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Abstract: This paper presents a generalized second-order hydrodynamic traffic model. Its central
piece is the expression for the relative velocity of the congestion (compression wave) propagation.
We show that the well-known second-order models of Payne–Whitham, Aw–Rascal and Zhang are
all special cases of the featured generalized model, and their properties are fully defined by how
the relative velocity of the congestion is expressed. The proposed model is verified with traffic data
from a segment of the Interstate 580 freeway in California, USA, collected by the California DOT’s
Performance Measurement System (PeMS).

Keywords: traffic flow; macroscopic hydrodynamical models; velocity of congestion propagation;
numerical simulations

1. Introduction

In this paper, we introduce a new second-order hydrodynamic traffic model that gen-
eralizes the existing second-order models. The key feature of the new model is the notion
of the relative velocity of the congestion (compression wave) propagation. This quantity
can be obtained empirically from traffic detector measurements. Moreover, knowledge of
the congestion relative velocity obviates the need for the fundamental diagram. We test the
proposed model through numerical experiments using typical traffic detector data from the
Performance Measurement System (PeMS) ([1]), on the I-580 freeway in California, USA.

An extensive development of gas dynamics (generalized conservation laws, stable
differencing schemes) occurred in the 1950s, when the first macroscopic (hydrodynamic)
models were developed. In those models, traffic flow was likened to a flow of “motivated”
compressible liquid. For instance, the Lighthill–Whitham–Richards (LWR) model ([2,3])
describes the traffic flow through the law of conservation of vehicles. This model postulates
the unique dependence of traffic flow on traffic density, which is called a fundamental
diagram, and assumes a unique relationship between traffic speed v(t, x) and density
ρ(t, x): v(t, x) = V(ρ(t, x)). Here, ρ(t, x) denotes vehicle density—the number of vehicles
per unit length of the road at time t around the position x; and v(t, x) denotes mean
traffic speed at time t around the position x. The function V(ρ) is non-increasing: ∂V

∂ρ ≤ 0.
We denote the flow (i.e., the number of vehicles passing a reference point in unit time)
as Q(ρ) = ρV(ρ). The function is referred to as the fundamental diagram (although
sometimes this name is reserved for V(ρ)). The vehicle conservation law in the LWR model
is expressed in the differential form of a continuity equation with zero right-hand side:{

∂ρ
∂t +

∂(ρv)
∂x = ∂ρ

∂t +
∂(ρV(ρ))

∂x = ∂ρ
∂t +

Q(ρ)
∂x = 0

v(t, x) = V(ρ(t, x))
(1)
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Later, the class of macroscopic models has expanded to systems of non-linear hyper-
bolic second-order PDEs, where the unique dependence of traffic density and speed is no
longer assumed ([4–12]). These models differ in the way that they describe the dependency
of traffic flow (or velocity) on density. Here, we will discuss some popular second-order
models and show how they can be generalized using the relative velocity of the congestion.

We start with the Payne–Whitham model ([4,13]) with zero right-hand side to simplify
the subsequent calculations: 

∂ρ
∂t +

∂Q
∂x = 0

∂v
∂t + V ∂v

∂x +
c2

0
∂ρ

∂ρ
∂x = 0

(2)

where c0 < 0 is the so-called traffic ‘sound speed’, and generalize it for the arbitrary form
of the relative velocity of the congestion, c(ρ):

c(ρ)2 =
∂P(ρ)

∂ρ
⇒ P(ρ) =

∫ ρ

0
c(ρ̃)2dρ̃ (3)

With P(ρ) defined in (3), model (2) can be rewritten ([8]):
∂ρ
∂t +

∂Q
∂x = ∂ρ

∂t +
(

∂Q
∂ρ

)
∂ρ
∂x = ∂ρ

∂t + v ∂ρ
∂x + ρ ∂v

∂x = 0
∂v
∂t + v ∂v

∂x + c(ρ)2

ρ
∂ρ
∂x = ∂v

∂t + v ∂v
∂x + 1

ρ
∂P
∂ρ

∂ρ
∂x = ∂v

∂t + v ∂v
∂x + 1

ρ
∂P
∂x = 0

(4)

which generalizes (2). The proposed model (4) can also be written in the conservative form:
∂ρ
∂t +

∂(ρv)
∂x = 0

∂(ρv)
∂t +

∂(ρv2+P(ρ)))
∂x = 0

(5)

The work ([8]) also proposed the model (4) in anisotropic form, defined by system:{ ∂ρ
∂t +

∂Q
∂x = ∂ρ

∂t + v ∂ρ
∂x + ρ ∂v

∂x = 0
∂v
∂t + v ∂v

∂x + c(ρ) ∂v
∂x = ∂v

∂t +
(

v + ρ
∂V(ρ)

ρ

)
∂v
∂x = 0

(6)

where the relative velocity of the congestion propagation is expressed through the deriva-
tive of the equilibrium speed: c(ρ) = ρ

∂V(ρ)
∂ρ

Note that system (6) is almost identical to the system proposed in ([7]) when its second
equation is in a non-conservative form. The difference is in the form of c(ρ). In ([7]), the
smooth function P(ρ) is used instead of the equilibrium speed V(ρ):{ ∂ρ

∂t +
∂Q
∂x = ∂ρ

∂t + v ∂ρ
∂x + ρ ∂v

∂x = 0
∂v
∂t +

(
v− ρ

∂P(ρ)
ρ

)
∂v
∂x = ∂v

∂t +
(

v + ρ
∂V(ρ)

ρ

)
∂v
∂x = 0

(7)

From the physical standpoint, the use of the equilibrium speed V(ρ) in (7) instead
of an arbitrary smooth increasing function P(ρ) ∼ ργ, γ > 0 is more justified (see ([8])),
as the function V(ρ) is generally not smooth in points of transition between different
traffic phases.

A system similar to (6), but with an additional relaxation term β(ρ, v)(V(ρ)− v) in
the right-hand side, was introduced in ([10,11]):{ ∂ρ

∂t +
∂Q
∂x = ∂ρ

∂t + v ∂ρ
∂x + ρ ∂v

∂x = 0
∂v
∂t +

(
v + ρ

∂V(ρ)
∂ρ

)
∂v
∂x = β(ρ, v)(V(ρ)− v)

(8)
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where the equilibrium speed is expressed as V(ρ) = Vmax

(
1−

(
ρ

ρmax

)n1
)n2

in ([10,11]);

and as V(ρ) = Vmax

(
1− exp

(
− λ

Vmax

(
1
ρ −

1
ρmax

)))
in ([11]).

The rest of the paper is organized as follows. Section 2 has two parts: in Section 2.1 the
relative velocity of congestion propagation is expressed using the model variables, traffic
velocity v and density ρ; Section 2.2 proposes the generalized second-order model and
shows, using the relative velocity of the congestion (compression wave) propagation, that
the existing second-order models are special cases of the proposed one. Section 3 presents
the discretized numerical method for model simulation. Section 4 discusses the simulation
results, which support the proposition that different second-order models with the same
expression for the relative velocity of the congestion behave similarly. Section 5 concludes
the paper.

2. Generalized Model
2.1. Relative Velocity of the Congestion Propagation

First, we need to find a formal way to express the relative velocity of the congestion
propagation, c(ρ), or traffic pressure P(ρ) =

∫ ρ
0 c(ρ̃)2dρ̃ using the model variables, traffic

speed v and density ρ.
From the continuity equation, we know that:

∂ρ

∂t
+

∂Q
∂x

=
∂ρ

∂t
+

∂Q
∂ρ

∂ρ

∂x
= 0⇒ 1

ρx
= −

Qρ

ρt

Using this, we express partial derivative Pρ = ∂P
∂ρ via Px = ∂P

∂x :

Pρ =
∂P
∂ρ

=
∂P
∂x

∂x
∂ρ

=
Px

ρx
= −

Qρ

ρt
Px (9)

Then, we express Px = ∂P
∂x from the second equation of (5):

∂(ρv)
∂t

+
∂
(
ρv2 + P(ρ)

)
∂x

=
∂Q
∂t

+
∂(Qv)

∂x
+

∂P
∂x

= 0⇒

−Px = −∂P
∂x

=
∂Q
∂t

+
∂(Qv)

∂x
=

∂Q
∂t

+
∂(Qv)

∂Q
∂Q
∂x

=

(
∂ρ

∂t
= −∂Q

∂x

)
=

∂Q
∂t
− ∂(Qv)

∂Q
∂ρ

∂t

and substitute Px into the Equation (9):

∂P
∂ρ

= −
Qp

ρt
Px =

Qp

ρt

(
∂Q
∂t
− ∂(Qv)

∂Q
∂ρ

∂t

)
=

∂Q
∂ρ

(
∂Q
∂ρ
− ∂(Qv)

∂Q

)
=

(
∂Q
∂ρ

)2
− ∂(Qv)

∂ρ

Taking
(

∂Q
∂ρ

)2
and ∂(Qv)

∂ρ from the known relations:

(
∂Q
∂ρ

)2
=

(
∂(ρv)

∂ρ

)2

=

(
v + ρ

∂v
∂ρ

)2
= v2 + 2ρv

∂v
∂ρ

+ ρ2
(

∂v
∂ρ

)2

∂(Qv)
∂ρ

=
∂(ρv2)

∂ρ
= v2 + ρ

∂
(
v2)

∂ρ
= v2 + 2ρv

∂v
∂ρ

and using them in the expression of Pρ = ∂P
∂ρ , we obtain the equation for c(ρ)2:

c(ρ)2 =
∂P(ρ)

∂ρ
=

(
∂Q
∂ρ

)2
− ∂(Qv)

∂ρ
= ρ2

(
∂v
∂ρ

)2
(10)
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The sign: c(ρ) = ±
√

∂P(ρ)
∂ρ remains to be determined. For that, we substitute expres-

sion for c(ρ)2 in the second equation of (4):

∂v
∂t

+ v
∂v
∂x

+
c(ρ)2

ρ

∂ρ

∂x
=

∂v
∂t

+ v
∂v
∂x

+ ρ
∂v
∂ρ

(
∂v
∂ρ

∂ρ

∂x

)
=

∂v
∂t

+

(
v + ρ

∂v
∂ρ

)
=

∂v
∂t

+ (v + c(ρ))
∂v
∂x

= 0
(11)

and finally obtain the formula for the relative velocity of the congestion propagation:

c(ρ) = ρ
∂v
∂ρ

(12)

2.2. Model Equations

The vehicle conservation law in the LWR model (1) is expressed by the continuity
equation in the differential form with zero right-hand side. Accounting for variations
in vehicle numbers, for example, due to lane changes or freeway entrances and exits,
Equation (1) takes the form:

∂ρ

∂t
+

∂Q
∂x

=
∂ρ

∂t
+ ρ

∂v
∂x

+ v
∂ρ

∂x
= f0 (13)

where f0 is the number of vehicles entering (positive) or leaving (negative) in unit time.
Equation (13) by itself is not sufficient for an adequate description of all the traffic flow
phases ([5]). To correct this, we use the differential transformation of the conservation
law ([14]). We multiply (13) by ∂v

∂ρ :

∂v
∂ρ

(
∂ρ

∂t
+

∂Q
∂x

)
=

∂v
∂ρ

∂ρ

∂t
+

∂v
∂ρ

(
ρ

∂v
∂x

+ v
∂ρ

∂x

)
=

∂v
∂ρ

f0

and get:
∂v
∂t

+ v
∂v
∂x

+ ρ
∂v
∂ρ

∂v
∂x

=
∂v
∂t

+

(
v + ρ

∂v
∂ρ

)
∂v
∂x

=
∂v
∂ρ

f0 (14)

Recall that c(ρ) = ρ ∂v
∂ρ is the relative velocity of the congestion propagation. Now, we

can rewrite Equations (13) and (14) in their final form:{ ∂ρ
∂t +

∂Q
∂x = ∂ρ

∂t + ρ ∂v
∂x + v ∂ρ

∂x = f0
∂v
∂t +

(
v + ρ ∂v

∂ρ

)
∂v
∂x = ∂v

∂t + (v + c(ρ)) ∂v
∂x = ∂v

∂ρ f0
(15)

Thus, we constructed a second-order macroscopic model that does not assume a
unique dependency between traffic speed and density, as in the LWR. The right-hand side
f0 of the first equation of (15) accounts for the number of vehicles incoming (positive) or
leaving (negative) in unit time. Looking at the right-hand side of the velocity equation
in (15), we see the impact of these vehicles on traffic speed.

The number of left and right boundary conditions in (15) depends on the signs of
the eigenvalues of the system: λ1 = v, λ2 = v + ρ ∂v

∂ρ . Since λ1 = v is always ≥ 0, we

need to know the sign of λ2 = v + ρ ∂v
∂ρ . At a freeway entrance, there are two boundary

conditions, if λ1 > 0, λ2 > 0; one, if λ1 > 0, λ2 ≤ 0; or zero, if λ1 = 0, λ2 ≤ 0. The
opposite is true for a freeway exit: zero boundary conditions, if both λ1, λ2 ≥ 0; one, if
λ1 ≥ 0, λ2 < 0. Therefore, we can use time-dependent traffic flow Q(t) and speed v(t)
as boundary conditions. Besides the boundary conditions, we set the following initial
conditions:

ρ(x, 0) = ρ0(x), v(x, 0) = v0(x)



Mathematics 2021, 9, 2001 5 of 13

Several shortcomings of the Payne–Whitham model (2) were pinpointed in ([5]). In
particular, it was mentioned that, with strong spatial disturbances in initial conditions,
negative values of velocity and/or density might appear in the solution. According to the
model, the traffic is influenced by the vehicles traveling behind it, which was not possible
in the case of a one-lane road. These inconsistencies arise because, initially, the system (2)
(or (4)) was used to model barotropic gas that is isotropic, and all directions of motion for
barotropic gas are equally probable.

Mathematically, this relates to the fact that the relative velocity of the congestion

propagation, c(ρ) =
√

∂P(ρ)
∂ρ = ρ ∂v

∂ρ , is squared in the second equations of systems (4)
and (5). Thus, these equations are not sensitive to the sign of the relative velocity and are
agnostic of the congestion direction.

To resolve this issue, in system (11), we turned from c(ρ)2 to c(ρ) and obtained the
resulting second-order macroscopic model (15) with zero right-hand side. It should also
be noted that once we found the expression for the relative velocity of the congestion,
c(ρ) = ρ ∂v

∂ρ , the eigenvalues of the isotropic system (4), λ1,2 = v± c(ρ), are transformed to
λ1 = v, λ2 = v + c(ρ) ≤ v, in the system (15).

These results are stated in the following theorem.

Theorem 1. Any macroscopic second-order hyperbolic model for the description of traffic flow
dynamics can be formulated as{

∂ρ
∂t + v ∂ρ

∂x + ρ ∂v
∂x = f0

∂v
∂t + (v + c(ρ)) ∂v

∂x = ∂v
∂ρ f0 + f1

by choosing a specific form of the relative velocity of the congestion propagation, c(ρ). The term f0
in the right-hand side of the model accounts for the number of vehicles incoming or leaving in unit
time. The term f1 plays the role of a relaxation term when necessary.

Remark 1. Note that ([8]) was the first to propose an expression for the relative velocity of the
congestion propagation in the form: c(ρ) = ρ

∂V(ρ)
∂ρ . This differs from (12) in that, instead of the

observed traffic flow velocity, it uses the equilibrium velocity V(ρ). Additionally, the expression for
the relative velocity of the congestion propagation, c(ρ) = ρ

∂V(ρ)
∂ρ , in ([8]), was derived from the

car-following model ([15]), while we obtained our expression c(ρ) = ρ ∂v
∂ρ from the system (5), with

no additional restrictions on values of traffic speed.

The approach of ([8]) is justified, since we need to calculate the relative velocity of the
congestion for each road segment and we have only two ways of doing this:

• First, we can define the relative velocity of the congestion propagation by using

equilibrium velocity, as was carried out in ([8]), c(ρ) = ρ
∂V(ρ)

∂ρ . The function for
equilibrium velocity V(ρ) (fundamental diagram) can be empirically set using traffic
detector data for a long period of time for each segment of the road.

• Second, we can do this without using equilibrium velocity or any form of a funda-
mental diagram. We approximate the value of the relative velocity of the congestion
propagation using traffic density and velocity measured at the current time instant:

c(ρ) =
ρin + ρout

2

(
vout − vin
ρout − ρin

)
(16)

In (16), ρin, vin and ρout, vout denote the measured values of traffic densities and ve-
locities at the current time instant at the entrance and exit of the chosen road segment. If
ρin = ρout, we can use the value of the relative velocity of congestion propagation at the
previous time instant to avoid the division by zero.
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As an example of our theorem application, we show how the model equations in the
conservative form, proposed in ([7]),{

∂ρ
∂t +

∂(ρv)
∂x = 0

∂(ρ(v+P(ρ)))
∂t + ∂(ρv(v+P(ρ)))

∂x = 0
(17)

can be derived from the system (5), using the expression for the relative velocity of the
congestion in the form: c(ρ) = −ρ

∂P(ρ)
∂ρ . The density conservation equations in both

systems are identical, so we will focus on the momentum equations:

∂(ρv)
∂t

+
∂
(
ρv2 + P(ρ))

)
∂x

=
∂(ρv)

∂t
+

∂
(
ρv2)
∂x

+
∂P(ρ)

∂ρ

∂ρ

∂x
= 0⇔

∂(ρv)
∂t

+
∂
(
ρv2)
∂x

+ c2(ρ)
∂ρ

∂x
= 0⇔

∂(ρv)
∂t

+
∂
(
ρv2)
∂x

+ ρ2
(

∂P(ρ)
∂ρ

)2 ∂ρ

∂x
= 0⇔

∂(ρv)
∂t

+
∂
(
ρv2)
∂x

+ ρ2 ∂P(ρ)
∂ρ

∂P(ρ)
∂x

= 0 (18)

From the first equation of (5), using c(ρ) = ρ ∂v
∂ρ = −ρ

∂P(ρ)
∂ρ , we obtain:

∂ρ

∂t
+

∂Q
∂x

=
∂ρ

∂t
+ v

∂ρ

∂x
+ ρ

∂v
∂x

=
∂ρ

∂t
+ v

∂ρ

∂x
+ ρ

∂v
∂ρ

∂ρ

∂x
= 0⇒

∂ρ

∂t
+

(
v− ρ

∂P(ρ)
∂ρ

)
∂ρ

∂x
= 0⇒

∂P(ρ)
∂ρ

(
∂ρ

∂t
+ v

∂ρ

∂x
− ρ

∂P(ρ)
∂x

)
= 0⇔

∂P(ρ)
∂t

+ v
∂P(ρ)

∂x
− ρ

∂P(ρ)
∂ρ

∂P(ρ)
∂x

= 0⇔

ρ2 ∂P(ρ)
∂ρ

∂P(ρ)
∂x

= ρ

(
∂P(ρ)

∂t
+ v

∂P(ρ)
∂x

)
(19)

By substituting ρ2 ∂P(ρ)
∂ρ

∂P(ρ)
∂x = ρ

(
∂P(ρ)

∂t + v ∂P(ρ)
∂x

)
into the last of (18), we get:

∂(ρv)
∂t

+
∂
(
ρv2)
∂x

+ ρ

(
∂P(ρ)

∂t
+ v

∂P(ρ)
∂x

)
= 0⇔

∂(ρv)
∂t

+
∂
(
ρv2)
∂x

+ ρ

(
∂P(ρ)

∂t
+ v

∂P(ρ)
∂x

)
+ P(ρ)

(
∂ρ

∂t
+

∂(ρv)
∂x

)
= 0⇔

∂(ρv)
∂t

+
∂(ρP(ρ))

∂t
+

∂
(
ρv2)
∂x

+
∂(ρvP(ρ))

∂x
= 0⇔

∂(ρ(v + P(ρ)))
∂t

+
∂(ρv(v + P(ρ)))

∂x
= 0 (20)

Therefore, we arrive at the momentum equation of (17), QED.
Reversing this logic, we can easily obtain system (5) from the system (17) using the

same expression for the relative velocity of the congestion, c(ρ) = ρ ∂v
∂ρ = −ρ

∂P(ρ)
∂ρ .

Thus, we see that the existing second-order hydrodynamic traffic models can be
generalized using the relative velocity of the congestion propagation.



Mathematics 2021, 9, 2001 7 of 13

Additionally, it is important to know why the transition from macroscopic first-order
models to second-order models is useful: adding the momentum equation into the system
obviates the need for a fundamental diagram. Instead, the relative velocity of the congestion
propagation can be obtained from traffic detector measurements. This enables the model to
instantly adjust to real-time road conditions.

3. Computational Method

The second-order model (15) is of a hyperbolic type. A variety of finite-difference
methods for solving such systems exist. By introducing vectors W = [ρ, v]T and f =[

f0, ∂v
∂ρ f0 + f1

]T
, the system (15) can be written in the vector form:

∂W
∂t

+ A
∂W
∂x

=
∂W
∂t

+
(

Ω−1ΛΩ
)∂W

∂x
= f (21)

with the Jacobian:

A =

[
v ρ

0 v + ρ ∂v
∂ρ

]
=

[
v ρ
0 v + c(ρ)

]
= Ω−1ΛΩ (22)

In (22), Λ =

[
λ1 0
0 λ2

]
is a diagonal matrix of eigenvalues of the Jacobian A; Ω =

[
ω1
ω2

]
is the matrix of left eigenvectors of A; and Ω−1 is the inverse of Ω.

Next, we write a finite-difference approximation on the grid shown in Figure 1 by
making the values of the equation variables constant at the edges of the grid:

Wn+1
m −Wn

m
∆t

+ A

Wn+ 1
2

m+ 1
2
−Wn+ 1

2
m− 1

2

∆x

 =
Wn+1

m −Wn
m

∆t
+

(AW)
n+ 1

2
m+ 1

2
− (AW)

n+ 1
2

m− 1
2

∆x
= f n

m

Here, m = 1, . . . , M is the grid node index along the x-axis, n = 1, . . . , N, is the grid
node index along the t-axis, ∆t and ∆x are numerical integration steps bounded via the
Courant condition: ∆t ·max

m
|(λ1,2)

n
m| < ∆x.

Figure 1. Contour bounding an integration cell.
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For system (15), the whole family of difference schemes can be expressed as follows
(Kholodov and Tsybulin, 2018):

Wn+1
m = Wn

m −
∆t
∆x

(
Gn+ 1

2
m+ 1

2
− Gn+ 1

2
m− 1

2

)
+ f n

m. (23)

The choice of the approximation method for Gn+ 1
2

m± 1
2
= (AW)

n+ 1
2

m± 1
2

in (23) is crucial for

obtaining the scheme with the desired properties. When choosing a difference scheme,
we presume that the solution for the model equations at every road segment is defined
by the change in computed values in its boundary points. In this case, we can choose the
conservative monotonic characteristic method of the first-order approximation ([16]) with

the following expressions for Gn+ 1
2

m± 1
2
:

Gn+ 1
2

m± 1
2
=

1
2

An
m± 1

2

(
Wn

m + Wn
m±1

)
± 1

2

(
Ω−1|Λ|Ω

)n

m± 1
2

(
Wn

m −Wn
m±1

)
(24)

These could also be more complex expressions, which allow for the building of higher-
order (hence, higher-accuracy) difference schemes for a given stencil. Variable values in
the neighboring nodes m± 1

2 in (24) can be computed using a simple linear interpolation
without loss of accuracy.

An
m± 1

2
=

 vn
m+vn

m±1
2

ρn
m+ρn

m±1
2

0
vn

m+vn
m±1

2 + c
(

ρn
m+ρn

m±1
2

),

Λn
m± 1

2
=

λn
1,m± 1

2
0

0 λn
2,m± 1

2

 =

 vn
m+vn

m±1
2 0

0
vn

m+vn
m±1

2 + c
(

ρn
m+ρn

m±1
2

),

Ωn
m± 1

2
=

[
ωn

1,m±1/2
ωn

2,m±1/2

]
=

[
2

ρn
m+ρn

m±1
c
(

ρn
m+ρn

m±1
2

)
−1

0 1

]
,

(
Ω−1

)n

m± 1
2

=

 ρn
m+ρn

m±1

2c
(

ρn
m+ρn

m±1
2

) ρn
m+ρn

m±1

2c
(

ρn
m+ρn

m±1
2

)
0 1

. (25)

To obtain the characteristic form of compatibility equations, equivalent to the system (21)
along the characteristics λ1,2 = dx

dt , we multiply the system (21) from the left by the eigenvec-
tor matrix Ω (i.e., we compose 2 linearly independent combinations of the original equations)
and bring it to the characteristic form:

Ω
(

Wt +
(

Ω−1ΛΩ
)

Wx

)
= ΩWt + ΛΩWx = Ω f .

Then, in the scalar form, this yields:

(ωi ·Wt) + λi(ωi ·Wx) = ωi ·
(

∂W
∂t

+ λi
∂W
∂x

)
= (ωi · f ), i = 1, 2 (26)

Each of the two equations (26) is an ordinary differential equation along the character-
istic λ1,2 = dx

dt .
We usually need to numerically integrate the compatibility conditions (26) at boundary

points along the characteristics entering the integration area. For example, at the beginning
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of the freeway segment at boundary point
(
tn+1, x1

)
with negative eigenvalue (λ2)

n
3
2
=

vn
1+vn

2
2 + c

(
ρn

1+ρn
2

2

)
< 0, we use:

(ω2)
n
3
2
·
(

Wn+1
1 −Wn

1
∆t + (λ2)

n
3/2

Wn
2−Wn

1
∆x

)
= (ω2)

n
3
2
· f n

1

vn+1
1 = v

(
tn+1, x1

) (27)

together with the boundary condition for traffic velocity v(t, x1).
At the end of the freeway segment, we do the same for the positive (λ2)

n
M− 1

2
=

vn
M+vn

M−1
2 + c

(
ρn

M+ρn
M−1

2

)
> 0:

(ω1,2)
n
M− 1

2
·
(

Wn+1
M −Wn

M
∆t

+ (λ1,2)
n
M− 1

2

Wn
M −Wn

M−1
M x

)
= (ω1,2)

n
M− 1

2
· f n

1 , (28)

for both compatibility equations, because (λ1)
n
m± 1

2
=

vn
m+vn

m±1
2 > 0 is always positive.

We should reiterate that the relative velocity of the congestion, c(ρ) in (22)–(28) can
be defined using equilibrium velocity c(ρ) = ρ

∂V(ρ)
∂ρ as was done in ([8]). The function

for equilibrium velocity V(ρ) (fundamental diagram) can be empirically set using historic
traffic detector data for each road segment. We propose the new approach without using
equilibrium velocity or any form of a fundamental diagram Q(ρ). We approximate the
value of the relative velocity of the congestion propagation, c(ρ) = ρ ∂v

∂ρ , using traffic density
and velocity observed by traffic detection at the current time instant:

c(ρ)n
m± 1

2
=

(
ρ

∂v
∂ρ

)n

m± 1
2

=
ρn

m + ρn
m±1

2

(
vn

m − vn
m±1

ρn
m − ρn

m±1

)
. (29)

This approach enables our model (15) to instantly adjust to the changing road situation
at runtime.

4. Numerical Results

To verify the proposed model, we carried out numerical experiments using traffic de-
tector data for a segment of the I-580 freeway in California, USA, obtained from PeMS ([1]).
We used two loop detectors, denoted #1 and #2, separated by ∼1 km segment of the 4-lane
freeway with no entrances or exits, as shown in Figure 2.

Figure 2. Traffic detectors #1 and #2 chosen in the segment of the I-580 freeway in California, USA.
Data from detector #1 were used as a left boundary condition for modeling, and data from the
downstream detector #2 were used for the verification of modeling results.

The data of the stationary traffic detectors #1 and #2 were used to construct the
corresponding fundamental diagrams for equilibrium velocity V(ρ). According to the
three-phase traffic theory ([17]), the following traffic phases are distinguished:

1. Free flow: 0 ≤ ρ < ρ1
2. Synchronized flow: ρ1 ≤ ρ < ρ2
3. Wide moving jam: ρ2 ≤ ρ ≤ ρmax
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For each phase, we define separate functions V(ρ) and c(ρ) = ρ
∂V(ρ)

∂ρ , stitching them
together at the transition points:

1. Free flow:

{
V(ρ) = α2ρ + α1

c(ρ) = α2ρ
0 ≤ ρ < ρ1

2. Synchronized flow:

{
V(ρ) = β2ρ + β1 +

β0
ρ

c(ρ) = β2ρ− β0
ρ

, ρ1 ≤ ρ < ρ2

3. Wide moving jam:

 V(ρ) = c∗
(

ρmax
ρ − 1

)
c(ρ) = − c∗ρmax

ρ

, ρ2 ≤ ρ ≤ ρmax

For the traffic detectors showcased in Figure 2, we have the following coefficients and
parameters, aggregated over four lanes of I-580:

detectors #1: ρ1 = 0.084 veh./m, α1 = 49.6, α2 = −293.2, ρ2 = 0.141 veh./m,
β0 = 2.49, β1 = −4.9, β2 = 1.6, c∗ = 4.20 m/s, ρmax = 0.58 veh./m;

detectors # 2: ρ1 = 0.076 veh./m, α1 = 50.2, α2 = −295.7, ρ2 = 0.165 veh./m,
β0 = 2.30, β1 = −0.4, β2 = −27.6, c∗ = 3.58 m/s, ρmax = 0.58 veh./m;

For the separate lane of the I-580 freeway, the following parameters are different. For
example, in the first lane:

detectors #1: ρ1 = 0.023 veh./m, α1 = 52.5, α2 = −1026.9, ρ2 = 0.036 veh./m,
β0 = 0.46, β1 = 22.3, β2 = −585.5, c∗ = 4.57 m/s, ρmax = 0.145 veh./m;

detectors #2: ρ1 = 0.021 veh./m, α1 = 53.2, α2 = −1075.0, ρ2 = 0.040 veh./m,
β0 = 0.58, β1 = 10.3, β2 = −361.6, c∗ = 3.96 m/s, ρmax = 0.145 veh./m;

The equilibrium velocity V(ρ) — solid green line and the relative velocity of the
congestion propagation c(ρ) = ρ

∂V(ρ)
∂ρ — dashed blue line are shown as the functions

of density for both detectors, together with the historic data for the one-year period in
Figure 3 for the first lane and in Figure 4 aggregated over all four lanes.

Figure 3. Equilibrium speed V(ρ) (solid green line) and relative velocity of the congestion propaga-
tion c(ρ) = ρ

∂V(ρ)
∂ρ (dashed blue line) as the functions of density for the first lane of I-580 together

with the historic data for the one-year period. Left: detector #1, right: detector #2.
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Figure 4. Equilibrium speed V(ρ) (solid green line) and relative velocity of the congestion propa-
gation c(ρ) = ρ

∂V(ρ)
∂ρ (dashed blue line) as functions of density aggregated over four lanes of I-580,

together with the historic data for the one-year period. Left: detector #1, right: detector #2.

Data (traffic flow and velocity, with 30-second temporal resolution) from detector
#1 were used as the initial and left boundary conditions, and data from the downstream
detector #2 were used for verification of the model output. We simulated a 24-h interval for
a single weekday for all lanes of I-580. The results are shown in Figure 5 for the first lane
and in Figure 6 aggregated over four lanes in different subplots: top left, traffic flows; top
right, flow relative error in logarithmic scale; bottom left—traffic velocities; bottom right —
velocity relative error in the logarithmic scale.

The simulation results obtained with a different expression for the relative velocity of
the congestion propagation are shown in different colors: proposed macroscopic second-
order model, where we approximate the value of relative velocity of the congestion,
c(ρ) = ρ ∂v

∂ρ , using instantaneous measurements of traffic density and speed (29), is shown

in green; the same model (15), with equilibrium velocity c(ρ) = ρ
∂V(ρ)

∂ρ as an empirical
function of density obtained from the historic detector data, is shown in blue. The reference
results (data of detector #2) are depicted by a grey dashed line.

The simulation shows a good but not exact match with the results obtained using the
same second-order macroscopic model (15) with a different form of the relative velocity
of the congestion propagation, c(ρ). We also see that both approaches have a good match
with the reference results.

The root mean square error (RMSE) of velocity for the results of compared models
and the detector #2 measurements in Figure 5 is 0.25406 m/s for the model (15) with
c(ρ) = ρ

∂V(ρ)
∂ρ ; and 0.31976 m/s, if c(ρ) = ρ ∂v

∂ρ . For the flow, RMSE is 0.00387 veh./s, if

c(ρ) = ρ
∂V(ρ)

∂ρ ; and 0.00383 veh./s, if c(ρ) = ρ ∂v
∂ρ . For the results in Figure 6, velocity RMSE

is 0.19646 m/s, if c(ρ) = ρ
∂V(ρ)

∂ρ ; and 0.2331 m/s, if c(ρ) = ρ ∂v
∂ρ . The flow RMSE is 0.01237

veh./s if and 0.01301 veh./s, respectively.
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Figure 5. The comparison of calculated flows (top) and velocities (bottom) from the first lane
of I-580 and observed values from detector #2 (dashed grey lines). On the right, flow (top) and
velocity (bottom) relative errors in logarithmic scale. The simulation results obtained with a different
expression for the relative velocity of the congestion propagation, c(ρ), are shown in different colors:
green, model (with c(ρ) = ρ

∂v(ρ)
∂ρ from (29); blue, the same model (15) with c(ρ) = ρ

∂V(ρ)
∂ρ as an

empirical function of density.

Figure 6. The comparison of calculated flows (top) and velocities (bottom) aggregated over four
lanes of I-580 and observed values from detector #2 (dashed grey lines). On the right, flow (top) and
velocity (bottom) relative errors in logarithmic scale. The simulation results obtained with a different
expression for the relative velocity of the congestion propagation, c(ρ), are shown in different colors:
green, model (with c(ρ) = ρ

∂v(ρ)
∂ρ from (29); blue, the same model (15) with c(ρ) = ρ

∂V(ρ)
∂ρ as an

empirical function of density.

The difference in the results between these two approaches come from the time
structure. In the first case, we have the continuous empirical function c(ρ) = ρ

∂V(ρ)
∂ρ , with

values dependent only on traffic density at each time instant. In the second case, we
have a discrete function c(ρ) = ρin+ρout

2

(
vout−vin
ρout−ρin

)
, with values dependent both on traffic

density and velocity. An instant error generally occurs in detector measurements, which is
smoothed out in the first case, when we use the fundamental diagram.

5. Conclusions

In this paper, we generalized the second-order hydrodynamic macroscopic traffic
models in various formulations [4–11]. Existing second-order macroscopic models describe
traffic as non-linear systems of hyperbolic equations (for density and speed), which differ
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in the way they account for dependency between traffic flow (or velocity) and density.
We have shown that all these second-order macroscopic models can be unified using the
expression for the relative velocity of the congestion propagation.

To verify the proposed methodology, we conducted numerical experiments by simu-
lating the segment of the I-580 freeway in California, USA, using data from PeMS ([1]). The
simulations show that the results obtained for the same macroscopic model when using
different forms of the relative velocity of the congestion propagation are slightly different.
This suggests that the properties of every phenomenological model are defined by the form
of the relative velocity of the congestion propagation — namely, the form of its dependency
on density.

It is important to understand why the transition from macroscopic first-order models
to second-order models is useful: adding the momentum equation into the system obviates
the need for a fundamental diagram. Instead, the relative velocity of the congestion
propagation can be obtained from traffic detector measurements. This enables the model to
instantly adjust to real-time road conditions.
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