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Abstract: The covariance allocation principle is one of the most widely used capital allocation
principles in practice. Risks change over time, so capital risk allocations should be time-dependent.
In this paper, we propose a dynamic covariance capital allocation principle based on the variance-
covariance of risks that change over time. The conditional correlation of risks is modeled by means
of a dynamic conditional correlation (DCC) model. Unlike the static approach, we show that in our
dynamic capital allocation setting, the distribution of risk capital allocations can be estimated, and
the expected future allocations of capital can be predicted, providing a deeper understanding of the
stochastic multivariate behavior of risks. The methodology presented in the paper is illustrated with
an example involving the investment risk in a stock portfolio.

Keywords: dynamic allocation; risk management; contribution; diversification

1. Introduction

Risk in financial and actuarial applications is often defined as a random variable asso-
ciated with losses [1,2]. Risk measures are functions aimed at describing and quantifying
risks and are of great use in the field of capital allocation [3]. Capital allocation problems
arise when a total amount associated with the aggregate risk has to be distributed across
the multiple units of risk that make up this total risk [4].

Examples of capital allocation problems can be found in many areas of finance, where
agents attempt to define investment risks [5–11], and in insurance, where they involve the
allocation of the total solvency capital requirement across the business lines or the total
costs or expenses across the coverage of an insurance policy, among other areas [12–14].
The guidelines on how the capital should be shared among the units are determined by
capital allocation principles. Capital allocation principles are defined by a capital allocation
criterion and a given risk measure. The combination of an allocation criterion and a risk
measure will usually give different capital allocation solutions. Capital allocation principles
have been motivated based on game theory [15–18] and optimization methods [3,4,19,20].
A general theoretical framework in which the majority of the capital allocation principles
defined in the literature can be accommodated is provided by [3]. A recent review and
comparison of techniques can be found in [21].

One of the most frequently used capital allocation principles in practice is the covari-
ance allocation principle, which is based on the proportional allocation criterion and the
variance of the individual risk and the covariance of the individual risk with the aggregate
risk. The covariance principle for capital allocation as well as the allocation problem are
described in [3,22]. Some of the reasons for the preference of this proportional covariance
allocation criterion by practitioners include the fact that: (i) the principle takes into account
dependence between risks, (ii) it defines allocations that can be computed easily and,
(iii) allocation outcomes may effortlessly be explained by managers.
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Evolution over time is a natural behavior for risks, as outlined in [23–28]. Risks
change over time, so capital risk allocations should be time-dependent. This is a key issue
in financial institutions, who are required to hold a risk capital in order to mitigate the
effects of adverse events. The risk capital is derived from the risk-based assessment of
the aggregate risk of all its divisions, and this aggregate risk changes over time. The time
dimension of the risk evaluation is also relevant in the context of operational risk models,
as outlined in [29], where miscalculation may not imply an immediate loss, but sooner or
later economic consequences become evident. Therefore, it is imperative that managers
have a tool that allows them to evaluate the evolution of risk as well as the allocations of
capital to cover losses over time. In this paper, we propose a dynamic capital allocation
principle based on the variance-covariance of risks that change over time. The conditional
correlation of risks is modeled by means of a dynamic conditional correlation (DCC)
model [30]. We show how the DCC model can be useful for predicting the expected future
capital allocations in a dynamic capital allocation setting. The methodology presented in
the paper is illustrated with an example involving the investment risk in a stock portfolio.

Most of the previous research deals with capital allocation principles where risk
dynamics are not considered and value to share remains constant over time [3,22,31]. From
the point of view of an asset allocation strategy of investors, different studies deal with
risks that vary over time. Some examples are the studies of [32–34], among others. Ref. [32]
analyzes the risk position of an investor at different points in time to prevent welfare losses.
Ref. [33] considers the problem of optimally allocating funds in an investment portfolio,
given that the returns covariance matrix varies over time. Similarly [34], considers a
time-varying covariance matrix in the context of portfolio diversification based on the
assumption that investors use the Markowitz’s mean-variance portfolio theory to determine
the optimal asset allocation. The approach of these studies is different from the present
one, since they focus on the gains in diversification for selecting their optimal portfolios.

Dynamics in capital risk allocations have gained attention in recent years [23,24,27].
The study of [23] is based on [35], who showed the link between capital allocations and
compositional data, where compositional data mean that relative frequency or percent
information is more relevant than absolute values. Ref. [23] proposed a flexible capital
allocation scheme based on multivariate compositional time series for modeling time-
varying risk positions and how aggregate losses behave over time [36–38]. While [27]
shows a comparison between static and dynamic allocations [24], highlight that time-
dependence should be taken into account in capital allocation problems because shocks are
not known a priori but, instead, they appear over time. An example of constant covariance
matrix can be found in [39].

In this paper, we propose a methodology to model dynamics of capital allocations.
Our methodology is flexible enough to capture the impact of shocks as they arrive over
time. We are also interested in capital risk allocations along the same lines as [23], where
relative capital risk allocations are more important than the absolute capital risk allocations.
The dynamics must be consistent, since the fact that proportions must add up to one is
an implicit constraint. Ref. [23] considers any capital allocation solution as a composition
and applies a compositional Vector Autoregressive (VAR) model to predict future risk
compositions. In this framework, compositions need to be isometric log-ratio transformed
to be unconstrained, which makes the interpretation of results a complex task, particularly
for vectors with a high dimension. Instead of considering capital allocation solutions
as compositions and using composition techniques to model them, our analysis here is
restricted to capital allocation principles that are determined by the variance and covariance
of risks, such as the covariance capital allocation principle. In this paper, we focus on the
dynamics of the covariance structure and apply a DCC model to deal with a time-varying
covariance matrix. Our approach differs from [23]. The main difference is that, in our study,
the risk dependence structure is defined by a time-varying covariance which is modeled
by a DCC model, while [23] consider a VAR model with a time-invariance dependence
structure (constant covariance) to model time-varying compositions. The main advantage
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of our approach is that the dynamics of the covariance serve as a simpler, more intuitive
and more interpretable alternative to time-varying compositions.

The aim of the paper is to define the time-dependent covariance allocation principle
and to describe the steps that need to be implemented in practice. The paper is structured
as follows. The main concepts related to capital allocation problems and the covariance
capital allocation principle are briefly described in Section 2. Section 3 is devoted to the
description of the dynamics of the covariance capital allocation principle. A case study of
capital allocation solutions using the DCC model is provided in Section 4. The main results
are described in Section 5 and a discussion is provided in Section 6. Finally, concluding
remarks are presented in Section 7.

2. The Allocation Problem

The allocation problem refers to the subdivision of aggregate capital held by a firm
across its various constituents, which might be business lines, types of exposure, territories,
or even individual products in a portfolio of insurance policies [22].

Following [1,3,22], we consider a portfolio of n individual losses (random variables)
X1, X2, . . . , Xn materializing at a fixed future date T. The aggregate loss, S, is defined as
the sum of the individual losses:

S =
n

∑
i=1

Xi. (1)

The aggregate loss, S, in (1) can be interpreted, for instance, as [1,22]:

1. The total loss of an insurance company, with the individual losses being those arising
from the business lines;

2. The loss from an insurance portfolio, with the individual losses corresponding to the
losses of the different policies;

3. The loss of a financial conglomerate, with the individual losses being those losses
suffered by its subsidiaries;

4. The loss of a bank due to fraud in current accounts and credit card, respectively.

Once the aggregate loss S is defined and assumed to be random, our concern is with
the economic capital, K, for covering that loss, and we assume this amount of capital
to be exogenously determined by a risk measure that is a function of the total amount
ρ(S) [40,41]. We also consider the company’s intention to allocate K across its various
business lines so that K is distributed among K1, K2, . . . , Kn. Thus, the full allocation
requirement is [5]:

ρ(S) = K =
n

∑
i=1

Ki. (2)

The capital allocation problem is defined as:

S− K =
n

∑
i=1

(Xi − Ki), (3)

where the quantity (Xi − Ki) expresses the loss minus the allocated capital for unit i. The
risk capital allocation problem can be interpreted as on optimization problem [3,19]. The
allocation problem based on the quadratic optimization criterion is defined as [3]:

min
K1,...,Kn

n

∑
i=1

E

[
ζi
(Xi − Ki)

2

υi

]
, suchthat,

n

∑
i=1

Ki = K, (4)

where the non-negative real number υi is a measure of exposure or business volume of
the ith unit, such as revenue, insurance premium, etc. These scalar quantities are chosen
to add up to 1 and ζi is a function that measures the deviations of the losses Xi from
their respective allocated capital levels Ki. Xi and Ki were defined previously. If ζi is a
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non-negative random variable with expected value E[ζi] = 1 for all i, then the following
theorem is satisfied.

Theorem 1. The optimal allocation problem in (4) has the following unique solution:

Ki = E(ζiXi) + υi

(
K−

n

∑
i=1

E(ζiXi)

)
, i = 1, . . . , n. (5)

A detailed proof of the solution for this minimization problem can be found in [3].
Optimization criteria alternative to the quadratic deviation can be found in [20]. Capital
allocations for non-linear aggregated risks are discussed in [9]

Covariance Allocation Principle

If we consider a proportional allocation rule such as:

Ki =
K

E[Sh(S)]
E[Xih(S)], (6)

with h being a non-negative and non-decreasing function, such that E[h(S)] = 1, [3]
showed that the general setting (5) includes (6) when ζi = h(S) and υi =

E[Xih(S)]
E[Sh(S)] . The

covariance principle stems naturally from this when choosing h(S) = S− E(S) and using
the philosophy of the plug-in principle. Setting h(S) = S− E(S), the aim is to determine
E[Xih(S)] and E[Sh(S)].

For E[Xih(S)], we have:

E[Xih(S)] = E[Xi(S− E(S))]
= E(XiS)− E(Xi)E(S)
= Cov(Xi, S).

For E[Sh(S)] to be explicitly found, we proceed as follows:

E[Sh(S)] = E[S(S− E(S))]
= E

(
S2)− [E(S)]2

= Var(S).

These two expressions give rise to the covariance allocation principle:

Ki =
K

Var[S]
Cov(Xi, S), i = 1, . . . , n. (7)

As can be deduced from (7), this is a proportional allocation principle based only
on the variance of the i-th business and their covariance with the total loss [3,5,22]. A
drawback of this principle is that it does not account for changes in risk exposure over
time; it remains fixed, limiting the decision maker [3].

In this paper, we propose a strategy to overcome such an inconvenience by considering
all elements in (7) as time-varying random variables, by introducing a subscript t in
each variable, and keeping K constant. Without loss of generality, we assume that K is
independent of time, but K could be considered to be time-dependent in this setting. Note
that the capital to be allocated to K is assumed to be exogenously determined. We focus on
the proportion (in relative terms) of the total capital to allocate to each risk, and that the
capital size affects the scale but not the proportion.
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3. Time-Varying Approach of the Covariance Allocation Principle

Considering a given point in time, t, we can estimate the proportion of capital, Ki,t, to
be assigned to each individual business unit according to:

Ki,t =
K

Var(St)
Cov(Xi,t, St) i = 1, 2, . . . , n. (8)

where K is the total capital to be allocated into the i-th business unit, Xi,t represents the loss
reported by the i-th business unit at time t and St is the aggregate loss at time t.

The underlying assumption in covariance allocation principle so far has been that t
remains fixed. However, in Equation (8), we allow Ki,t to be time-varying and provide an
estimation of Ki,t for each point in time, that is t = 1, 2, . . . , T.

Up until now, time-varying structure in the aggregate loss has not been given the
attention it deserves. Under our setting, we provide the practitioner with a simple yet
parsimonious principle to allocate capital among several business units when time becomes
a crucially important variable.

Considering the time-varying covariance allocation principle as in Equation (8), some
transformations can be completed as follows:

Ki,t =
K

Var(St)
ρi,t

√
Var(Xi,t)·Var(St) follows from

ov(Xi,t, St) = ρi,t

√
Var(Xi,t), Var(St), then

Ki,t = ρi,t

√
Var(Xi,t)

√
Var(St)

Var(St)
K.

Finally, Equation (8) can be re-written as:

Ki,t = ρi,t

√
Var(Xi,t)

Var(St)
K (9)

where ρi,t is the Pearson correlation coefficient between Xi,t and St.
Both Var(Xi,t) and Var(St) are assumed to evolve as a generalized autoregressive con-

ditional heteroskedasticity (GARCH) type process and ρi,t follows a dynamic conditional
correlation scheme, DCC(1,1). Considering that K in (9) is exogenously determined, we can
then easily obtain an estimation for Ki,t due to the two-step structure of the DCC likelihood
(for more details, see [30]). To ensure that the capital allocations add up to K, we apply the
following transformation:

∼
Ki,t =

Ki,t

∑n
i=1 Ki,t

(10)

3.1. The Dynamic Conditional Correlation model

Let xt = [X1,t, . . . , Xn,t]′ be a vector of losses that follows a multivariate gaussian pro-
cess xt ∼ N(µ, Ht) where µ is the vector of unconditional means and Ht is the conditional
covariance matrix. The conditional covariance matrix Ht is defined as:

Ht = DtRtDt,

where Rt is the conditional correlation matrix and Dt is a diagonal matrix with conditional
standard deviations on the diagonal, with:

Rt = E[ξtξt′|Ωt−1]

ξt = D−1
t (xt − µ),
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where ξt is a vector of standardized residuals and Ωt−1 is the information set available up
to t − 1. Therefore, we can write the vector of losses as xt = µ+ H1/2

t ξt with ξt ∼ N(0, In)
where In is the identity matrix. The estimator of the conditional correlation matrix is:

Rt = (1− a− b)R + aξt−1ξt−1′+ bRt−1

where a and b are scalar parameters satisfying the stability constraint of the form a + b < 1,
and R is a positive definite matrix with unit elements along the main diagonal consisting of
the unconditional covariance matrix of the standardized errors. In order to obtain a proper
correlation, the following transformation is required Rt

∗ =
{

diag(Rt)
−1Rtdiag(Rt)

−1
}

,
where ρ∗i,j,t is a typical element of Rt

∗ [30].
The DCC model has been widely used in finance [42,43]. Extensions of the DCC model

can be found in [44,45], and their limitations are discussed in [46].

3.2. Estimation Procedure

As the estimation procedure is fully described in [30], here, we briefly point out
the main aspects. In order to estimate the parameters of the DCC model, we follow the
two-step procedure of [5]. Let ψ be the collection of parameters of the univariate GARCH
model, where ψ could be a standard GARCH or an EGARCH or even a Beta-t-EGARCH,
and let Ξ be the vector of DCC parameter (a,b), the quasi log-likelihood (QL) takes the
following form:

QL(ψ, Ξ) = QL1(ψ) + QL2(ψ, Ξ)

= −1
2

T

∑
t=1

(n log(2π) + 2 log |Dt|+ x′tD−2
t xt)

− 1
2

T

∑
t=1

(log |Rt|+ ξ ′tR
−1
t ξt + ξ ′tξt).

The separation of QL(ψ, Ξ) into QL1(ψ) and QL2(ψ, Ξ) indicates that we can first
estimate the parameters of the univariate GARCH-type processes contained in ψ by maxi-
mizing QL1(ψ) to obtain ψ̂, then we can plug ψ̂ into QL2(ψ, Ξ) so that it becomes QL2

(
ψ̂, Ξ

)
,

where standardized residuals ξ̂t = D̂−1
t (xt − µ̂) are used in the second stage.

For the first part of the likelihood, QL1(ψ) consists of estimating Var(Xi,t|Ωt−1) for
all i and QL2

(
ψ̂, Ξ

)
allows for estimation of the conditional correlations.

4. Case Study Definition

In the next two sections, we develop the steps to apply the time-dependent covariance
allocation principle defined in Section 3 in an investment portfolio. This allows the manager
to have:

• A time-varying allocation scheme for covering loss i in time t.
• A historical evolution of exposure as well as the distribution of the economic capital.
• A time series model for capital allocation, with which the manager can forecast both

variance and covariance in order to predict the future Ki.

In this section, we describe the data that were previously used by [23]. The same
dataset is used here to connect our findings with results in [23]. All calculations were
carried out in R software [47].

Data

We assume that n = 3, and that an investor selects the S&P 500 (SP500) index, the DAX
index, and the CAC 40 index, respectively. We use these indexes from 1 January 2000 to
31 December 2016 and monitor their daily value for every working day. We consider a
buy-and-hold portfolio with an initial equal investment to each index on 1 January 2000.
The original aggregate investment in the portfolio is 100,000 dollars.
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Figure 1 shows the investment evolution according to each portfolio component, with
the DAX and the SP500 showing a similar pattern within the overall sample. Until 2009,
CAC40 was synchronized with the other two components, but afterward it evolved at
lower levels.
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Figure 1. Investment evolution of the aggregate daily value of a portfolio that invests 100,000 units
in the S&P 500 index, the DAX index, and the CAC 40. The investment is equally split into three
components on 1 January 2000 and the investment goes on until 31 December 2016.

The daily value of the investment in each index is considered a source of risk, and the
aggregated daily value of the portfolio has an overall risk. In this illustration, we focus on
daily losses (returns with negative sign). That is, we compute the difference in log scale
of the daily value of the investment in each index, where a positive value indicates a loss
(the daily value of the index is lower than that of the previous daily value) and a negative
value indicates a gain (the daily value of the index is higher than the previous daily value).
In terms of the daily losses (the differences in the logs), a similar behavior is observed in
Figure 2 among the investment components, with the SP500 having the lowest variance.

A summary of main statistics of daily losses is shown in Table 1.

Table 1. Descriptive statistics for daily losses.

Mean Variance Cov (Index, Total)

SP500 −4.4 × 10−5 3.0 × 10−5 7.3 × 10−5

DAX −5.5 × 10−5 4.6 × 10−5 1.1 × 10−4

CAC40 2.0 × 10−5 4.3 × 10−5 1.0 × 10−4
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Figure 2. Daily losses (in percentage) of a portfolio that invests 100,000 units in the S&P 500 index,
the DAX index, and the CAC 40 on 1 January 2000. The investment is equally split across the
three components.

5. Results

Taking the capital allocation from Equation (7), i.e., daily losses are considered individ-
ual observations and no time-varying approach is followed, and using statistics shown in
Table 1, the following capital assignment scheme based on covariance allocation principle
is obtained: SP500 25.68%, DAX 37.93% and CAC40 36.39%.

The time-varying approach of the covariance capital allocation principle is now con-
sidered. GARCH models are fitted to data to model Var(Xi,t) and Var(St), where i = 1,2,3
for daily losses (on log scale) of SP500, DAX and CAC40 indices, respectively, and ρi,t
follows a dynamic conditional correlation scheme, DCC(1,1).

Time-varying covariance capital allocations obtained by applying Equation (8) are
shown in Figure 3.

The time-varying capital allocation principle succeeds in capturing the dynamics
of losses of each portfolio component, especially of that related to US and periods of
turmoil, such as the 2008 subprime crisis. Periods of growth in capital allocations are
preceded by periods of turmoil, such as dotcom and the subprime crisis, as can be seen
in Figures 1 and 2. Before 2009, all components behave quite similarly but, from 2009,
CAC40 slows down its risk exposure and, hence, its need for capital. In contrast, DAX
and SP500 speed up their level of exposure, demanding more assigned capital to cover the
possible risks.

Figure 3 shows two episodes where SP500 is above CAC40 and DAX; these periods
correspond to the dotcom crisis and the subprime crises, as mentioned earlier. Outside
these time windows, SP500 is the index with the lowest volatility and the least exposure
to risk and, therefore, the one with the lowest required capital. Note how the dynamic
set-up of our new approach to capital allocation is able to capture the stable periods and
fluctuations of turmoil in each component of the portfolio.

According to the evolution in capital allocations, the average value for the SP500 is
24.53% with 25% of the episodes below 20.84% and 75% of them below 27.71%. However,
there were episodes coinciding with crises where capital allocation exceeded 40%. In
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January 2001, it averaged 40.92%; November 2007, 43.62%; October 2008, 41.87%; and
March 2009, 40.57%.

Main statistics of the estimated time-varying covariance capital allocations from
1 January to 31 December 2016 are shown in Table 2.
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Table 2. Descriptive statistics for dynamic allocation principle over the entire sample.

Mean St.Dev. Min Quartile 1 Quartile 3 Max

SP500 24.53 5.06 11.19 20.84 27.71 47.89
DAX 38.39 4.03 21.10 35.98 41.20 51.01

CAC40 37.10 3.23 24.91 34.87 39.19 48.78

It is worth noting that the allocation obtained from Equation (7) based on the static
covariance capital allocation principle without time dependence structure is close (but
not equal) to the average of the time-dependent covariance capital allocations based on
Equation (8) shown in Table 2. The dynamic structure proposed in this paper provides
richer information to decision makers than the static covariance capital allocation outcome,
such as the proportion of cases of the capital allocations in the different sources of risks
which were below or above a certain threshold.

In addition, our dynamic framework enables the prediction of future covariance
capital allocations. Figure 4 includes the 10-days-ahead forecast for dynamic covari-
ance capital allocations. The fitted dynamic capital allocation for the last observed day
(30 December 2016) was 27.4% (SP500), 37.6% (DAX) and 35.0% (CAC40), and the predicted
covariance capital allocation for the first projected day was 27.7% (SP500), 37.7% (DAX)
and 34.6% (CAC40) with no significant fluctuations over the following nine days.
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In conclusion, the behavior of indices (and their log returns) is continuously changing
over the observation period in which the initial configuration is no longer observed. The
dynamic capital allocation framework proposed in this paper is flexible enough to adapt to
the variations in the performance of the stock indices and to properly reflect the underlying
risk involving the investment on these indices. By contrast, the static capital allocation
scheme given by Equation (7) is qualitative rather than quantitative in the sense that
it effectively provides an aggregate ordering of the financial indices on the demand of
capital to cover potential losses, but it is not an indicator of the dynamic behavior of these
financial indices.

6. Discussion

Risks change over time, but most capital allocation principles suggested in the litera-
ture are analyzed in a static setting [3–5,9,14–20,22]. Therefore, managers cannot directly
apply these capital allocation principles to have a time-varying allocation scheme for cover-
ing losses that can be used to forecast future allocations. Here, we provide to managers with
a dynamic capital allocation scheme, so that managers can forecast capital risk allocations.

Most previous studies dealing with risks that vary over time are in the field of asset
allocation strategies in the portfolio selection [32–34,41]. Although optimal asset allocation
and optimal capital risk allocation are strongly interconnected, their goals and, in con-
sequence, their optimal allocation strategies are also different. Optimal asset allocations
are focused on the trade-off between return and risk such that, given assets with equal
returns, more risky assets receive lower allocations [41]. Capital risk allocation principles
are focused on the assets’ contribution to the aggregate risk, so that riskier assets receive
higher allocations [5,13], meaning that they contribute more than others to total risk. Even
the concept of risk differs. The risk of assets in the context of portfolio selection is often
evaluated by the variance of returns [41]. In our setting, the risk of the assets is evaluated by
the covariance between the individual losses and the aggregate losses of a given portfolio.
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In the context of capital risk allocations, an interesting contribution incorporating
risk dynamics is provided by [23]. They proposed a time-dependent capital allocation
scheme based on multivariate compositional time series for modeling time-varying risk
positions. Our research differs on the term basis of the analysis, which is either monthly or
daily. They apply a Euler allocation rule with a quantile risk measure to compute capital
allocations with a monthly basis. We apply a covariance allocation principle which for
a time-dependent capital allocation scheme on a daily basis. With the same dataset, the
length of the compositional time series in [23] is 210 observations and, in our case, the
time series has 4212 observations. Having a higher frequency and, accordingly, a larger
sample size can be relevant for inference. The number of (unknown) parameters grows
with the number of risks much faster in [23] than in our setting, so the framework proposed
in [23] could require larger samples for efficient parameter estimation. In terms of risk
management, we can predict the daily variations in capital risk allocations and, therefore,
provide a tool to managers who care about daily monitoring of risks. We showed that
the time-dependent covariance principle properly reflects the daily dynamics of risks
with asymmetric impacts of dotcom and the subprime crises on the SP500, DAX and
CAC40 indices.

Another difference is that capital risk allocations in [23] must always be strictly pos-
itive, since the compositional modeling is based on log transformations. Therefore, [23]
cannot apply their methodology, for instance, in a context of expected negative losses
(i.e., profits) of the asset and null covariance with the aggregate loss of the portfolio. Our
methodology is not restricted to positive values, so we can deal with negative or null
capital risk allocations. Finally, in terms of interpretability, the time-varying relative capital
allocation scheme proposed in this study is determined by the time-varying covariance
matrix of assets’ losses. Coefficient estimates of the dynamic conditional correlation model
can be directly interpreted in terms of their effect on the conditional covariance matrix of
assets’ losses and, therefore, also on the relative capital risk allocation outcomes. The multi-
variate time-series modeling with constant covariance matrix in [23] is based on isometric
log transformations of losses, which makes interpretation of the estimated coefficients of
the vector autoregressive model in terms of their effect on the capital allocation outcomes
very difficult, particularly for high-dimensional problems [23,36].

This study is not exempt of limitations. The dependence structure of risks is de-
termined by the covariance matrix of losses. A future line of research is to investigate
alternatives to the DCC for modeling the conditional correlation of losses, such as the
generalized autoregressive conditional correlation model [48]. Another limitation is that
the methodology does not distinguish between long run correlations and short run cor-
relations. Long run correlations are related to the natural behavior of risks, as business
evolves with the economy, and short run correlations represent the risk behavior with
-negative/positive- shocks such as news arriving, as speculations, moral hazard problems
or temporal market distortions, among others.

A future line of research is to include these different correlations in the dynamic
capital allocation setting. Finally, managers are particularly interested in the contributions
of individual risks on the tail of the distribution of aggregate losses [1,14,49]. Based
on [49–51] incorporates the Tail Covariance Premium Adjusted (TCPA) as a component for
capital allocations for risks with heavy tails, but this approach remains in a static setup.
The analysis of time-varying tail dependence structures and their application in capital
allocations problems is a promising line for future work.

7. Conclusions

This study proposes a new method for dynamically allocating capital among business
lines. In this paper, we develop the covariance capital allocation principle in a dynamic set-
ting, in which the conditional variance and the conditional correlation of risks is modeled
by means of GARCH-type processes and a dynamic conditional correlation scheme, respec-
tively. The dynamic framework provided in the paper allows for the expected evolution of
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risks and their future demand of capital to be foreseen. We illustrate an example of all the
steps to compute time-dependent capital allocations based on the covariance allocation
principle for investment losses in a stock portfolio.

We show that our strategy provides a better understanding of the time-dependent
behavior of risks and their variations on the demand of capital to cover potential losses
over time. The static covariance allocation principle provides aggregate information about
the behavior of risks in a particular timespan, but it does not capture the dynamics of
the individual risks in this period of time. However, time-dependent capital allocations
properly reflect the dynamic nature of risks with asymmetric impacts on the underlying
individual risks, such as the impact of dotcom and the subprime crises on the SP500, DAX
and CAC40 indices and, consequently, the variations in capital allocations on these indices.
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