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Abstract: The present work presents a mathematical investigation of a Rabinowitsch suspension
fluid through elastic walls with heat transfer under the effect of electroosmotic forces (EOFs). The
governing equations contain empirical stress-strain equations of the Rabinowitsch fluid model and
equations of fluid motion along with heat transfer. It is of interest in this work to study the effects of
EOFs, which are rigid spherical particles that are suspended in the Rabinowitsch fluid, the Grashof
parameter, heat source, and elasticity on the shear stress of the Rabinowitsch fluid model and flow
quantities. The solutions are achieved by taking long wavelength approximation with the creeping
flow system. A comparison is set between the effect of pseudoplasticity and dilatation on the
behaviour of shear stress, axial velocity, and pressure rise. Physical behaviours have been graphically
discussed. It was found that the Rabinowitsch and electroosmotic parameters enhance the shear
stress while they reduce the pressure gradient. A biomedical application to the problem is presented.
The present analysis is particularly important in biomedicine and physiology.

Keywords: elasticity; electroosmotic forces; heat transfer; Rabinowitsch fluid; suspension

1. Introduction

The movement of blood liquids is an important study for the mathematical simulation
of medical applications. Rabinowitsch fluid is one of the fluids that simulate blood move-
ment because the Rabinowitsch model effectively relies on studying the result of lubricant
additives, for a wide range of shear rates, and studying their experimental data. Over
the past decades, scientists have made active efforts to increase the ability of solidifying
the features of non-Newtonian lubricants using long-chain quantities by adding a very
small addition of the polymer solution. A very important result from this is that this
result reduces the lubricant sensitivity. Additionally, a non-linear relationship appears
between the shear stress rate and shear pressure. Through those recent actions based on
the Rabinowitsch model, Akbar and Butt [1] studied the flow of the Rabinowitsch model
due to the cilia located on the wall. Moreover, Singh et al. [2] studied the movement
of Rabinowitsch fluid through peristaltic flow. In addition, Vaidya [3] investigated the
movement of Rabinowitsch fluid through the oblique wall of a channel, while Sadaf and
Nadeem [4] studied the Rabinowitsch model through a non-uniform conduit with peristal-
sis. Choudhari et al. [5] also studied the effect of slipping on the oscillating transmission of
a Rabinowitsch model in a non-uniform channel.

In recent years, microfluidic systems have been developed through the use of Electric-
Double-Layer (EDL). This increased interest is reflected in references [6–8]. Electrical
osmosis is defined as the movement of a liquid in relation to a fixed surface due to the
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presence of an externally applied electric field. One of the first studies that have studied the
application of these external forces is by Ross [9]. The idea is that electrical ripening comes
into contact with the aqueous electrolytic solution with the solids and then generates a
relatively electrical charge. In addition, the opposite ion charge is attracted to that charge
on the surface and the opposite process from the ions on the surface and shows the double
layer, and thus, the surface becomes electrically charged. As a result of this phenomenon,
a process of acceleration of the liquid by migrating ions occurs, and the resulting flow is
called electromagnetic flow.

The study of the movement of suspended particles inside the fluid is considered the
most important medical application. The movement of the fluid that contains particles is
similar to the movement of the blood plasma since the blood consists of solid materials,
that is, it is a liquid in which those substances swim. In that sense, there are a lot of
species studied such as sickle cell (Hb SS), plasma cell dyscrasias, normal blood, controlled
hypertension, uncontrolled hypertension, and polycythaemia. Each of these types is known
by a specific haematocrit, i.e., C = 0.248, C = 0.28, C = 0.426, C = 0.4325, C = 0.4331, and
C = 0.632 [10]. In addition, the study of the movement of suspended particles inside
fluids is very interesting because they resemble white blood cells, red blood cells, and/or
platelets that move inside the blood. Many experimental and analytical studies have
focused on studying suspended particles because of their great importance in improving
and understanding the blood flow and the distribution of proteins within it [11–13].

The geometrical shape of fluid flow has an important role in understanding var-
ious properties of different fluid flows such as blood flow and other important appli-
cations. Most studies that have discussed fluid movement have relied on solid ducts
and tubes [14–24]. Because biological flows depend on their flexible flow fields, and this
appears through their flexible nature, the flow and the movement of Newtonian and
non-Newtonian fluids through walls of a flexible nature carry many important medical
applications such as blood flow through the arteries, small blood vessels, heart systems,
and others, which, according to some studies, revealed that the velocity of the blood is
greatly affected by the elastic placement of the walls. Some of the work that has been
interested in discussing the flow rate through elastic nature can be found in the refs. [25–31].

Accordingly, this work attempts to fill the void of the movement of the particulate
suspension under the effects of electroosmotic forces using Rabinowitsch fluid. Analytical
solution is used to obtain the physical parameters of the problem subjected to appropriate
boundary conditions. The impact of relevant parameters is discussed graphically.

2. The Mathematical Model and the Rabinowitsch Fluid Equation

Consider a particulate suspension swimming in a Rabinowitsch fluid through elastic
peristaltic walls of a channel with amplitude a and half width b. In addition, consider that
the deformation on the wall is α as shown in Figure 1. Furthermore, the inlet pressure is
defined as pi and the outlet pressure is defined as po, as shown in Figure 1. The effect of
the electroosmotic forces on the Rabinowitsch fluid through the elastic peristaltic walls
is taken into account. The velocity of the particulate suspension and Rabinowitsch fluid

are denoted by
→
V
(
Up, Vp

)
,
→
V
(

U f , V f

)
. The mathematical geometry of the channel wall is

given by

H
(
X, t
)
= ±

(
d + a sin

2π

λ

(
X− c t

))
, (1)

Here, d is the radius of the artery channel, a is the amplitude of the wall, λ is the
amplitude of the peristaltic wave, and c is the blood velocity.

The isotropic rheological equation of a Rabinowitsch fluid takes the following form:

τXY + µoτXY
3 = µS(C)

∂U
∂Y

, (2)
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where the coefficient µo represents pseudo-plasticity of the fluid, which takes a fundamental
role in determining the nature of fluids; µS(C) is the viscosity of suspension; τXY is the
stress tensor; U is the velocity component; and C is the volume fraction. The model
represents a pseudoplastic state for µo > 0, a Newtonian state for µo = 0, and an
expanded fluid model for µS < 1.
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Figure 1. (a) Physical modelling of the problem. (b) Example for extracellular fluid that contains plasma. 
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Figure 1. (a) Physical modelling of the problem. (b) Example for extracellular fluid that contains plasma.

The momentum and continuity equations for the problem of both particle and fluid
phases are given in the following form [32].

Model of Fluid Phase

∂U f

∂X
+

∂V f

∂Y
= 0, (3)

ρ f CPH

(
∂U f
∂t + U f

∂U f

∂ X
+ V f

∂U f

∂Y

)
= −CPH

∂P
∂X

+ CPH

[
∂τXX
∂X

+
∂τXY

∂Y

]
+ ρeEx + ρ f γg (T − T0)− C S

(
U f −UP

)
,

(4)

ρ f CPH

(
∂V f
∂t + U f

∂V f

∂ X
+ V f

∂V f

∂Y

)
= −CPH

∂P
∂Y

+ CPH

[
∂τYX
∂X +

∂τYY
∂Y

]
− C S

(
V f −VP

)
,

(5)

(ρC) f

(
∂Tf

∂t
+ U f

∂Tf

∂X
+ V f

∂Tf

∂Y

)
= k

(
∂2T

∂X2 +
∂2T

∂Y2

)
+ HS, (6)

Model of Particle Phase

∂UP

∂X
+

∂VP

∂Y
= 0, (7)

ρP CPH

(
∂UP

∂t
+ UP

∂UP

∂ X
+ VP

∂UP

∂Y

)
= −CPH

∂P
∂X

+ C S
(

U f −UP

)
, (8)

ρ f CPH

(
∂VP
∂t

+ UP
∂VP

∂ X
+ VP

∂VP

∂Y

)
= −CPH

∂P
∂Y

+ C S
(

V f −VP

)
, (9)
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where CPH = 1−C, S is the drag coefficient and µS(C) is the viscosity of suspension, ρ f ,p is
the fluid and particle density, ρe is the electrical charge density, Ex is the axial electric field,
γ is the thermal expansion coefficient, g is the gravitational acceleration, k is the thermal
conductivity, and HS is the constant heat absorption or heat generation. The empirical
relation for S and µS(C) can be described as

µS = 1/(1−m C), m = 0.07 ∗ Exp
[
2.49 ∗ C− 1107

273 ∗ Exp[−1.69 ∗ C]
]
,

S = 9µ0
2∈2 γ(C), γ(C) = 4+3

√
8C−3C2+3C
(2−3C)2 .

(10)

Here, µ0 is the viscosity of fluid for suspending medium, and ∈ is the radius of a
particle.

Now, we use the convenient transformation to convert from fixed frame to wave frame
as follows:

x = X− ct, y = Y, u = U − c, p = P. (11)

Then, the mathematical formulation and Rabinowitsch fluid Equations (1)–(9) take
the following form:

Rabinowitsch fluid equation

τxy + µoτxy
3 = µs(C)

∂u f

∂y
, (12)

Model of fluid phase

ρ f CPH

(
u f

∂u f

∂ x
+ v f

∂u f

∂y

)
(13)

ρ f CPH

(
u f

∂V f

∂ x
+ v f

∂v f

∂y

)
= −CPH

∂p
∂y

+ CPH

[
∂τyx

∂x2 +
∂τyy

∂y2

]
− C S

(
v f − vP

)
, (14)

(ρC) f

(
∂Tf

∂t
+ u f

∂Tf

∂x
+ v f

∂Tf

∂y

)
= k

(
∂2T
∂x2 +

∂2T
∂y2

)
+ HS, (15)

Model of particle phase

ρP CPH

(
uP

∂uP
∂ x

+ vP
∂uP
∂y

)
= −CPH

∂p
∂x

+ C S
(

u f − uP

)
, (16)

ρ f CPH

(
uP

∂vP
∂ x

+ vP
∂vP
∂y

)
= −CPH

∂p
∂y

+ C S
(

v f − vP

)
, (17)

3. Electroosmotic Flow

The Poisson–Boltzmann equation:

∇2 ϕ =
ρe

ε
, (18)

where ρe is a charge density, ε is the electric permittivity, and ϕ is the electroosmotic
potential function.

The charge density ρe of the fluid in a unit volume is given by:

ρe = ε e
(
n+ − n−

)
= −2ε e n0 sinh

{
ε eϕ

kBTav

}
, (19)

n− = n0 e
ε eϕ

kBTav , n+ = n0 e
− ε eϕ
kBTav

, , (20)

where ε, n+, n−, e, kB, and Tav are the valence of ions, the number densities of positive
and negative ions, electric charge, Boltzmann’s constant, local absolute temperature of
the electrolytic solution, and bulk volume concentration of positive or negative ions,
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respectively. In addition, using the Debye–Huckel linearisation principle,
{

ε e ϕ′

kBTav
� 1

}
.

Equation (19) reduces to

ρe =
−ε

Γ2 ϕ, (21)

where Γ = (ε e)−1
√

ε kBTav
2 n0

is the Debye–Huckel parameter, which describes the properties
of the EDL thickness. The solution for the distribution of the electroosmotic potential can
easily be achieved using the Poisson–Boltzmann equation:

∂2 ϕ

∂x2 +
∂2 ϕ

∂y2 =
1

Γ2 ϕ, (22)

4. Non-Dimensional Physical Parameters

The non dimensionless quantities are introduced in the following expression

uP, f =
uP, f

c , y = y
a , vP, f =

vP, f
δc , p = a2

λ c µo
p, δ = a

λ , ϑ = ϕ
ζ , Re =

ρ f c a
µ0

,

Gr =
ρ f γg a2 T0

µo c , θ = T−T0
T0

, µ = µs(C)
µ0

, τ = a
cµ0

τ, UHS = − Ex ε ζ
µ0 c ,

K = µS (C)c2µ0
2

a2 , m = a
k2 , M = Sa2

µS (C)(1−C) , Q = Hsa2

µ0 To
, pr =

µoC f
k ,

h = H
d , φ = a

d

(23)

where K, m, Q, pr, UHS, Gr, and Re are, respectively, the Rabinowitsch fluid parameter,
electroosmotic parameter, heat source, Prandtl number, electroosmotic velocity, Grashof
number, and Reynolds number. The non-dimensional formulation of the mathematical
geometry for the channel wall is given by

h(x) = ±(1 + φ sin 2π x),

where φ is the amplitude ratio.
After using the non-dimensional physical parameters given by Equation (23) in the

governing Equations (12)–(17) and in Equation (22), we find:

Non-dimensional Rabinowitsch fluid equations

τxy + K τxy
3 = µ

∂u f

∂y
, (24)

Non-dimensional model of fluid phase

Re δ CPH

(
u f

∂u f
∂x + v f

∂u f
∂y

)
= −CPH

∂p
∂x + CPH

[
δ ∂τxx

∂x +
∂τxy
∂y

]
+ m2UHS cosh my + Gr (T − T0)− C CPH µ M

(
u f − uP

)
, (25)

Re δ CPH

(
u f

∂v f

∂x
+ v f

∂v f

∂y

)
= −CPH

∂p
∂y

+ CPH

[
∂τyx

∂x
+

∂τyy

∂y

]
− C CPH µ M

(
v f − vP

)
, (26)

Re prδ

(
u f

∂θ

∂x
+ v f

∂θ

∂y

)
=

(
∂2θ

∂x2 +
∂2θ

∂y2

)
+ Q, (27)

Non-dimensional model of particle phase

ρP
ρ f

CReδ

(
uP

∂uP
∂x

+ vP
∂uP
∂y

)
= −C

∂p
∂x

+ C CPH µ M
(

u f − uP

)
, (28)

ρP
ρ f

CReδ

(
uP

∂vP
∂x

+ vP
∂vP
∂y

)
= −C

∂p
∂y

+ C CPH µ M δ
(

v f − vP

)
, (29)
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with dimensionless boundary conditions

u = −1, θ = 0, ϑ = 1 at y = h(x),
u = −1, θ = 0, ϑ = 1 at y = −h(x)

τxy = 0 at y = 0.
(30)

5. Methodology

Taking a long wavelength approximation and a creeping flow system, i.e., δ� 1, the
solution of Equations (24)–(29) takes the following form

θ(y) =
1
2

Q(h− y)(h + y), (31)

τxy =
6 P y + Gr Q y

(
−3h2 + y2)− 6 m UHS

sinh (my)
cosh (mh)

6 CPH
, (32)

u(y) = c0
{

c1 + c2 y10 + c3 y2 + c4 y8 + c5 y6 + c6 Cosh(3my) + c7 y Sinh(2my) + c8 P1(y)
+Cosh(2my)(c9 + c10 P2(y)) + y Sinh(my)(c16 + c12 P1(y)P2(y) + c13 P3(y)) + c17

+Cosh(my)(c18 + c19 P4(y) + c20 y4 + c21 y2 + (c23 − c14 y2(P1(y))
2))}.

(33)

where P, Pj (j = 1→ 4) and the constants ci (i = 1→ 23) are given in the Appendix A.

6. Theoretical Determination of Pressure Gradient and Pressure Rise Application in
Blood Flows

In this section, the deformation in the walls that is defined by elasticity in the channel
walls is taken into account, which appears from the pressure shown in Figure 1. According
to Rubinow and Keller [28], the flow rate and pressure gradient are related by the following
expression:

Q = −σ(pi − po)
∂p
∂x

, (34)

The flow rate is defined as

Q =
∫ h

0
u(y)dy, (35)

Following the hypothesis of elastic walls, according to Rubinow and Keller [28], and
using Equations (33)–(35), it is found that the flow rate takes the following form as follows

Q = σ1(pi − po)

(
−∂p

∂x

)3
+ σ2(pi − po)

(
−∂p

∂x

)2
+ σ3(pi − po)

(
−∂p

∂x

)
+c24 (36)

such that c24 is given in the Appendix A.
Where

σ1(pi − po) =
α(x)5k
5A M3 , (37)

σ2(pi − po) =
1

8640µ m6 M3

(
13824

7 Gr α(x)7 K m6Q + 103680 α(x)K m4 UHS

+25920 α(x)K m4(2 + α(x)2m2) Uhs − 155520 K m3 UHS tanh (α(x)m)

−77760 α (x)2 K m5 UHS tanh(α(x)m)
)

,

(38)
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σ3(pi − po) =
1

8640µ m6 M3

(
−2880 α(x)3m6M2 − 5312

7 Gr
2 α(x)9Km6Q2

+4320 α(x)3Km8UHS
2sech2(α(x)m))+414720 Gr α(x) K Q UHS

−17280 Gr α(x)3K m4Q UHS + 17280 Gr α(x) K m2 (24− α(x)2m2) Q UHS

−17280 Gr α(x) Km2(−12− 3 α(x)2m2 + α(x)4m4) Q UHS
+6480 α(x) K m6 UHS

2sech(α(x)m)sinh(α(x)m)− 622080 Gr K m Q UHS tanh(α(x)m)

−103680 Gr α(x)2K m3 Q UHS tanh(α(x)m)+17280 Gr α(x)4 K m5 Q UHS tanh(α(x)m)

+17280 Gr α(x)2K m3 (−12 + α(x)2m2) Q UHS tanh(α(x)m)

−51840 Gr K m (8 + α(x)2m2) Q UHS tanh(α(x)m)
−3240 K m5 UHS

2 sech(α(x)m)sinh(α(x)m)

−6480 α(x)2 K m7UHS sech(α(x)m)sinh(α(x)m)

)
,

(39)

Here, α(x) = h(x) + α′, where h(x) and α′ are the radii of the channel for peristalsis
and elasticity, respectively. Additionally, the pressure rise is defined as

∆p =
∫ 1

0

(
dp
dx

)
dx. (40)

7. Graphical Results and Discussion

The goal of this section is to study the effect of the pertinent parameters on the resulted
physical expression. In doing so, the Mathematica program is used in order to investigate
the impact of Rabinowitsch parameter K, Prandlt number Pr, heat source Q, electroosmotic
parameter m, volume fraction C, Grashof number Gr, maximum electroosmotic velocity
UHS, and radius of the channel for elasticity α′ on the shear stress τxy, axial velocity U(y),

pressure gradient dp
dx , and pressure rise ∆p. A graphical comparison is also set to compare

between pseudoplastic and dilatant fluids.
Figures 2–9 are plotted to investigate the impact of UHS, C, Gr, m, K, and α′ on τxy

for sundry values of the parameters of interest. It is observed from Figures 2–7 that the
Rabinowitsch shear stress improves prominently with increasing all the parameters, even
with increasing the curviness of the conduit in both the lower and upper halves of the
channel. Figures 8 and 9 demonstrate a comparison between the impact of pseudoplasticity
and dilatation on the shear stress profile through x and y axes, respectively. It is notable
from the latter figures that for pseudoplastic fluid, τxy is enhanced along the conduit
through the x-axis, whereas for the case of dilatant fluids, a reverse effect is observed.
It is also seen that τxy behaves differently along the y-axis where it is seen that, for the
pseudoplastic fluids, τxy decays near the lower wall of the channel and improves with an
increase in the curviness of the channel. An exact opposite behaviour is seen for dilatant
fluids, as seen in Figure 9.

Figures 10–16 illustrate the impact of K, UHS, Gr, C, m, and α′ on U(y) for various
values of the pertinent parameters. It is noticed that K, UHS, and α′ play a distinguished
role in lessening the fluid velocity, as seen in Figures 10, 11 and 15. It is also depicted that
Gr, C, and m disturb the velocity profile significantly, as observed in Figures 12–14. It is
noticed that the latter parameters barely have an effect on U(y) near the walls of the channel,
whereas they enhance the flow in the centre part of the channel. It is generally noticed that
U(y) has a parabolic shape along the conduit for all the parameters under consideration.
Figure 16 is plotted to spot the difference in the behaviour of U(y) for pseudoplastic and
dilated fluids. It is demonstrated that for pseudoplastic fluids, U(y) is not disturbed at
all near the walls of the conduit, whereas it is noticed that for dilated fluids, the flow is
decelerated at the centre of the channel.
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Figure 2. Display of shear stress profile for different values of UHS.

Mathematics 2021, 9, 2008 8 of 25 
 

 

 
Figure 2. Display of shear stress profile for different values of 𝑈ுௌ. 

 
Figure 3. Display of shear stress profile for different values of C. 

C = 0.1

C = 0.2

C = 0.3

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

⟵ x ⟵

↑ τxy

Figure 3. Display of shear stress profile for different values of C.



Mathematics 2021, 9, 2008 9 of 25Mathematics 2021, 9, 2008 9 of 25 
 

 

 
Figure 4. Display of shear stress profile for different values of Gr. 
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Figure 4. Display of shear stress profile for different values of Gr.
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Figure 6. Display of shear stress profile for different values of K. 
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Figure 6. Display of shear stress profile for different values of K.
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Figure 7. Display of shear stress profile for different values of α′.
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Figure 8. Display of shear stress profile via x for pseudoplastic and dilatant fluids. 
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Figure 8. Display of shear stress profile via x for pseudoplastic and dilatant fluids.
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Figure 9. Display of shear stress profile via y for pseudoplastic and dilatant fluids.
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Figure 10. Display of axial velocity for different values of K.
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Figure 12. Display of axial velocity for different values of Gr. 
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Figure 12. Display of axial velocity for different values of Gr.
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Figure 13. Display of axial velocity for different values of C.
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Figure 14. Display of axial velocity for different values of m. 
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m = 1

m = 1.5

m = 2

- 1.0 - 0.5 0.0 0.5 1.0
- 1.0

- 0.5

0.0

0.5

y

u(y)

α' = 0.3

α' = 0.4

α' = 0.5

α' = 0.6

- 1.0 - 0.5 0.0 0.5 1.0
- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

0.0

0.2

0.4

y

u(y)

Figure 14. Display of axial velocity for different values of m.
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Figure 15. Display of axial velocity for different values of α′.
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Figure 16. Display of axial velocity for pseudoplastic and dilatant fluids.
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conduit under the effect of K, C, 𝑈ுௌ, Gr, m, and 𝛼ᇱ. It is seen that K, C, m, and 𝛼ᇱ serve 
to reduce ௗ௣ௗ௫ for all values of the pertinent parameters, as noticed in Figures 17, 18, 21 and 
22. It is also noticed from Figures 19 and 20 that ௗ௣ௗ௫ grows for greater values of 𝑈ுௌ and 
Gr. It is also observed that for x ∈ [0, 2] and [3.9, 6], the pressure gradient is small and that
the large pressure gradient occurs for x ∈ [2.1, 4]. 

Figure 17. Display of pressure gradient for different values of K.
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Figure 16. Display of axial velocity for pseudoplastic and dilatant fluids.

Figures 17–22 are prepared in order to see the behaviour of dp
dx along the axis of the

conduit under the effect of K, C, UHS, Gr, m, and α′. It is seen that K, C, m, and α′ serve to
reduce dp

dx for all values of the pertinent parameters, as noticed in Figures 17, 18, 21 and 22.

It is also noticed from Figures 19 and 20 that dp
dx grows for greater values of UHS and Gr. It

is also observed that for x ∈ [0, 2] and [3.9, 6], the pressure gradient is small and that the
large pressure gradient occurs for x ∈ [2.1, 4].

Figures 23–28 are prepared in order to spot the variation of ∆p that is portrayed against
the dimensionless time-averaged flux across one wavelength, Q, for several values of the
parameters under consideration. The contributions of K, Gr, and m for ∆p are displayed in
Figures 23, 25 and 26, where it is noticed that ∆p decays near the lower wall of the channel
and grows afterwards with an increase in the channel curviness. It is also shown from
Figures 24 and 27 that ∆p attains smaller values as the channel curviness increases away
from the wall of the conduit. Finally, Figure 28 displays the behaviour of ∆p in case of
dilatation and pseudoplasticity of fluids. It is seen that ∆p is generally higher for dilated
fluids than that of pseudoplastic ones. It is also observed that ∆p decreases for dilated
fluids all the way along, whereas it decreases for pseudoplastic fluids only until a specific
value (Q = 1) away from the wall from which the behaviour is reversed.
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Figure 17. Display of pressure gradient for different values of K.
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Figure 18. Display of pressure gradient for different values of C.
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Figure 19. Display of pressure gradient for different values of UHS.
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Figure 20. Display of pressure gradient for different values of Gr. 

 
Figure 21. Display of pressure gradient for different values of m. 
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Figure 20. Display of pressure gradient for different values of Gr.
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Figure 21. Display of pressure gradient for different values of m.
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Figure 22. Display of pressure gradient for different values of α′.
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Figure 23. Display of pressure rise vs. volume flow rate for different values of K. 
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Figure 23. Display of pressure rise vs. volume flow rate for different values of K.
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Figure 24. Display of pressure rise vs. volume flow rate for different values of C.
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Figure 25. Display of pressure rise vs. volume flow rate for different values of Gr. 

 
Figure 26. Display of pressure rise vs. volume flow rate for different values of m. 
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Figure 25. Display of pressure rise vs. volume flow rate for different values of Gr.
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Figure 26. Display of pressure rise vs. volume flow rate for different values of m.
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Figure 27. Display of pressure rise vs. volume flow rate for different values of α′.
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Figure 28. Display of pressure rise vs. volume flow rate for pseudoplastic and dilatant fluids.

8. Biomedical Application of the Problem

Shear stress of fluid circulation is an important diagnostic aspect for evaluating the
properties of blood supply through the arteries. The evolution of shear stress in the
consolidated system, combined with the dynamic rheology of the blood, describes the
reduction of the circular region of the system over time. Wall shear stress plays a significant
part in reshaping the arterial wall, which can contribute to arterial thickening. Table 1
illustrates the non-dimensional shear stresses of Rabinowitsch fluid, τ, through an artery
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for various values of the haematocrit, C, for diseased blood. It is noticed that as the C
increases, τ increases.

Table 1. Rabinowitsch shear stress through an artery for various values C.

x

Shear Stress of Rabinowitsch Fluid τ

C = 0.248 C = 0.28 C = 0.426 C = 0.4325 C = 0.4331 C = 0.632

Hb SS
(Sickle Cell)

Plasma Cell
Dyscrasias Normal Blood Hypertension

(Controlled)
Hypertension
(Uncontrolled) Polycythemia

0. 0.508917 0.538364 0.707973 0.717319 0.718192 1.15146

0.2 0.505563 0.534945 0.704064 0.713379 0.714249 1.14586

0.4 0.495578 0.524771 0.69247 0.701695 0.702557 1.12931

0.6 0.479179 0.508091 0.673581 0.682663 0.683511 1.10248

0.8 0.456697 0.485281 0.64801 0.656909 0.657739 1.0665

1. 0.428523 0.456801 0.616547 0.625236 0.626047 1.02282

1.2 0.395056 0.423142 0.580099 0.588575 0.589366 0.973144

1.4 0.35665 0.384766 0.539639 0.54792 0.548692 0.919356

1.6 0.313594 0.34209 0.496165 0.504294 0.505052 0.86342

1.8 0.266209 0.295542 0.450704 0.458753 0.459502 0.807327

2. 0.215192 0.245805 0.404386 0.41245 0.4132 0.753059

2.2 0.162415 0.194396 0.358613 0.3668 0.367561 0.702604

2.4 0.111854 0.144497 0.315318 0.323729 0.324509 0.657972

2.6 0.0690173 0.101038 0.277209 0.285898 0.286704 0.621209

2.8 0.038254 0.0688821 0.24769 0.256637 0.257466 0.594302

3. 0.0213037 0.0508044 0.23019 0.2393 0.240144 0.578956

3.2 0.0183903 0.0476728 0.227071 0.236211 0.237058 0.576266

3.4 0.029497 0.0595737 0.238779 0.247809 0.248646 0.586434

3.6 0.0546015 0.0860756 0.26368 0.272484 0.2733 0.608713

3.8 0.0927918 0.125329 0.298654 0.307178 0.307969 0.641609

4. 0.140811 0.173205 0.340168 0.348438 0.349206 0.683216

4.2 0.19328 0.22449 0.385186 0.393288 0.394041 0.731496

4.4 0.245362 0.275183 0.431472 0.439514 0.440263 0.78442

4.6 0.294386 0.323171 0.477437 0.485523 0.486276 0.839995

4.8 0.339291 0.367516 0.521865 0.530076 0.530841 0.896238

5. 0.379664 0.407729 0.563701 0.572092 0.572875 0.95116

9. Deductions

In this article, the impact of Rabinowitsch suspension fluid through elastic walls with
heat transfer under the effect of the electroosmotic forces is investigated. The solutions of
the fluid model are achieved by taking a long wavelength approximation. A comparison is
set between the effect of pseudoplasticity and dilatation on the behaviour of shear stress,
axial velocity, and pressure rise. The impact of all the pertinent parameters are discussed
graphically. The main observations are as follows:

i. Unlike the effect of the radius of the channel for elasticity on the shear stress, it
tends to reduce the axial velocity, pressure gradient, and pressure rise.

ii. The volume fraction boosts the shear stress and the axial velocity, whereas the effect
is totally reversed with the pressure gradient and pressure rise.
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iii. The Grashof number accelerates the flow and increases shear stresses along with
the pressure gradient.

iv. The maximum axial velocity takes place at the centre of the conduit.
v. The maximum electroosmotic velocity boosts the shear stress and pressure gradient

but reduces the axial velocity.
vi. The influence of the Rabinowitsch and electroosmotic parameters is to enhance the

shear stress, whereas their effect is totally reversed for the pressure gradient.
vii. The current model reduces to the case of dilatant fluid for K < 0, pseudoplastic fluid

for K > 0.

Author Contributions: Conceptualization, S.I.A.; methodology, A.Z.Z.; software, A.Z.Z.; validation,
S.I.A.; formal analysis, A.Z.Z.; investigation, S.I.A.; resources, A.Z.Z.; data curation, S.I.A. and
A.Z.Z.; writing—original draft preparation, S.I.A. and A.Z.Z.; writing—review and editing, S.I.A.;
visualization, A.Z.Z.; supervision, S.I.A.; project administration, S.I.A. All authors have read and
agreed to the published version of the manuscript.

Funding: Not applicable.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Figure 1b is used by courtesy of Encyclopedia Britannica.

Conflicts of Interest: Authors declare no conflict of interest.

Appendix A

The constants given in Equations (32), (33) and (36) are defined as:

P = dp
dx .

P1(y) = 6 P + QGr(−3h2 + y2).
P2(y) = 2P + QGr(−h2 + y2).
P3(y) = 12P + QGr(−6h2 + 5y2).
P4(y) = −4P + QGr(2h2 − 5y2).

c0 = 1
8640 µ m6C3

PH
.

c1 = m6(−8640 µ C3
PH

+h2(540Km2UHs
2Sech2(hm)(12P− 5h2QGr)

+360C2
PH(−12P + 5h2QGr)

+h2K(−2160(P)3 + 2520h2QGr(P)2

−990h4Q2G2
r P + 131h6Q3G3

r ))
+90y4(4QC2

PHGr
+3K(−2m2QUhs2Sech2(hm)Gr

+(2P− h2QGr)
3
))).

c2 = 4 Km6 Q3 G3
r .

c3 = 1080 m6 (−3Km2UHs
2Sech2(h(x)m) + 2C2

PH)(2P− h2QGr).
c4 = −45 Km6 Q2G2

r (−2P + h2QGr).
c5 = 180 K m6 Q Gr(−2P + h2QGr)

2.
c6 = −720 K m8 UHS

3 Sech3(hm).
c7 = 1620 K m5 UHS

2 Q Gr Sech2(hm).
c8 = 180 m2 UHS Sech(hm).
c9 = c11Q Gr

c10 = 2m2c11.
c11 = −810 K m4 UHS

2 Sech2(hm).
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c12 = c15 m4.
c13 = 4m2Q Gr c15.
c14 = 90 UHS m6K Sech(hm).
c15 = 4320 K m UHS Sech(hm).
c16 = 120 Q2 G2

r .
c17 = −720 UHS (9Km8UHS

2Sech2(hm)+

4(−9Km4(2 + h2m2)(P)2 − 3m6C2
PH+

6Km2(−12− 3h2m2 + h4m4)QGrP− K(180+
54h2m2 − 6h4m4 + h6m6)Q2G2

r ))
Km(8m7UHS

2Cosh(3hm)Sech2(hm)+)
9m3UHS Cosh(2hm)Sech(hm)(4m2P + QGr)+
6h(m4UHS Sech(hm) Sinh(2hm)(−12 m2P+
(−3 + 4h2m2)QGr) + 32sinh(hm)(−3m4P2+
m2(−12 + h2m2)QGrP + (−30 + h2m2)Q2G2

r ))).
c18 = 90 UHS Sech(hm)(9Km8UHS

2Sech2(hm)− 720KQ2G2
r ) + c22.

c19 = 6480 Km2QGr UHS Sech(hm).
c20 = −2700 Q2 G2

r m4 K UHS Sech(hm).
c21 = 1080 Q Gr(−2P + h2QGr) UHS Sech(hm)6Km4.
c22 = 1620 K m4 UHS (−2P + h2QGr)

2 Sech(hm).
c23 = −1080 C2

PH m6 UHS Sech(hm).
c24 = 1

8640µm6 M3

{
−8640 µ h(x)m6M3 + 1152 Gr h(x)5m6M2Q

+ 7552
77 Gr

3h(x)11K m6 Q3 − 1728c12Gr h(x)5K m8 Q UHS
2+

8640 h(x) m6M2UHS + 1555200 Gr
2h(x) K Q2UHS−

34560Gr
2h(x)3Km2Q2UHS − 34560Gr

2h(x) K(−45 + h2m2) Q2UHS+

2880 Gr
2h(x) K(180 + 54h(x)2m2 − 6h(x)4m4 + h(x)6m6) Q2UHS−

6480h(x) K m8UHS
3 sech2(h(x) m)+

3240Grh(x)Km4QUHS
2cosh(2h(x)m)sech2(h(x)m)−

1080Grh(x)3Km6QUHS
2cosh(2h(x)m)sech2(hm)+

720 h(x)Km8UHS
3cosh(3h(x)m)sech3(h(x)m)−

8640 m5M2UHStanh(h(x)m)− 2073600 Gr
2KQ2Uhstanh(h(x)m)

m −
466560 Gr

2h(x)2KmQ2UHStanh(h(x)m)+

Gr
2h(x)4Km3Q2UHStanh(h(x)m)(34560 − 2880Gr

2h(x)2m2)+

17280 Gr
2h(x)2Km(−30 + h(x)2m2) Q2UHStanh(h(x)m)−

17280 Gr
2K(90+18h(x)2m2−h(x)4m4)Q2UHStanh(h(x)m)

m +
6480 Km7UHS

3tanh(h(x)m) sech2(h(x)m)−
1620 GrKm3QUHS

2tanh(h(x)m)− 1620 Grh(x)2 Km5QUHS
2tanh(h(x)m)+

2160 Grh(x)4Km7QUHS
2tanh(h(x)m)−

240 Km7UHS
3sinh(3h(x)m)sech3(h(x)m)

}
.
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