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Abstract: This paper presents an efficient method for designing optimal controllers. First, we
established a performance index according to the system characteristics. In order to ensure that this
performance index is applicable even when the state/output of the system is not within the allowable
range, we added a penalty function. When we use a certain controller, if the state/output of the
system remains within the allowable range within the preset time interval, the penalty function value
is zero. Conversely, if the system state/output is not within the allowable range before the preset
termination time, the experiment/simulation is terminated immediately, and the penalty function
value is proportional to the time difference between the preset termination time and the time at which
the experiment was terminated. Then, we used the Nelder–Mead simplex method to search for the
optimal controller parameters. The proposed method has the following advantages: (1) the dynamic
equation of the system need not be known; (2) the method can be used regardless of the stability of
the open-loop system; (3) this method can be used in nonlinear systems; (4) this method can be used
in systems with measurement noise; and (5) the method can improve design efficiency.

Keywords: optimal control; penalty function; performance index; N–M simplex method; inverted
pendulum

1. Introduction

In the real world, all dynamic systems are nonlinear; linear systems exist only in theory.
Many methods of analysis and control have been proposed for nonlinear systems [1,2].
Among these, Lyapunov’s method can not only be used to analyze the stability of nonlinear
systems; it is also often used to design feedback controllers. At present, many nonlinear
control techniques based on Lyapunov theory have been proposed and applied to actual
physical systems, such as Lyapunov redesign, backstepping, adaptive control, sliding mode
control, etc. The recent developments and applications of the above methods are as follows.

Tavasoli and Enjilela utilized Lyapunov redesign to stabilize the vibration of a boundary-
controlled flexible rectangular plate in the presence of exogenous disturbances [3]. Xu et al.,
applied output-feedback Lyapunov redesign to control a magnetic suspension system [4].
A backstepping controller was applied to control a quadrotor unmanned aerial vehicle [5],
microgyroscope [6], and multiphase motor drives [7]. Adaptive control is a control method
that can adapt to parameter changes or initially uncertain controlled systems. Recently, Liu
et al., developed a novel adaptive fault-tolerant control strategy to suppress the vibrations
of a flexible panel [8]. Liang et al., proposed neural-network-based event-triggered adaptive
control for nonaffine nonlinear multiagent systems with dynamic uncertainties [9]. Wang
and Na presented parameter estimation and adaptive control for servo mechanisms with
friction compensation [10]. Since the publication of the survey paper on sliding mode
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control in IEEE Transactions of Automatic Control in 1977 [11], sliding mode control
has been extensively studied and used in practical applications due to its simplicity and
robustness with respect to external disturbances and modeling uncertainties [12–14]. In
addition, gain scheduling is used to design corresponding linear controllers for nonlinear
systems at different operating points or regions [15,16]. Feedback linearization is based on
the theory of differential geometry to find an appropriate conversion between the control
input and state variables and to convert the nonlinear system into an equivalent linear
system. This method has been used for induction motors [17], boost converters [18], an
unmanned bicycle robot [19], etc.

However, these methods usually require information on the approximate/nominal
dynamic equation of the system and the upper bound of uncertainty or disturbance.
Moreover, real controllers are always limited in magnitude. Therefore, in the actual design
of a controller, we usually adopt a trial-and-error method. However, during adjustment of
the parameters, the state or output of the system may not be within the allowable range.
When this occurs, the experiment must be immediately terminated and relevant safety
or protective measures must be initiated to prevent injury to the operator or damage to
equipment. Therefore, designing a controller with good performance for real applications
is difficult and time consuming.

To overcome the aforementioned difficulties and complexity associated with designing
actual controllers, we propose an efficient and optimized controller design method for
nonlinear unstable systems. First, we establish a performance index (objective function)
according to the characteristics of the system to be controlled. This performance index may
include a time function and any measurable system state or output signal; the dynamic
equation of the system need not be known in advance. Moreover, the performance index
itself or the dynamic equation of the system can also contain non-differentiable terms. Most
importantly, to ensure that the performance index is applicable even when the state or
output of the system is not within the allowable range, we add a special penalty function.
The penalty function is used to solve constrained optimization problems. It is used to
convert constrained problems into unconstrained problems by introducing an artificial
penalty for violating the constraint.

The implication of the penalty function proposed in this paper is as follows. We assume
that for the same system, the time interval between the beginning and termination of each
experiment or simulation is fixed. When we use a certain set of controller parameters to
control the system, if the state or output of the system is within the allowable range within
the preset termination time, the penalty function value is zero. Conversely, if the system
state or output is not within the allowable range before the preset termination time, the
experiment or simulation is terminated immediately, and the penalty function value is
proportional to the time difference between the preset termination time and the time at
which the experiment was terminated.

To keep the performance index as low as possible, we used the Nelder–Mead (N–M)
simplex method (also known as the downhill simplex method) to search for controller
parameters. The original concept of the N–M simplex method was proposed by Spendley,
Hext, and Himsworth [20], and it was further improved by Nelder and Mead [21]. The con-
vergence properties of the Nelder-Mead simplex method are discussed in references [22–25].
Because the N–M simplex method is easy to implement, it has been widely used to search
for the minimum or maximum value of the objective function in a multidimensional param-
eter space. In particular, the N–M simplex method does not require the derivative of the
objective function; therefore, the real system is applicable even if it has nondifferentiable
problems or the objective function value contains noise. The N–M simplex method contin-
ues to be applied in different fields, such as parameter estimation [26,27], optimization of
machining parameters [28], power plant optimization [29], optimization of the production
parameters for bread rolls [30], etc.

To verify the feasibility of the proposed method, we adopted an inverted pendulum
system with measurement noise as an example. Then, we employed the N–M simplex
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method to search for the controller parameters iteratively. The simulation results revealed
that even if the initial controller parameters cannot stabilize the system, after the algorithm
reaches the iterative termination condition we set in advance, the system is stable and
exhibits good transient response performance.

2. Design of Optimal Controllers for Unknown Parameter Systems

Optimal control is a branch of optimization problems that deals with finding a con-
troller for a dynamical system over a period of time such that an objective function is
optimized [31,32]. An objective function is usually called a performance index in the field
of control. The purpose of optimization is to obtain a parameter vector such that the
objective function is at a minimum. However, in many cases, the choice of parameters is
not arbitrary but subject to certain restrictive conditions. We term this the constrained opti-
mization problem. A general constrained minimization problem may be written as follows:

min J(p) (1)

subject to gi(p) ≤ 0, i = 1, 2, . . . , m1

hj(p) = 0, j = 1, 2, . . . , m2

For a constrained optimization problem, we usually convert the constraints into a
suitable penalty function and add this function to the original objective function. Thus,
we transform a constrained optimization problem into an unconstrained problem; more-
over, the solution of the unconstrained problem converges to the solution of the original
constrained problem.

In the field of optimization control, the commonly used performance indices are as
follows [31–33]:

1. Integral squared error (ISE):

J =
∫ Tf

0
e2(t) dt (2)

The smaller the value of this index, the closer the error of the control system in the
time interval [0, Tf ] is to zero.

2. Integral absolute error (IAE):

J =
∫ Tf

0
|e(t)| dt (3)

The meaning of this index is similar to that of the ISE.
3. Integral time-weighted absolute error (ITAE):

J =
∫ Tf

0
t|e(t)| dt (4)

The smaller the value of this index, the closer the error of the control system in the
time interval [0, Tf ] to zero and the faster the convergence.

4. Integral time-squared error (ITSE):

J =
∫ Tf

0
te2(t) dt (5)

The meaning of this index is similar to that of the ITAE.
5. Quadratic performance index:

J = xT(Tf )F(Tf )x(Tf ) +
∫ Tf

0

(
xTQx+uTRu

)
dt (6)

where Tf , e, x = [ x1 x2 · · · xn ]
T , and u = [ u1 u2 · · · umu ]

T denote the
terminal time, output error, system state, and control input, respectively. Additionally,
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F and Q are positive semidefinite matrices, and R is a positive definite matrix. When
the control objective is to keep the state small, the control input not too large, and the
final state as close to zero as possible, we can use this performance index.

The method proposed in this study does not require information on the dynamic
equation of the system in advance, and it can use any of the above performance indices
or other suitable performance indices. To ensure that the selected performance index is
applicable even when the state or output of the system is not within the allowable range,
we add a penalty function to the performance index. Before formally defining the penalty
function, we first assume that, for the same system, the start time of each experiment (or
simulation) is zero, and the terminal time is fixed and represented by Tf . If the state or
output of the system is within the allowable variation range until the terminal time is
reached, the penalty function weight Wr is equal to zero. Conversely, if the state or output
leaves the allowable variation range before reaching the terminal time, the experiment (or
simulation) is terminated immediately; we denote this instant as Tr, and we then let the
penalty function weight Wr be a sufficiently large positive constant. Then, we define the
penalty function as follows:

P = Wr

(
Tf − Tr

)
(7)

To design controller parameters such that the performance index reaches the minimum
value, we use the N–M simplex method to search for the controller parameters.

The N–M simplex method proposed by Nelder and Mead [21] is used for solving
N-dimensional unconstrained optimization problems of the following form:

min
p∈RN

J(p) (8)

where J(p) is defined as an objective function, which is usually called the performance
index in the control field.

After the form of the performance index is determined, the N–M simplex method
generates a sequence of simplices, where each simplex is defined by N + 1 distinct vertices,
namely, p0, . . . , pN , for which the corresponding function values are J0, . . . , JN . The points

p0, . . . , pN are assumed to be sorted such that J0 ≤ · · · ≤ JN−1 < JN , and
¯
p represents

the centroid of points p0, . . . , pN−1. In each iteration, simplex transformations in the N–M
simplex method are controlled by the parameters α, β, and γ. These parameters should
satisfy the following conditions:

0 < β < 1, 0 < α < γ (9)

These parameters have typical values of α = 1, β = 0.5, and γ = 2. The values of
α, γ, β, and −β yield the reflection point pr, expansion point pe, outer contraction point
pc, and inner contraction point pcc, respectively. The objection functions at these four
points are denoted as Jr, Je, Jc, and Jcc, respectively. If none of the four points represents an
improvement in the current worst point pN , the algorithm shrinks the points p1, . . . , pN
toward the lowest p0, thereby producing a new simplex. During the shrinking process, each
value of pi is replaced by p0 + 0.5(pi − p0) for i = 1, . . . , N. A new iteration is automatically
triggered after the shrinking process is complete. The iterative process continues until the
specified termination criteria are satisfied (e.g., the iterations reach the allowed maximum
number or the function value J0 is lower than the default value). We list the various vertices
that may be tried during the iteration of the N–M simplex method in Table 1. The pseudo
code of the N–M simplex method is shown in Algorithm 1.



Mathematics 2021, 9, 2013 5 of 14

Table 1. Various vertices that may be tried during the iteration of the N–M simplex method.

α = 1, β = 0.5, γ = 2

Reflection pr =
¯
p + α

(
¯
p− pN

)
Jr = J(pr)

Expansion pe =
¯
p + γ

(
¯
p− pN

)
Je = J(pe)

Outer contraction pc =
¯
p + β

(
¯
p− pN

)
Jc = J(pc)

Inner contraction pcc =
¯
p− β

(
¯
p− pN

)
Jcc = J(pcc)

Shrink pi = 0.5(p0 + pi), i = 1, . . . , N Ji = J(pi), i = 1, . . . , N

Algorithm 1 The pseudo code of the N–M simplex method.

Define α = 1, β = 0.5, γ = 2
Choose initial p0, . . . , pN and calculate J0, . . . , JN
while termination conditions are not satisfied
Sort p0, . . . , pN such that J0 ≤ · · · ≤ JN
¯
p = 1

N

N−1
∑

i=0
pi

pr =
¯
p + α

(
¯
p− pN

)
(Reflection)

Calculate Jr
if Jr < J0

pe =
¯
p + γ

(
¯
p− pN

)
(Expansion)

Calculate Je
if Je < Jr
pN = pe
JN = Je
else
pN = pr
JN = Jr
end
else if Jr < Jn

pc =
¯
p + β

(
¯
p− pN

)
(Outer contraction)

Calculate Jc
if Jc < Jr
pN = pc
JN = Jc
else
pN = pr
JN = Jr
end
else

pcc =
¯
p− β

(
¯
p− pN

)
(Inner contraction)

Calculate Jcc
if Jcc < JN
pN = pcc
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Algorithm 1 Cont.

JN = Jcc
else
for i = 1, . . . , N
pi = 0.5(p0 + pi) (Shrink)
Calculate Ji
end
end
end
end
Print out p0 and J0

The N–M simplex method is easy to implement; therefore, it has been widely used to
solve unconstrained optimal problems in an N-dimensional parameter space. In particular,
the N–M simplex method does not require the derivative of the objective function, and the
real system is thus applicable even if the real system has nondifferentiable problems or the
objective function value contains noise. For the concept and detailed algorithm of the N–M
simplex method, please refer to the literature [20–26].

Because the N–M simplex method has the abovementioned characteristics, it is suit-
able for use in optimal controller design. If all the signals in the performance index are
available, we need not know the dynamic equation of the system, and we can calculate
the performance index values corresponding to each set of controller parameters. We then
use the N–M simplex method to gradually find the optimal controller parameters that will
allow the performance index to reach the minimum.

3. Numerical Simulation

Let us consider an inverted pendulum system (Figure 1).

Figure 1. Schematic of an inverted pendulum system.

We assume that the length of the linear cart rail is 2 m and the middle point is x = 0;
the pendulum rod is rigid and massless. All frictional forces in the system can be neglected.
Under such an assumption, the entire pendulum mass is concentrated at the center of
the pendulum ball. The symbol definitions and simulation conditions for this system are
as follows:

M = 0.5 kg (cart mass);
m = 0.1 kg (ball mass);
L = 0.3 m (distance from the pendulum pivot to the center of the ball);
g = 9.8 m/s2 (gravity constant);
θ (rad): rotational displacement of the pendulum;
x (m): horizontal displacement of the cart; and
u (N): control force,
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where u is subjected to the following saturation condition:

u =


30,
u,
−30,

if u > umax = 30

if umin ≤ u ≤ umax

if u < umin = −30

(10)

The dynamic equation of the inverted pendulum is expressed as follows [34,35]:

..
θ =

u cos θ − (M + m)g sin θ + mL(cos θ sin θ)
.
θ

2
2

mL cos2 θ − (M + m)L
(11)

..
x =

u + mL sin θ
.
θ

2
2 −mg(cos θ sin θ)

M + m−m cos2 θ
(12)

The state variables of the system are defined as follows:

x1 = θ, x2 =
.
θ , x3 = x, x4 =

.
x (13)

The dynamic equation of the inverted pendulum system can be rewritten as follows:

.
x1 = x2 (14)

.
x2 =

u cos x1 − (M + m)g sin x1 + mL(cos x1 sin x1)x2
2

mL cos2 x1 − (M + m)L
(15)

.
x3 = x4 (16)

.
x4 =

u + mL(sin x1)x2
2 −mg(cos x1 sin x1)

M + m−m cos2 x1
(17)

The state vector is defined as follows:

x =


x1
x2
x3
x4

 =


θ
.
θ
x
.
x

 (18)

In this example, we assume that the states x1 = θ and x3 = x can be measured but are
disturbed by vθ and vx, respectively. Both vθ and vx are Gaussian noises with a mean value
of zero and a standard deviation of 0.0001. The states x2 =

.
θ and x4 =

.
x are estimated using

the Euler method, where
.
θ ∼= (θ(k)− θ(k− 1))/∆t and

.
x ∼= (x(k)− x(k− 1))/∆t. The

controller used in the inverted pendulum system is the following state feedback controller:

u=− kx ≡ −
[

k1 k2 k3 k4
]

x1
x2
x3
x4

 = −k1x1 − k2x2 − k3x3 − k4x4 (19)

The purpose of control is to fix the cart at the middle point of the rail and to maintain
the angle between the inverted pendulum and the plumb line at 0. In addition, the initial
state is x =

[
0.7 0 0 0

]T ; the sampling time ∆t is 0.002 s; the simulation termination
time Tf is 2 s; the allowable variation range of the pendulum is −θmax = θmin ≤ θ ≤ θmax,
where θmax = 0.7; the allowable range of the cart is −xmax = xmin ≤ x ≤ xmax, where
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xmax = 0.8; and Tr denotes the time at which θ or x moves out of the allowable range.
Additionally, the discrete performance index is defined as follows:

J =
N f

∑
k=1

k
(
| θ(k)|
θmax

+
| x(k)|
xmax

)
+ Wr

(
Tf − Tr

)
(20)

where N f ≡ Tf /∆t =1000 and Nr ≡ Tr/∆t. Wr is the weighting of the penalty function.
When the output signal remains within the allowable range within the termination time
Tf , Wr is zero. Conversely, if the output signal leaves the allowable range before the time
reaches Tf , then Wr is a positive constant that is much higher than the value of the first
term on the right-hand side of the equation in function (20). A useful reference value is
Wr ∼= N2

f (θmax/θmax+xmax/xmax) = 2N2
f . The actual value used in this example is 106.

According to the above description, we define Wr in this example as follows:

Wr =

{
106,

0,
if θ or x exceeds the allowable range at the Nrth sampling

otherwise
(21)

When the output θ or x is not within the allowable range, along with adding the penalty
function to the performance index, we also immediately terminate (stop) the control.

Because the state feedback controller used in this example has four parameters, we
first arbitrarily design five sets of controller parameters as the five vertices of the initial
simplex. The five sets of parameters and the corresponding performance indices are listed
in Table 2. The time responses of the system are shown in Figure 2. Among these, the
parameters p0 and p1 can keep the system state within the allowable safe range before the
time reaches Tf ; therefore, both the penalty function values are 0 and the corresponding
index values are small. When using p2, p3, and p4, all corresponding states exceed the
allowable range before the time reaches Tf . Therefore, the penalty function achieves
the expected effect that the corresponding index values are much larger than the index
values corresponding to both p0 and p1. From this result, it can also be seen that the
earlier the simulation/experiment is interrupted, the larger the corresponding index value
(representing a worse corresponding parameter).

Table 2. Initial controller parameters for the inverted pendulum system.

i pi =
[

k1 k2 k3 k4
]

Ji = J(pi)

0 p0 =
[
−200 −10 −80 −10

]
J0 = 1.941× 105

1 p1 =
[
−150 −100 −150 −100

]
J1 = 4.293× 105

2 p2 =
[
−100 −20 −150 −20

]
J2 = 5.651× 108

3 p3 =
[
−80 −150 −100 −30

]
J3 = 7.300× 108

4 p4 =
[
−5 −5 −5 −5

]
J4 = 7.560× 108

Then, we used the above five sets of parameters as the five vertices of the initial
simplex. We set the maximum number of iterations for searching the optimal parameters
to 50. The results obtained using the N–M simplex optimal search method are shown in
Figures 3 and 4, where the resulting parameters are k1 = −276.7, k2 = −48.12, k3 = −289.5,
and k4 = −122.1. The corresponding performance index is J = 2.292× 104, which is also
lower than those for the initial four sets of controllers.
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Figure 3. Time response of the inverted pendulum system controlled by the state feedback controller in which the parameters
are searched via the N–M simplex method based on the initial vertices given in Table 2.
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Figure 4. Convergence graph of performance index J0 when the simplex method based on the
initial vertices given in Table 2 is used to search for the controller parameters of the inverted
pendulum system.

Obtaining a global optimal controller for nonlinear systems is difficult, especially
when the dynamic equation of the system is unknown and the state or output signal
includes measurement noise. Therefore, the results obtained in the above examples may be
local optimal controllers based on specific initial conditions. In practical applications, the
most important goal is to design a stable or robust controller effectively, not necessarily to
obtain a global optimal controller.

To demonstrate the feasibility of this method, we simulated the above
inverted pendulum system with the same state feedback controller,
u = kx=

[
−276.7 −48.12 −289.5 −122.1

]
x. In this simulation, we used 50 different

states as initial conditions. The distribution ranges of the initial states were
x1(0) = θ(0) ∈ [−0.349, 0.349 ] (or [−20◦, 20◦ ]), x2(0) =

.
θ(0) = 0, x3(0) = x(0) ∈

[−0.25, 0.25 ], and x4(0) =
.
x(0) = 0. Figure 5 shows the time responses of the above

simulation. The results show that the 50 different initial states approached equilibrium
within 2 s.

Figure 5. Cont.
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Figure 5. Time response of the inverted pendulum system controlled by the state feedback controller u = kx=[
−276.7 −48.12 −289.5 −122.1

]
x with 50 different random initial states.

4. Conclusions

In this study, we proposed a systematic method for designing optimal controllers for
systems with unknown dynamic equations. First, we proposed an original performance in-
dex based on the characteristics and control aim of the controlled system. The performance
index can include the state, output, error, or control input of the system. To ensure that
this performance index was applicable even when the state or output of the system was
not within the allowable safety range, we added a key penalty function. Then, we used
the N–M simplex method to search for the optimal controller parameters iteratively. In
addition to the ease of implementation of the N–M simplex method, another important
advantage of the algorithm is that it only needs all the signals in the performance index to
be available, without the need to know the dynamic equation of the system in advance.

To demonstrate the feasibility of the proposed method, we adopted an inverted pen-
dulum system with measurement noise as the example. The simulation results showed that
even if the initial controller parameters could not stabilize the system, after the algorithm
reached the iterative termination condition, not only was the system stable but it also
exhibited good transient response performance.

The optimal controller parameter search method proposed in this study has the
following advantages: (1) the dynamic equation of the system need not be known; (2) the
method can be used regardless of the stability of the open-loop system; (3) the method can
be applied to both linear and nonlinear systems; (4) the method can be used in systems
containing measurement noise; and (5) the systematic nature of the method can improve
the design efficiency.
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