ(x), i.e., the Dulac δ function.
Therefore, (1) is reduced to

w(n + 1, x) = D∆xw(n + 1, x) + (1− d)w(n, x) + ηb(w(n, x)), (3)
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Equation (1) reflects the changes of matured population of a single species in an un-
bounded habitat with dimension one. It can also be viewed as a non-standard discretization
of the following well-known non-local reaction-diffusion equation model with delay,

∂w
∂t

= D
∂2w
∂x2 − dw + ε

∫ ∞

−∞
b(w(t− r, y)) fα(x− y)dy, (4)

which was derived in 2001 by So, Wu and Zou [2]. The model (4) describes the adult
population’s evolution of a single species that have two age classes in an unbounded spatial
domain R1. In above Equation (4), D > 0 is the diffusion rate of the adult population and
d > 0 is the death rate of the adult population. ε > 0 reflects the impact of the death rate of
the immature on the matured population. b(·) is the birth function. r > 0 is the maturation
time of the species. α ≥ 0 also reflect the impact of the dispersal rate of the immature

on the matured population. The integral kernel function is fα(x) = 1√
4πα

e
−x2
4α . When α

approaches to 0, that is, the immature do not disperse, (4) is reduced to

∂w
∂t

= D
∂2w
∂x2 − dw + εb(w(t− r, x)), (5)

and the non-local effect disappears.
In our previous paper [1], we have already given a detailed derivation of Equation (1).

Especially, when Di = 0 (the immature individuals do not disperse), (1) becomes

w(n + 1, x) = D∆xw(n + 1, x) + (1− d)w(n, x) + ηb(w(n + 1− r, x)). (6)

Above equation is a non-standard temporally discrete version of (5).
It is well known that the continuous-time reaction-diffusion equation has been widely

used to describe diffusive phenomena in physics, engineering, chemistry, biology, and so
on (see, for example, [3–10]). In general, the dynamical behaviors of solutions to a non-
linear reaction-diffusion equation are very complicated, and it is often very difficult to find
exact solutions. For the sake of understanding the properties of the solutions numerically,
we need to study its discrete analogue. However, the basic principle of constructing
appropriate discretization of differential equations is to preserve the properties of the
corresponding differential equations. Since many classical (standard) discretizations cannot
achieve dynamic consistency, non-standard discretizations are usually used to ensure it.
Thus, Mickens first introduced the concept of dynamical consistency in [11,12] for ordinary
differential equations and since then, some dynamical consistent discrete schemes have
been constructed. See, for example, Refs. [13–17], and references therein.

In [1], we established the existence of traveling wavefronts of Equation (6) by using
upper and lower solution methods and iterate techniques. We found that (6) possesses the
dynamical consistency with its time continuous counterpart (5) at least in the sense of the
existence of traveling wave solutions. In the sense of propagation, Equation (6) is also a
good approximation of corresponding continuous time model (5).

From the perspective of mathematical biological modeling, almost all of the data
collected are discrete in time because observations are always discontinuous. For example,
satellite photographs used for scientific research are usually taken periodically, but the
spatial distribution can be seen as continuous. Temporally discrete and spatially continuous
diffusion model will be more suitable than its corresponding time continuous diffusion
model to study the dynamic behavior of a single species that living in a spatially continuous
habitat in population ecology. In 2002, Weinberg, Lewis, and Li in [18] gave some reasons
for studying discrete-time models rather than just reaction diffusion models. They also
pointed out the advantage of a discrete-time model over a reaction-diffusion model. We
note that in [18], the authors studied the discrete-time recursion system

un+1 = Q[un], (7)
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where un(x) denotes the population distributions of species and Q is an operator that
models the growth, migration, and interaction of the species.

Although Equations (1) and (6) are different from (7) formally, we have proved in [1]
that the following general non-linear equation

w(n + 1, x) = D∆xw(n + 1, x) + (1− d)w(n, x) + f (n, w(n, x)), x ∈ R. (8)

is equivalent to an integral-difference equation as below,

w(n + 1, x) =
∫ +∞

−∞
k(x− y)[(1− d)w(n, y) + f (n, w(n, y))]dy, (9)

where k(x) = 1
2
√

D
e−

|x|√
D . Clearly, (9) is a special case of (7) with

Q(w(n, x)) =
∫ +∞

−∞
k(x− y)[(1− d)w(n, y) + f (n, w(n, y))]dy.

As for the general integro-difference equations,

un+1(x) =
∫

Ω
k(n, x, y) f (n, un(y))dy, (10)

Kot and Schaffer [19] are the first to apply it modeling temporally discrete and spatially
continuous dispersal phenomena, and studying the dispersal of a single species with non-
overlapping generations. They showed that, the above model will has more complex
dynamic behavior than its corresponding time-continuous one. Moreover, even chaos
could occur.

Since the selection of kernel function k(n, x, y) plays a key role in the dynamical
behavior of (10), using such a model to describe some biological phenomena will have
some uncertainty. Especially, when we discuss dynamical behaviors of populations of
some species living in a bounded domain, the choice of suitable integral kernels is very
difficult because we may cope with various different boundary value problems.

In contrast with integral difference equations, we found that there is no such problems
for temporally discrete reaction diffusion equations like (8) (or (1)). Furthermore, from the
point of view of the mathematical modeling, (8) (or (1)) has the same biological explanations
as those for integral difference equations. In fact, in our previous paper [1], the life cycle
of individuals of the population is divided into relatively sedentary and dispersal stages.
This coincides with the explanations by Kot and Schaffer [19] in establishing Equation (7).
To distinguish the difference of dynamical behaviors which occurs at different stages, we
assume that the evolution (the relatively sedentary stage) occurs at time n and dispersal
occurs at time n + 1.

For temporally discrete reaction diffusion models, there are only a few results in the
literature. In 2006, Lin and Li [20] studied following equation with delay:

un(x)− un−1(x) = d∆un(x) + f (un(x), un−τ(x)), n ∈ N, x ∈ R. (11)

They established the existence of traveling wavefronts and showed that (11) is a
good approximation of its continuous time model in the sense of propagation. For more
researches on this topic see [4,21,22]. However, we note that in the existing research
literature, researchers simply assumed that the non-standard discretizations preserve the
dynamical consistency of the continuous-time reaction-diffusion equations, but they do
not provide reasonable biological explanations for the modeling process.

Although (1) has been derived in [1], the existence of traveling wave solutions is
proved without non-local effect, and monotonic condition for birth function is assumed. In
order to better understand the dynamical behaviors of (1) with non-local diffusion caused
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by immature individuals dispersion, we will study traveling wave solutions whenever the
birth function is monotonic or non-monotonic, respectively.

The rest of this paper is organized as follow. In Section 2, by using the upper-lower
solutions and monotone iteration technique, we studied the existence of traveling wave-
fronts of (1) for the cases that the birth function b(w) is increasing in [0, w∗], where w∗ > 0
is the unique solution to the equation ηb(w) = dw. As for the case that birth function b(w)
is non-monotone in [0, w∗], the theory of monotone dynamical system cannot be directly
used. By using a similar idea as Ma in [23,24], we establish the existence of traveling waves
of (1) in Section 3. Finally, we give a short discussion in Section 4.

2. Traveling Wavefronts for the Monotone Case

In this section, we will consider the existence of traveling wavefronts to equation (1)
for monotone case. We are interested in finding traveling waves w(n, x) = ϕ(x + cn) of
following equation

w(n + 1, x) = D∆w(n + 1, x) + (1− d)w(n, x) + η
∫ +∞
−∞ KDi (r− 1, x− y)b(w(n + 1− r, y))dy. (12)

For this purpose, we will find a solution ϕ(ξ) to (12) with ξ = x + cn. Clearly, ϕ(ξ)
satisfies the following wave profile equation

ϕ(ξ + c) = Dϕ′′(ξ + c) + (1− d)ϕ(ξ) + η
∫ +∞

−∞
b(ϕ(ξ + c− y− cr))KDi (r− 1, y)dy. (13)

Let ξ ′ = ξ + c and still denote it by ξ. Then, the above equation becomes

− Dϕ′′(ξ) + ϕ(ξ) = (1− d)ϕ(ξ − c) + η
∫ +∞

−∞
b(ϕ(ξ − y− cr))KDi (r− 1, y)dy (14)

Throughout this section, we always assume that

Hypothesis 1 (H1). b(w) = wg(w), where g(w) is a continuously differentiable function and
satisfying g(w) > 0, g′(w) < 0 for w ≥ 0 and lim

w→∞
g(w)→ 0;

Hypothesis 2 (H2). b(w) and b′(w) are bounded;

Hypothesis 3 (H3). d < b′(0)η = g(0)η.

From (H1) and (H3), Equation (12) has only two constant equilibria w = 0 and w = w∗,
where w∗ is the unique solution of the equation ηg(w) = d.

We will study the existence of non-decreasing solutions to Equation (14) subject to the
boundary value conditions

lim
ξ→−∞

ϕ(ξ) = 0, lim
ξ→+∞

ϕ(ξ) = w∗.

Our approach is similar to that in [1], which is based on the monotonic iteration
techniques combined with upper and lower solution methods that was developed in [2].
To this end, we further assume that

Hypothesis 4 (H4). b(w) is increasing in [0, w∗].

To proceed further, for readers’ convenience, we introduce some results on the follow-
ing temporally discrete reaction-diffusion equation which will be used later,

u(n + 1, x)− u(n, x) = D∆xu(n + 1, x) + f (u(n, x)), (15)
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where f (·) is assumed to be a continuous function. For detailed proofs on these results,
readers can refer to [1].

Lemma 1 ([1]). The initial value problem{
u(n + 1, x)− u(n, x) = D∆xu(n + 1, x), x ∈ R, n ≥ 0.
u(0, x) = ϕ(x)

(16)

has a unique solution u(n, x) and

u(n, x) =
∫ ∞

−∞
K(n, x− y)ϕ(y)dy, n ≥ 1 (17)

where ϕ is a continuous and absolutely integrable function on R1 satisfying lim
|x|→∞

ϕ(x) = 0.

K(n, x) = e−
|x|√

D
1√
D

n−1

∑
m=0

n(n + 1) · · · (n + m− 1)
m!(n− 1−m)!2n+m

(
|x|√

D

)n−1−m
. (18)

In particular, we use the convention that if m = 0, then m! = 1 and n(n + 1) · · · (n +
m− 1) = 1. The integral kernel function K(n, x) satisfies the following properties.

Proposition 1 ([1]).

1.
∫ +∞
−∞ K(n, x)dx = 1, for n > 0;

2. K(0, x) = δ(x), for n = 0;
3. For x 6= 0, n > 0, K(n, x) is the solution of equation

u(n + 1, x)− u(n, x) = D∆xu(n + 1, x).

Lemma 2 ([1]). The function u(n, x) is a solution of (15) if, and only if, it is a solution of following
non-linear integro-difference equation

u(n + 1, x) =
∫ +∞

−∞

1
2
√

D
e−
|x−y|√

D [u(n, y) + f (u(n, y))]dy, n ≥ 0. (19)

For ϕ ∈ C(R, R), define

H(ϕ)(ξ) = (1− d)ϕ(ξ − c) + η
∫ +∞

−∞
b(ϕ(ξ − y− cr))KDi (r− 1, y)dy.

By (H2) and Proposition 1, H(ϕ)(ξ) is well defined. Then, Equation (14) becomes

−Dϕ′′(ξ) + ϕ(ξ) = H(ϕ)(ξ).

Let Γ = {ϕ ∈ C(R,R)| ϕ is non-decerasing in ξ ∈ R, lim
ξ→−∞

ϕ(ξ) = 0,

lim
ξ→+∞

ϕ(ξ) = w∗}.

For ϕ, ψ ∈ Γ, for ξ ∈ R, we say ψ ≤ ϕ, if ψ(ξ) ≤ ϕ(ξ). Then from the definition of H
and Proposition 1, we can easily obtained the following result.

Lemma 3. Assume that (H4) holds. Then, for every ϕ ∈ Γ, H(ϕ) ∈ Γ, and H(ϕ) is increasing
on Γ, that is, H(ψ) ≤ H(ϕ) for ϕ, ψ ∈ Γ with ψ ≤ ϕ.

By direct computations, we have
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Lemma 4. For h ∈ Γ, the equation

− Dϕ′′(ξ) + ϕ(ξ) = h(ξ). (20)

has a unique solution ϕ ∈ Γ satisfying

ϕ(ξ) =
1

2
√

D

∫ +∞

−∞
e−
|ξ−ζ|√

D h(ζ)dζ =
∫ +∞

−∞
K(1, ξ − ζ)h(ζ)dζ,

where K(1, x) is defined in (18).

Further define the mapping F : Γ→ Γ,

F(ψ)(ξ) =
∫ +∞

−∞
K(1, ξ − ζ)H(ψ)(ζ)dζ, ψ ∈ Γ (21)

The following theorem is a direct consequence of Lemmas 3 and 4.

Theorem 1. ϕ ∈ Γ is a solution of Equation (14) if, and only if, it satisfies

ϕ(ξ) =
∫ +∞
−∞ K(1, ξ − ζ)

[
(1− d)ϕ(ζ − c) + η

∫ +∞
−∞ b(ϕ(ζ − y− cr))KDi (r− 1, y)dy

]
dζ. (22)

In other words, ϕ is a fixed point of mapping F in Γ.

Above theorem shows that the existence of traveling wavefronts of Equation (12) is
equivalent to the existence of fixed points to mapping F. Therefore, in what follows, we
will construct upper and lower solutions of (22) to prove that the mapping F has a unique
fixed point in Γ, as long as c is greater than a certain constant c∗.

The linearized equation of (14) at ϕ = 0 is as below.

− Dϕ′′(ξ) + ϕ(ξ) = (1− d)ϕ(ξ − c) + η
∫ +∞

−∞
g(0)ϕ(ξ − y− cr))KDi (r− 1, y)dy. (23)

Then, its characteristic equation is given by

− Dλ2 + 1 = (1− d)e−λc + g(0)η
∫ +∞

−∞
KDi (r− 1, y)e−λ(y+cr)dy. (24)

Define

∆(c, λ) = (1− d)e−λc + Dλ2 − 1 + g(0)η
∫ +∞

−∞
KDi (r− 1, y)e−λ(y+cr)dy.

Note that for |λ| < 1√
Di

,

∫ +∞

−∞
KDi (r− 1, y)e−λydy

=
∫ +∞

−∞

1√
Di

e
− |y|√

Di
r−2

∑
m=0

(r− 1) · r · · · (r + m− 2)
m!(r− 2−m)!2r+m−1

(
|y|√
Di

)r−2−m
e−λydy

=
r−2

∑
m=0

(r− 1) · r · · · (r + m− 2)
m!(r− 2−m)!2r+m−1

∫ +∞

0

1√
Di

e
−(λ+ 1√

Di
)y
(

y√
Di

)r−2−m
dy

+
r−2

∑
m=0

(r− 1) · r · · · (r + m− 2)
m!(r− 2−m)!2r+m−1

∫ 0

−∞

1√
Di

e
−(λ− 1√

Di
)y
(
−y√

Di

)r−2−m
dy

=
r−2

∑
m=0

(r− 1) · r · · · (r + m− 2)
m!(r− 2−m)!2r+m−1

1
(1 + λ

√
Di)r−1−m

∫ +∞

0
e−zzr−2−mdz

+
r−2

∑
m=0

(r− 1) · r · · · (r + m− 2)
m!(r− 2−m)!2r+m−1

1
(1− λ

√
Di)r−1−m

∫ +∞

0
e−zzr−2−mdz.
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Since
∫ +∞

0 e−zzr−2−mdz = (r− 2−m)!, we have

∫ +∞

−∞
KDi (r− 1, y)e−λydy

=
r−2

∑
m=0

(r− 1) · r · · · (r + m− 2)
m!2r+m−1

[
1

(1 + λ
√

Di)r−1−m +
1

(1− λ
√

Di)r−1−m

]

=
r−2

∑
m=0

(r− 1) · r · · · (r + m− 2)
m!2r+m−1 · (1 + λ

√
Di)

r−1−m + (1− λ
√

Di)
r−1−m

(1− λ2Di)r−1−m .

By direct computations, we have

r−2
∑

m=0

(r− 1) · r · · · (r + m− 2)
m!2r+m−1 · (1 + λ

√
Di)

r−1−m + (1− λ
√

Di)
r−1−m

(1− λ2Di)r−1−m =
1

(1− λ2Di)r−1 .

That is, ∫ +∞

−∞
KDi (r− 1, y)e−λydy =

1
(1− λ2Di)r−1 . (25)

In fact, one can give another proof of the equality as follows. By Lemma 1, for
|λ| < 1√

Di
, the initial value problem

{
u(n + 1, x)− u(n, x) = Di∆xu(n + 1, x), x ∈ R, n ≥ 0.
u(0, x) = e−λx (26)

has a unique solution u(n, x) and

u(n, x) =
∫ ∞

−∞
KDi (n, x− y)e−λydy, n ≥ 1 (27)

On the other hand, one can easily verified that

u(n, x) =
e−λx

(1− λ2Di)n

is a solution to initial value problem (26). Therefore,

∫ ∞

−∞
KDi (n, x− y)e−λydy =

e−λx

(1− λ2Di)n ,

which leads to the equality (25). Then

∆(c, λ) = (1− d)e−λc + Dλ2 − 1 +
g(0)ηe−λcr

(1− λ2Di)r−1 , (28)

and

∆′λ(c, λ) = −c(1− d)e−λc + 2Dλ + g(0)η
e−λcr[2λ(r− 1)Di − cr(1− λ2Di)]

(1− λ2Di)r ,

∆′′λ(c, λ) = c2(1− d)e−λc + 2D + g(0)η
e−λcr

(1− λ2Di)r+1

{[
2λ(r− 1)Di − cr(1− λ2Di)

]2

+2(r− 1)Di(1− λ2Di) + 4λ2D2
i (r− 1)

}
.

It is easy to see that for any given c ≥ 0 and |λ| < 1√
Di

, ∆′′λ(c, λ) > 0. Then, for any

given c ≥ 0, ∆′λ(c, λ) strictly increasing in λ ∈ (0, 1√
Di
). Additionally, from
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∆′λ(c, 0) = −c(1− d)− g(0)ηcr < 0, ∀c > 0

and lim
λ→ 1√

Di
−0

∆′λ(c, λ) = +∞, for any c > 0, there exists unique λ = λ(c), 0 < λ(c) < 1√
Di

,

such that ∆′λ(c, λ(c)) = 0 and

∆min = ∆(c, λ(c)) = (1− d)e−λ(c)c + Dλ2(c)− 1 +
g(0)ηe−λ(c)cr

(1− λ2(c)Di)r−1 .

If ∆(c, λ(c)) > 0, the characteristic Equation (24) has no positive real roots; If
∆(c, λ(c)) = 0, the characteristic Equation (24) has only one positive real root; If
∆(c, λ(c)) < 0, the characteristic Equation (24) has exactly two positive real roots.

Lemma 5. There exist a positive constant c∗ > 0, such that
(i) If c > c∗, then the characteristic Equation (24) has two positive real roots, 0 < λ1(c) < λ2(c);
(ii) If c < c∗, then the characteristic Equation (24) has no positive real roots;
(iii) If c = c∗, the characteristic Equation (24) has only one positive real roots.

Proof. Consider the function ∆(c, λ) = (1− d)e−λc + Dλ2 − 1 + g(0)η e−λcr

(1−λ2Di)r−1 . When

c = 0 and 0 ≤ λ < 1√
Di

, due to g(0)η > d, we have

∆(0, λ) = (1− d) + Dλ2 − 1 +
g(0)η

(1− λ2Di)r−1 > Dλ2 − d + g(0)η > g(0)η − d > 0,

which implies that (24) will has no positive real roots.
By the continuity of ∆(c, λ) in c, for sufficiently small c > 0, (24) will also have no

positive real roots. Otherwise, there will be sequences {cn} and λn with cn > 0, lim
n→∞

cn = 0

and 0 < λn < 1√
Di

, such that ∆(cn, λn) = 0, i.e.,

(1− d)e−λncn + Dλ2
n − 1 +

g(0)ηe−λncnr

(1− λ2
nDi)r−1 = 0.

Clearly, there exists a convergent subsequence {λnk}, and let lim
k→∞

λnk = λ∗. If

λ∗ ∈ [0, 1√
Di
), then,

0 = (1− d) + Dλ∗2 − 1 +
g(0)η

(1− λ∗2Di)r−1 > Dλ∗2 + g(0)η − d > 0.

Contradiction. If λ∗ = 1√
Di

, then

0 = (1− d) +
D
Di
− 1 + lim

k→∞

g(0)η
(1− λ2

nk
Di)r−1 = ∞.

It is also a contradiction.
Next, we consider ∆′c(c, λ) for any given λ ∈ (0, min{ 1√

D
, 1√

Di
}),

∆′c(c, λ) = −(1− d)λe−λc − λrg(0)η
e−λcr

(1− λ2Di)r−1 < 0.

Since ∆(0, λ) > 0, lim
c→+∞

∆(c, λ) = Dλ2 − 1 < 0, then there exists unique c = c(λ),

such that ∆(c(λ), λ) = 0. Denote c∗ = min{c(λ)|λ ∈ (0, min{ 1√
D

, 1√
Di
})}. Obviously

c∗ > 0. Moreover, ∆(c∗, λ) = 0 has exactly one positive real root and ∆(c∗, λ) attains its
minimum at the point λ = λ(c∗). This completes the proof.
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In what follows, we will consider the case where c > c∗. In this case, the characteristic
Equation (24) has two positive real roots λ1(c) and λ2(c) satisfying 0 < λ1(c) < λ2(c) <
min{ 1√

D
, 1√

Di
} and ∆(c, λ) < 0 for λ ∈ (λ1(c), λ2(c)).

Definition 1. A continuous bounded function φ : R→ [0, w∗] is called an upper solution of (22)
if it satisfies

φ(ξ) ≥
∫ +∞

−∞
K(1, ξ − ζ)

[
(1− d)φ(ζ − c) + η

∫ +∞

−∞
b(φ(ζ − y− cr))KDi (r− 1, y)dy

]
dζ, (29)

A lower solution of (22) is defined in a similar way by reversing the inequality in (29).

Now fixed c > c∗ and let 0 < λ1(c) < λ2(c) < min{ 1√
D

, 1√
Di
}. Choose sufficiently

large constant q > 1 to be determined later, define the functions φ̄ and φ by

φ̄(ξ) = min{w∗, w∗eλ1(c)ξ}, φ(ξ) = max{0, w∗[eλ1(c)ξ − qepλ1(c)ξ ]},

where p ∈ (1, min{2, λ2(c)
λ1(c)
}), w∗ satisfies ηg(w∗) = d.

Proposition 2. φ̄(ξ) is an upper solution of (22).

Proof. By the definition of φ̄(ξ), for any ξ ∈ R, φ̄(ξ) ≤ w∗. Thus, by (H4) and Proposition 1,
we achieve∫ +∞

−∞
K(1, ξ − ζ)

[
(1− d)φ̄(ζ − c) + η

∫ +∞

−∞
b(φ̄(ζ − y− cr))KDi (r− 1, y)dy

]
dζ

≤
∫ +∞

−∞
K(1, ξ − ζ)[(1− d)w∗ + ηb(w∗)]dζ

≤w∗
∫ +∞

−∞
K(1, ξ − ζ)dζ = w∗.

For ξ ∈ R, if φ̄(ξ) = w∗, clearly, we have,∫ +∞

−∞
K(1, ξ − ζ)

[
(1− d)φ̄(ζ − c) + η

∫ +∞

−∞
b(φ̄(ζ − y− cr))KDi (r− 1, y)dy

]
dζ ≤ φ̄(ξ).

If φ̄(ξ) = w∗eλ1(c)ξ , that is, ξ ≤ 0, by (H1) and the definition of φ̄(ξ),∫ +∞

−∞
K(1, ξ − ζ)

[
(1− d)φ̄(ζ − c) + η

∫ +∞

−∞
b(φ̄(ζ − y− cr))KDi (r− 1, y)dy

]
dζ

≤
∫ +∞

−∞
K(1, ξ − ζ)

[
(1− d)φ̄(ζ − c) + ηg(0)

∫ +∞

−∞
φ̄(ζ − y− cr)KDi (r− 1, y)dy

]
dζ

≤
∫ +∞

−∞
K(1, ξ − ζ)

[
(1− d)w∗eλ1(c)(ζ−c) + ηg(0)

∫ +∞

−∞
w∗eλ1(c)(ζ−y−cr)KDi (r− 1, y)dy

]
dζ

=w∗
∫ +∞

−∞
K(1, ξ − ζ)eλ1(c)ζ

[
(1− d)e−λ1(c)c + ηg(0)

∫ +∞

−∞
e−λ1(c)(y+cr)KDi (r− 1, y)dy

]
dζ

=w∗[1− Dλ2
1(c)]

∫ +∞

−∞
K(1, ξ − ζ)eλ1(c)ζ dζ.

The last equality follows from the fact that λ1(c) is a root of ∆(c, λ). Calculate above
integral directly,
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∫ +∞

−∞
K(1, ξ − ζ)eλ1(c)ζ dζ

=
1

2
√

D

∫ +∞

−∞
e−
|ξ−ζ|√

D eλ1(c)ζ dζ

=
1

2
√

D

∫ +∞

ξ
e−

ζ−ξ√
D eλ1(c)ζ dζ +

1
2
√

D

∫ ξ

−∞
e−

ξ−ζ√
D eλ1(c)ζ dζ

=− e
ξ√
D

2
√

D[λ1(c)− 1√
D
]
e[λ1(c)− 1√

D
]ξ
+

e−
ξ√
D

2
√

D[λ1(c) + 1√
D
]
e[λ1(c)+ 1√

D
]ξ

=
1

1− Dλ2
1(c)

eλ1(c)ξ .

It follows that,∫ +∞

−∞
K(1, ξ − ζ)

[
(1− d)φ̄(ζ − c) + η

∫ +∞

−∞
b(φ̄(ζ − y− cr))KDi (r− 1, y)dy

]
dζ ≤ φ̄(ξ).

This proves that φ̄(ξ) is an upper solution of (22).

Proposition 3. For any given p ∈ (1, min{2, λ2(c)
λ1(c)
}), there exist a sufficiently large positive

constant q > 1, such that φ(ξ) is a lower solution of (22).

Proof. Let
κ(ξ) = w∗[eλ1(c)ξ − qepλ1(c)ξ ].

Then
κ′(ξ) = w∗λ1(c)[eλ1(c)ξ − qpepλ1(c)ξ ].

There must exist ξ0 = ln q
λ1(c)(1−p) < 0, such that κ(ξ0) = 0 and ξ1 = ln pq

λ1(c)(1−p) < ξ0,
such that κ′(ξ1) = 0. We know that κ is increasing on (−∞, ξ1) and decreasing on (ξ1,+∞),
and

κ(ξ1) = w∗
p− 1

p
1

(pq)1/(p−1)
∈ (0, w∗).

Consequently, 0 ≤ φ(ξ) < w∗, for ξ ∈ R.
If φ(ξ) = 0,

∫ +∞

−∞
K(1, ξ − ζ)

[
(1− d)φ(ζ − c) + η

∫ +∞

−∞
b(φ(ζ − y− cr))KDi (r− 1, y)dy

]
dζ ≥ 0 = φ(ξ).

If φ(ξ) = w∗[eλ1(c)ξ − qepλ1(c)ξ ],

∫ +∞

−∞
K(1, ξ − ζ)

[
(1− d)φ(ζ − c) + η

∫ +∞

−∞
b(φ(ζ − y− cr))KDi (r− 1, y)dy

]
dζ

=
∫ +∞

−∞
K(1, ξ − ζ)

[
(1− d)φ(ζ − c) + η

∫ +∞

−∞
φ(ζ − y− cr)g(φ(ζ − y− cr))KDi (r− 1, y)dy

]
dζ

=
∫ +∞

−∞
K(1, ξ − ζ)

[
(1− d)φ(ζ − c) + η

∫ +∞

−∞
φ(ζ − y− cr)g(0)KDi (r− 1, y)dy

]
dζ

+η
∫ +∞

−∞
K(1, ξ − ζ)

∫ +∞

−∞
φ(ζ − y− cr)[g(φ(ζ − y− cr))− g(0)]KDi (r− 1, y)dydζ := I1 + I2,

where

I1 =
∫ +∞

−∞
K(1, ξ − ζ)

[
(1− d)φ(ζ − c) + η

∫ +∞

−∞
φ(ζ − y− cr)g(0)KDi (r− 1, y)dy

]
dζ,



Mathematics 2021, 9, 1999 11 of 21

I2 = η
∫ +∞

−∞
K(1, ξ − ζ)

∫ +∞

−∞
φ(ζ − y− cr)[g(φ(ζ − y− cr))− g(0)]KDi (r− 1, y)dydζ.

For I1, we have

I1 ≥
∫ +∞

−∞
K(1, ξ − ζ)

{
(1− d)w∗[eλ1(c)(ζ−c) − qepλ1(c)(ζ−c)]

+ ηg(0)
∫ +∞

−∞
w∗[eλ1(c)(ζ−y−cr) − qepλ1(c)(ζ−y−cr)]KDi (r− 1, y)dy

}
dζ

= w∗
∫ +∞

−∞
K(1, ξ − ζ)

[
(1− d)eλ1(c)(ζ−c) + g(0)η

∫ +∞

−∞
eλ1(c)(ζ−y−cr)KDi (r− 1, y)dy

]
dζ

− w∗q
∫ +∞

−∞
K(1, ξ − ζ)

[
(1− d)epλ1(c)(ζ−c) + g(0)η

∫ +∞

−∞
epλ1(c)(ζ−y−cr)KDi (r− 1, y)dy

]
dζ

= w∗
[
(1− d)e−λ1(c)c + g(0)η

∫ +∞

−∞
e−λ1(c)(y+cr)KDi (r− 1, y)dy

] ∫ +∞

−∞
K(1, ξ − ζ)eλ1(c)ζdζ

− w∗q
[
(1− d)e−pλ1(c)c + g(0)η

∫ +∞

−∞
e−pλ1(c)(y+cr)KDi (r− 1, y)dy

] ∫ +∞

−∞
K(1, ξ − ζ)epλ1(c)ζ dζ.

Note that,

∆(c, λ1(c)) = (1− d)e−λ1(c)c + g(0)η
∫ +∞

−∞
e−λ1(c)(y+cr)KDi (r− 1, y)dy + Dλ2

1(c)− 1 = 0,

∆(c, pλ1(c)) = (1− d)e−pλ1(c)c + g(0)η
∫ +∞

−∞
e−pλ1(c)(y+cr)KDi (r− 1, y)dy + Dp2λ2

1(c)− 1.

Therefore,

I1 ≥ w∗[1− Dλ2
1(c)]

∫ +∞

−∞
K(1, ξ − ζ)eλ1(c)ζdζ

− w∗q[∆(c, pλ1(c)) + 1− Dp2λ2
1(c)]

∫ +∞

−∞
K(1, ξ − ζ)epλ1(c)ζ dζ.

From the proof of Proposition 2, we know∫ +∞

−∞
K(1, ξ − ζ)eλ1(c)ζ dζ =

1
1− Dλ2

1(c)
eλ1(c)ξ ,

and similar arguments have∫ +∞

−∞
K(1, ξ − ζ)epλ1(c)ζ dζ =

1
1− Dp2λ2

1(c)
epλ1(c)ξ .

Therefore,

I1 ≥ w∗[eλ1(c)ξ − qepλ1(c)ξ ]− w∗q∆(c, pλ1(c))
1

1− Dp2λ2
1(c)

epλ1(c)ξ

≥ φ(ξ)− w∗q∆(c, pλ1(c))
1− Dp2λ2

1(c)
epλ1(c)ξ .

Since λ1(c) < pλ1(c) < λ2(c) < 1√
D

, ∆(c, pλ1(c)) < 0, we have

−w∗q∆(c, pλ1(c))
1− Dp2λ2

1(c)
> 0.

For I2, by (H1), we know g′(w) ≤ 0. Let −L ≤ g′(w) ≤ 0, ∀w ∈ [0, w∗]. Then
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I2 = η
∫ +∞

−∞
K(1, ξ − ζ)

∫ +∞

−∞
φ(ζ − y− cr)[g(φ(ζ − y− cr))− g(0)]KDi (r− 1, y)dydζ

= η
∫ +∞

−∞
K(1, ξ − ζ)

∫ +∞

−∞
φ2(ζ − y− cr)g′(θφ(ζ − y− cr))KDi (r− 1, y)dydζ (θ ∈ (0, 1))

≥ −Lη
∫ +∞

−∞
K(1, ξ − ζ)

∫ +∞

−∞
φ2(ζ − y− cr)KDi (r− 1, y)dydζ.

According to the definition of ξ0,∫ +∞

−∞
K(1, ξ − ζ)

∫ +∞

−∞
φ2(ζ − y− cr)KDi (r− 1, y)dydζ

=(w∗)2
∫ +∞

−∞
K(1, ξ − ζ)

∫ +∞

ζ−cr−ξ0

[eλ1(c)(ζ−y−cr) − qepλ1(c)(ζ−y−cr)]2KDi (r− 1, y)dydζ

≤(w∗)2
∫ +∞

−∞
K(1, ξ − ζ)

∫ +∞

ζ−cr−ξ0

e2λ1(c)(ζ−y−cr)KDi (r− 1, y)dydζ

≤(w∗)2
∫ +∞

−∞
K(1, ξ − ζ)

∫ +∞

ζ−cr−ξ0

epλ1(c)(ζ−y−cr)KDi (r− 1, y)dydζ

=(w∗)2
∫ +∞

−∞
K(1, ξ − ζ)epλ1(c)(ζ−cr)

∫ +∞

ζ−cr−ξ0

e−pλ1(c)yKDi (r− 1, y)dydζ

≤(w∗)2
∫ +∞

−∞
K(1, ξ − ζ)epλ1(c)(ζ−cr)

∫ +∞

−∞
e−pλ1(c)yKDi (r− 1, y)dydζ.

Due to (25), ∫ +∞

−∞
e−pλ1(c)yKDi (r− 1, y)dy =

1
(1− p2λ2

1(c)Di)r−1
.

Then ∫ +∞

−∞
K(1, ξ − ζ)

∫ +∞

−∞
φ2(ζ − y− cr)KDi (r− 1, y)dydζ

≤ (w∗)2

(1− p2λ2
1(c)Di)r−1

∫ +∞

−∞
K(1, ξ − ζ)epλ1(c)(ζ−cr)dζ

≤ (w∗)2

(1− p2λ2
1(c)Di)r−1

e−pλ1(c)cr
∫ +∞

−∞
K(1, ξ − ζ)epλ1(c)ζ dζ

=
(w∗)2

(1− p2λ2
1(c)Di)r−1

e−pλ1(c)cr 1
1− Dp2λ2

1(c)
epλ1(c)ξ .

Thus,

I2 ≥ −Lη
(w∗)2epλ1(c)(ξ−cr)[

1− p2λ2
1(c)Di

]r−1[1− Dp2λ2
1(c)

] .

Based on the above results,

I1 + I2 ≥ φ(ξ)− w∗q∆(c, pλ1(c))
1− Dp2λ2

1(c)
epλ1(c)ξ − Lη

(w∗)2epλ1(c)(ξ−cr)[
1− p2λ2

1(c)Di
]r−1[1− Dp2λ2

1(c)
]

= φ(ξ) +
w∗epλ1(c)ξ

1− Dp2λ2
1(c)

[
−q∆(c, pλ1(c))−

Lηw∗e−pλ1(c)cr[
1− p2λ2

1(c)Di
]r−1

]
.

Since ∆(c, pλ1(c)) < 0, when q > 1 sufficiently large,
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−q∆(c, pλ1(c))−
Lηw∗e−pλ1(c)cr[

1− p2λ2
1(c)Di

]r−1 > 0.

Hence, for such q,
I1 + I2 ≥ φ(ξ).

That is, φ(ξ) is a lower solution of (22). This completes the proof.

We have already obtained an upper and a lower solution of (22). Using the classical
upper and lower solution method together with iteration techniques, we find the following
existence result.

Theorem 2. Assume that (H1)–(H4) hold. Then for any c > c∗, (12) admits a traveling wavefront
solution w(n, x) = ϕ(x + cn) connecting the equilibrium 0 and w∗.

3. Traveling Wave Solution for the Non-Monotone Case

This section is devoted to the existence of traveling wave solutions to (1) when the
birth function b(w) is not increasing in [0, w∗]. Our approach is to construct two auxiliary
temporally discrete diffusion equations with birth functions satisfying monotonic condi-
tions. Then, by using a similar method developed in [23] and applying the results obtained
in the Section 1 to these auxiliary equations, we can prove that (1) possesses a traveling
wave solution connecting equilibrium 0 and w∗.

Throughout of this section, we suppose that b(w) satisfies assumptions (H1)–(H3).
By (H3) and the continuity of g(w) at zero, there exists a small constant δ > 0, such

that for any w ∈ (0, δ), g(w) > d
η . Then, for any w ∈ (0, δ), b(w)− d

η w = w(g(w)− d
η ) > 0.

For such w, max{b(z)|0 ≤ z ≤ w} > d
η w.

On the other hand, when w > w∗, g(w) < d
η . This means that for w > w∗, b(w)− d

η w < 0.
Then

max{b(z)|w∗ < z ≤ w} < d
η

w.

Let W∗ = η
d max{b(w)|0 ≤ w ≤ w∗}. Then W∗ ≥ w∗. For any w ∈ (w∗, W∗],

b(w) ≤ d
η w ≤ d

η W∗. Consequently,

dW∗

η
≥ max{b(w)|0 ≤ w ≤W∗}

Let W∗ = η
d min{b(w)|w∗ ≤ w ≤ W∗}. Then W∗ > 0. Clearly, 0 < W∗ ≤ w∗ and

b(w) > dw
η for all w ∈ (0, W∗).

We note that, if b(w∗) = max{b(w)|0 ≤ w ≤ w∗}, then W∗ = W∗ = w∗. For
sufficiently small ε < W∗, we define two auxiliary functions b∗(w) and bε(w) as follows.

b∗(w) =


b′(0)w, for w ∈ [0, d

b′(0)η W∗],
dW∗

η , for w ∈ ( d
b′(0)η W∗, W∗],

max{ dW∗
η , b(w)}, for w > W∗,

and

bε(w) =

 inf
s∈[w,W∗ ]

{b(s), d(W∗−ε)
η }, for w ∈ [0, W∗],

min{b(w), d(W∗−ε)
η }, for w > W∗.

Lemma 6. The following statements hold true:

(i) b∗ and bε are continuous on [0,+∞) and non-decreasing on [0, W∗];
(ii) b′(0)w ≥ b∗(w) ≥ b(w) ≥ bε(w) > 0 for all w > 0;
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(iii) b∗(0) = 0, b∗(W∗) = d
η W∗ and b∗(w) > d

η w for all w ∈ (0, W∗);

(iv) bε(0) = 0, bε(W∗ − ε) = d
η (W∗ − ε) and bε(w) > d

η w for all w ∈ (0, W∗ − ε);
(v) (b∗)′(0) = b′ε(0) = b′(0).

The proof of Lemma is a direct verification, we omit it.
Now we consider the following two auxiliary temporally discrete diffusion equations

w(n + 1, x) = D∆w(n + 1, x) + (1− d)w(n, x) + η
∫ +∞

−∞
KDi (r− 1, x− y)b∗(w(n + 1− r, y))dy (30)

and
w(n + 1, x) = D∆w(n + 1, x) + (1− d)w(n, x) + η

∫ +∞

−∞
KDi (r− 1, x− y)bε(w(n + 1− r, y))dy. (31)

Then, the corresponding wave equations of (30) and (31) read as

− Dϕ′′(ξ) + ϕ(ξ) = (1− d)ϕ(ξ − c) + η
∫ +∞

−∞
KDi (r− 1, y)b∗(ϕ(ξ − y− cr))dy (32)

and

− Dϕ′′(ξ) + ϕ(ξ) = (1− d)ϕ(ξ − c) + η
∫ +∞

−∞
KDi (r− 1, y)bε(ϕ(ξ − y− cr))dy, (33)

respectively. They are equivalent to the following two integral equations:

ϕ(ξ) =
∫ +∞

−∞
K(1, ξ − ζ)

[
(1− d)ϕ(ζ − c) + η

∫ +∞

−∞
b∗(ϕ(ζ − y− cr))KDi (r− 1, y)dy

]
dζ, (34)

ϕ(ξ) =
∫ +∞

−∞
K(1, ξ − ζ)

[
(1− d)ϕ(ζ − c) + η

∫ +∞

−∞
bε(ϕ(ζ − y− cr))KDi (r− 1, y)dy

]
dζ. (35)

Moreover, the traveling wavefronts of (30) and (31) are fixed points of operators F∗

and Fε, where

F∗(ϕ)(ξ) =
∫ +∞

−∞
K(1, ξ − ζ)

[
(1− d)ϕ(ζ − c) + η

∫ +∞

−∞
b∗(ϕ(ζ − y− cr))KDi (r− 1, y)dy

]
dζ, (36)

Fε(ϕ)(ξ) =
∫ +∞

−∞
K(1, ξ − ζ)

[
(1− d)ϕ(ζ − c) + η

∫ +∞

−∞
bε(ϕ(ζ − y− cr))KDi (r− 1, y)dy

]
dζ. (37)

By Lemma 6, it is easily to verify that b∗ and bε satisfy all the assumptions (H1)–(H4).
Therefore, the results below follow from Theorem 2.

Lemma 7. Assume that (H1)–(H3) hold. Then for each c > c∗, there exist traveling wave-
fronts ϕ∗(x + cn) and ϕε(x + cn) of (30) and (31), respectively, which satisfy ϕ∗(+∞) = W∗,
ϕ∗(−∞) = 0 and ϕε(+∞) = W∗ − ε, ϕε(−∞) = 0.

In the sequel, we will always assume c > c∗. Therefore, there exist two positive roots
λ1(c) and λ2(c) with 0 < λ1(c) < λ2(c) < min{ 1√

Di
, 1√

D
}. In order to proceed further, we

also need the following assumptions.

Hypothesis 5 (H5). b(w)η < d(2w∗−w), w ∈ [W∗, w∗), b(w)η > d(2w∗−w), w ∈ (w∗, W∗].

Let us first define

C[0,W∗ ] = {ϕ ∈ C(R,R) : 0 ≤ ϕ(ξ) ≤W∗, ξ ∈ R},

and for given λ ∈ (0, λ1(c)), denote

Xλ = {ϕ ∈ C(R,R) : sup
ξ∈R
|ϕ(ξ)|e−λξ < ∞},
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‖ϕ‖λ = sup
ξ∈R
|ϕ(ξ)|e−λξ .

Clearly, (Xλ, ‖ · ‖λ) is a Banach space. Then, define

H∗(ϕ)(ξ) = (1− d)ϕ(ξ − c) + η
∫ +∞

−∞
KDi (r− 1, y)b∗(ϕ(ξ − y− cr))dy, ξ ∈ R,

and

Hε(ϕ)(ξ) = (1− d)ϕ(ξ − c) + η
∫ +∞

−∞
KDi (r− 1, y)bε(ϕ(ξ − y− cr))dy, ξ ∈ R.

For any ϕ, ψ ∈ (R, [0, W∗]) with ϕ(ξ) ≥ ψ(ξ), ξ ∈ R, we have

H∗(ϕ)(ξ) ≥ H∗(ψ)(ξ) and Hε(ϕ)(ξ) ≥ Hε(ψ)(ξ) for all ξ ∈ R. (38)

Set

Γ∗ =

ϕ ∈ C(R, [0, W∗])

∣∣∣∣∣∣∣
(i)ϕε(ξ) ≤ ϕ(ξ) ≤ ϕ∗(ξ) for all ξ ∈ R

(ii)|ϕ(ξ1)− ϕ(ξ2)| ≤ 2W∗√
D
|ξ1 − ξ2| for all ξ1, ξ2 ∈ R

.

Lemma 8. Γ∗ ⊂ Xλ is nonempty, convex and compact in Xλ.

Proof. Firstly, we note that ϕ∗(ξ) and ϕε(ξ) are traveling wavefronts of (32) and (33),
respectively, and they are obtained by iteration procedures. Set

φ̄∗(ξ) = min{W∗, W∗eλ1(c)ξ}, φ̄ε(ξ) = min{W∗ − ε, (W∗ − ε)eλ1(c)ξ}.

From the proof of Theorem 2, φ̄∗(ξ) and φ̄ε(ξ) are upper solutions to (34) and (35),
respectively. Let

φ0(ξ) = φ̄∗(ξ), φn+1(ξ) = F∗(φn)(ξ), n = 0, 1, · · · ,

ψ0(ξ) = φ̄ε(ξ), ψn+1(ξ) = Fε(ψn)(ξ), n = 0, 1, · · · .

Since φ0(ξ) ≥ ψ0(ξ), b∗(ξ) ≥ bε(ξ), by the monotonicity of b∗ and bε on [0, W∗],
we have

φ1(ξ) = F∗(φ0)(ξ) ≥ F∗(ψ0)(ξ) ≥ Fε(ψ0)(ξ) = ψ1(ξ),

and inductively,
φn(ξ) ≥ ψn(ξ), n = 1, 2, · · · .

Moreover,

φ0(ξ) ≥ φ1(ξ) · · · ≥ φn(ξ), ψ0(ξ) ≥ ψ1(ξ) · · · ≥ ψn(ξ),

φ0(ξ) ≥ ϕ∗(ξ) = lim
n→∞

φn(ξ) ≥ lim
n→∞

ψn(ξ) = ϕε(ξ) ≥ 0.

Since φ0(ξ) ∈ Xλ for λ ∈ (0, λ1(c)), we obtain ϕε ∈ Xλ and ϕ∗ ∈ Xλ. Hence, Γ∗ ⊂ Xλ.
To prove Γ∗ is non-empty, it suffices to show that ϕ∗ ∈ Γ∗.
Note that

ϕ∗(ξ) = F∗(ϕ∗)(ξ) =
∫ +∞

−∞
K(1, ξ − ζ)H∗(ϕ∗(ζ))dζ, ∀ξ ∈ R,

|H∗(ϕ(ξ))| ≤ (1− d)|ϕ∗(ξ − c)|+ η
∫ +∞

−∞
KDi (r− 1, y)|b∗(ϕ∗(ξ − y− cr))|dy

≤ (1− d)W∗ + ηb(W∗)
∫ +∞

−∞
KDi (r− 1, y)dy = W∗.
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For any ξ1, ξ2 ∈ R, ξ1 < ξ2,

|ϕ∗(ξ1)− ϕ∗(ξ2)| = |F∗(ϕ∗)(ξ1)− F∗(ϕ∗)(ξ2)|

≤
∫ +∞

−∞
|K(1, ξ1 − ζ)− K(1, ξ2 − ζ)||H∗(ϕ∗(ζ))|dζ,

≤W∗
∫ +∞

−∞
|K(1, ξ1 − ζ)− K(1, ξ2 − ζ)|dζ,

≤ W∗

2
√

D

∫ ξ1

−∞
|e−

1√
D
(ξ1−ζ) − e−

1√
D
(ξ2−ζ)|dζ

+
W∗

2
√

D

∫ +∞

ξ2

|e
1√
D
(ξ1−ζ) − e

1√
D
(ξ2−ζ)|dζ

+
W∗

2
√

D

∫ ξ2

ξ1

e−
1√
D
(ξ2−ζ)dζ +

W∗

2
√

D

∫ ξ2

ξ1

e
1√
D
(ξ1−ζ)dζ

≤2W∗|1− e−
1√
D
(ξ2−ξ1)| ≤ 2W∗√

D
|ξ2 − ξ1|.

Therefore, ϕ∗ ∈ Γ∗. Similarly, we can prove ϕε ∈ Γ∗. Next, we proof that Γ∗ is convex
in Xλ. For any ϕ, ψ ∈ Γ, 0 ≤ λ ≤ 1,

λϕε(ξ) ≤ λϕ(ξ) ≤ λϕ∗(ξ), (1− λ)ψε(ξ) ≤ (1− λ)ψ(ξ) ≤ (1− λ)ψ∗(ξ).

Thus, we have

λϕε(ξ) + (1− λ)ψε(ξ) ≤ λϕ(ξ) + (1− λ)ψ(ξ) ≤ λϕ∗(ξ) + (1− λ)ψ∗(ξ),

|λϕ(ξ1) + (1− λ)ψ(ξ1)− [λϕ(ξ2) + (1− λ)ψ(ξ2)]| ≤
2W∗√

D
|ξ2 − ξ1|.

Therefore, λϕ + (1− λ)ψ ∈ Γ∗. Proofs of the other conclusions of Lemma 8 are easy,
we omit them. This complete the proof.

Now, we are in position to state our main result.

Theorem 3. Assume that (H1)–(H3) hold true. Then, there exists c∗ > 0, such that for every
c > c∗, (14) admits a traveling wave solution ϕ(x + cn) satisfying

lim
ξ→−∞

ϕ(ξ) = 0, W∗ ≤ lim inf
ξ→+∞

ϕ(ξ) ≤ lim sup
ξ→+∞

ϕ(ξ) ≤W∗.

Furthermore, if (H5) hold, then ϕ connects the equilibrium 0 and w∗, i.e., lim
ξ→−∞

ϕ(ξ) = 0,

lim
ξ→+∞

ϕ(ξ) = w∗.

Proof. We will use Schauder fixed point theorem to prove that (14) has a traveling wave solu-
tion.

Recall that

F(ϕ)(ξ) =
∫ +∞

−∞
K(1, ξ − ζ)H(ϕ)(ζ)dζ

where

H(ϕ)(ξ) = (1− d)ϕ(ξ − c) + η
∫ +∞

−∞
KDi (r− 1, y)b(ϕ(ξ − y− cr))dy, ξ ∈ R.

Obviously, for any ϕ ∈ Γ∗,

0 ≤ Hε(ϕ)(ξ) ≤ H(ϕ)(ξ) ≤ H∗(ϕ)(ξ) ≤W∗, ∀ξ ∈ R. (39)
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It follows that
0 ≤ F(ϕ)(ξ) ≤W∗,

and, hence, F : Γ∗ → C(R, [0, W∗]) is well defined.
For any ϕ, ψ ∈ Xλ, by the continuity of b′(w) on [0, W∗], we have

|H(ϕ)(ξ)− H(ψ)(ξ)|e−λξ ≤(1− d)|ϕ(ξ − c)− ψ(ξ − c)|e−λξ

+ η
∫ +∞

−∞
KDi (r− 1, y)|b(ϕ(ξ − y− cr))− b(ψ(ξ − y− cr))|e−λξdy

≤(1− d)‖ϕ− ψ‖λ + g′(0)ηe−crλ
∫ +∞

−∞
KDi (r− 1, y)e−λy‖ϕ− ψ‖λdy

≤ (1− d) + g′(0)ηe−crλ

(1− Diλ2)r−1 ‖ϕ− ψ‖λ

=M‖ϕ− ψ‖λ,

where M = (1−d)+g′(0)ηe−crλ

(1−Diλ
2)r−1 . Therefore, we have

|F(ϕ)(ξ)− F(ψ)(ξ)|e−λξ ≤
∫ +∞

−∞
K(1, ξ − ζ)|H(ϕ)(ζ)− H(ψ)(ζ)|e−λξ dζ

=
∫ +∞

−∞
K(1, ξ − ζ)e−λ(ξ−ζ)|H(ϕ)(ζ)− H(ψ)(ζ)|e−λζ dζ

≤ M
1− λ2D

‖ϕ− ψ‖λ,

which yields
‖F(ϕ)(ξ)− F(ψ)(ξ)‖λ ≤ M0‖ϕ− ψ‖λ. (40)

where M0 = M
1−λ2D . Therefore, F(Γ∗) ⊆ C(R, [0, W∗]) is continuous.

In what follows, we verify that F(Γ∗) ⊆ Γ∗. Note that ϕε(ξ) is a solution of (35), i.e.,

ϕε(ξ) =
∫ +∞

−∞
K(1, ξ − ζ)Hε(ϕε)(ζ)dζ. (41)

Then, for any ϕ ∈ Γ∗,

F(ϕ)(ξ) =
∫ +∞

−∞
K(1, ξ − ζ)H(ϕ)(ζ)dζ

≥
∫ +∞

−∞
K(1, ξ − ζ)Hε(ϕ)(ζ)dζ

≥
∫ +∞

−∞
K(1, ξ − ζ)Hε(ϕε)(ζ)dζ

= ϕε(ξ)

Similarly, F(ϕ)(ξ) ≤ ϕ∗(ξ) for all ξ ∈ R.
For any ϕ ∈ Γ∗ and ξ1, ξ2 ∈ R with ξ1 < ξ2, by the same argument as in the proof

Lemma 8, we have

|F(ϕ)(ξ1)− F(ϕ)(ξ2)| ≤
2W∗√

D
|ξ1 − ξ2|.

Therefore, we conclude that F(ϕ) ∈ Γ∗ for all ϕ ∈ Γ∗.
Using Schauder’s fixed point theorem, we obtain that F has a fixed point ϕ in Γ∗ ⊂ Xλ,

which satisfies

ϕ(ξ) =
∫ +∞

−∞
K(1, ξ − ζ)

[
(1− d)ϕ(ζ − c) + η

∫ +∞

−∞
KDi (r− 1, y)b(ϕ(ζ − y− cr))dy

]
dζ. (42)
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and
ϕε(ξ) ≤ ϕ(ξ) ≤ ϕ∗(ξ) for all ξ ∈ R. (43)

Taking limits ξ → −∞ and ξ → +∞ in (43), respectively, we have ϕ(−∞) = 0 and

W∗ − ε ≤ lim inf
ξ→+∞

ϕ(ξ) ≤ lim sup
ξ→+∞

ϕ(ξ) ≤W∗.

Then, letting ε→ 0+ in the above inequality, we obtain

W∗ ≤ lim inf
ξ→+∞

ϕ(ξ) ≤ lim sup
ξ→+∞

ϕ(ξ) ≤W∗.

This finishes the first part of the proof of Theorem 3.
Next, we denote

α = lim inf
ξ→+∞

ϕ(ξ), β = lim sup
ξ→+∞

ϕ(ξ).

Then W∗ ≤ α ≤ β ≤W∗. We will verify that α = β.
If this is invalid, then α < β. It is easy to see that if there exists a large number M > 0,

such that ϕ′ ≥ 0 or ϕ′ ≤ 0 on [M,+∞), then lim
ξ→+∞

ϕ(ξ) exists and α = β, which leads to a

contradiction. So there must be a sequence {ξ j}j∈N with ξ j → +∞ as j → +∞, such that
ϕ′(ξ j) = 0, ϕ′′(ξ j) ≤ 0 and ϕ(ξ j)→ β as j→ +∞. It follows from (14) that

0 = Dϕ′′(ξ j)− ϕ(ξ j) + (1− d)ϕ(ξ j − c) + η
∫ +∞

−∞
KDi (r− 1, y)b(ϕ(ξ j − y− cr))dy

≤ −ϕ(ξ j) + (1− d)ϕ(ξ j − c) + η
∫ +∞

−∞
KDi (r− 1, y)b(ϕ(ξ j − y− cr))dy,

thus

ϕ(ξ j)− (1− d)ϕ(ξ j − c) ≤ η
∫ +∞

−∞
KDi (r− 1, y)b(ϕ(ξ j − y− cr))dy. (44)

For any ε > 0, there exists a sufficiently large constant N > 0, such that

dW∗/η
∫
|y|>N

KDi (r− 1, y)dy <
ε

2
. (45)

Due to the continuity of b, we can choose δ > 0 with δ < ε satisfying

max{b(w)|w ∈ [α− δ, β + δ]} < max{b(w)|α ≤ w ≤ β}+ ε

2η
.

For such δ > 0, take N1 > 0, such that

ϕ(ξ) ∈ [α− δ, β + δ], for all ξ ≥ N1.

Then choose J0 > 0, such that

ξ j ≥ N1 + N + cr, for all j ≥ J0.

Therefore, for j ≥ J0, we have
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ϕ(ξ j)− (1− d)ϕ(ξ j − c) ≤ η
∫
|y|≤N

KDi (r− 1, y)b(ϕ(ξ j − y− cr))dy

+ η
∫
|y|>N

KDi (r− 1, y)b(ϕ(ξ j − y− cr))dy

≤ η max{b(w)|w ∈ [α− δ, β + δ]}+ dW∗/η
∫
|y|>N

KDi (r− 1, y)dy

≤ η max{b(w)|α ≤ w ≤ β}+ ε.

Let j→ +∞, we find

dβ ≤ η max{b(w)|α ≤ w ≤ β}+ ε,

It follows from ε→ 0+ that

dβ ≤ η max{b(w)|α ≤ w ≤ β}. (46)

Similarly, we have
dα ≥ η min{b(w)|α ≤ w ≤ β}. (47)

If α < β ≤ w∗, then by (47), we have dα ≥ η min{b(w)|α ≤ w ≤ β} > dα, a
contradiction. If w∗ ≤ α < β, then (46) implies that dβ ≤ η max{b(w)|α ≤ w ≤ β} < dβ,
also a contradiction. Therefore, we must have α < w∗ < β.

Let w1, w2 ∈ [α, β], such that b(w1) = max{b(w)|α ≤ w ≤ β} and
b(w2) = min{b(w)|α ≤ w ≤ β}. We have the following three cases:

Case (i). w∗ ≤ w1 ≤ β. If w1 = β, then dβ ≤ ηb(β) follows from (46), which is
impossible since β > w∗. Therefore, we have w1 < β and, hence,

dβ ≤ η max{b(w)|α ≤ w ≤ β} = b(w1)η ≤ dw1 < dβ,

which is a contradiction;
Case (ii). α ≤ w2 ≤ w∗. Using the similar argument that used in (i), we find α < w2 and

dα ≥ η min{b(w)|α ≤ w ≤ β} = b(w2)η ≥ dw2 > dα,

which is also a contradiction;
Case (iii). w1 < w∗ < w2. In this case, we have w1 = α and w2 = β. Otherwise,

we have

dβ− dα ≤ ηb(w1)− ηb(w2)

< d(2w∗ − w1)− d(2w∗ − w2) = d(w2 − w1)

< dβ− dα

which is impossible.
Thus, α = β, and hence lim

ξ→+∞
ϕ(ξ) = α ∈ [W∗, W∗] exists. Using the Lebesgue’s

dominated convergence theorem and taking the limit as ξ → +∞ in (42), we have

α = lim
ξ→+∞

∫ +∞

−∞
K(1, ξ − ζ)

[
(1− d)ϕ(ζ − c) + η

∫ +∞

−∞
KDi (r− 1, y)b(ϕ(ζ − y− cr))dy

]
dζ

= (1− d)α + ηb(α),

which yields dα = ηb(α), hence lim
ξ→+∞

ϕ(ξ) = α = w∗.
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4. Discussion

In this paper, we studied the traveling wave solutions of the temporally discrete
reaction-diffusion equation with monotone and non-monotone birth functions, respectively.
Now we compare our results with the counterparts for continuous model. In [2], the
authors studied the existence of traveling wavefronts of following equation,

∂w
∂t

= D
∂2w
∂x2 − dw + εp

∫ +∞

−∞
b(w(t− r, y)) fα(x− y)dy, (48)

where they took a particular birth function b(w) = pwe−aw, p > 0 and a > 0 are parameters.
They showed that if 1 < εp

d ≤ e, then there exists c̄∗ > 0 such that for every c > c̄∗, (48)
admits a traveling wavefront solution connecting the trivial equilibrium w1 = 0 and
positive equilibrium w2 = 1

a ln εp
d . In [23], the author established a general existence result

of traveling wave solutions for non-local reaction diffusion equation. As a special case,
he proved that if e < εp

d ≤ e2, (48) still possess a traveling wave solution connecting w1
and w2.

Using the non-standard discretization as the form of (1), the corresponding temporally
discrete reaction diffusion equation reads as

w(n + 1, x) =D∆w(n + 1, x) + (1− d)w(n, x)

+ εp
∫ +∞

−∞
KDi (r− 1, x− y)w(n + 1− r, y)e−aw(n+1−r,y)dy.

(49)

If 1 < εp
d ≤ e, then the assumptions (H1)–(H4) can be easily verified. By Theorem 2,

there exists c∗ > 0, such that, for every c > c∗, (49) admits a traveling wavefront with speed
c. When e < εp

d ≤ e2, by Theorem 3, we can prove that (49) still possess a traveling wave
solution connecting w1 and w2. This implies that in the sense of the existence of traveling
wavefronts, (49) is a dynamically persistent discretization.

Now that both (48) and (49) have critical propagation speeds c̄∗ and c∗, respectively.
What is the relationship between the two propagation speeds c̄∗ and c∗? To answer this
question, we can consider following two functions,

∆̄(c, λ) = Dλ2 − d− cλ + εpeαλ2−λcr, (50)

∆(c, λ) = Dλ2 − 1 + (1− d)e−λc +
εpe−λcr

(1− Diλ2)r−1 . (51)

where α = (r− 1)Di. In fact, ∆̄(c, λ) = 0 and ∆(c, λ) = 0 are characteristic equations of
linearizations at zero of wave profile equations corresponding to (48) and (49).

By direct computations, we find

−d− cλ < −1 + (1− d)e−λc, eαλ2
<

1
(1− Diλ2)r−1 , ∀λ ∈ (0,

1√
Di

),

which implies that for any given c > 0, ∆(c, λ) > ∆̄(c, λ) for λ ∈ (0, 1√
Di
).

By the definition of c̄∗, there exists a unique λ = λ(c̄∗) > 0, such that ∆̄(c̄∗, λ(c̄∗)) = 0.
Moreover, ∆̄(c̄∗, λ) > 0 for 0 < λ 6= λ(c̄∗). Consequently, ∆(c̄∗, λ) > ∆̄(c̄∗, λ) ≥ 0 for any
0 ≤ λ ≤ 1√

Di
. It follows that c∗ > c̄∗.
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