
mathematics

Article

Markov Chain-Based Stochastic Modelling of HIV-1 Life Cycle
in a CD4 T Cell

Igor Sazonov 1,† , Dmitry Grebennikov 2,3,4,† , Andreas Meyerhans 5,6,† and Gennady Bocharov 2,3,7,*,†

����������
�������

Citation: Sazonov, I.; Grebennikov,

D.; Meyerhans, A; Bocharov, G.

Markov Chain-Based Stochastic

Modelling of HIV-1 Life Cycle in a

CD4 T Cell. Mathematics 2021, 9, 2025.

https://doi.org/10.3390/

math9172025

Academic Editors: Danny Barash and

Alexander Churkin

Received: 26 July 2021

Accepted: 18 August 2021

Published: 24 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Engineering, Swansea University, Bay Campus, Fabian Way SA1 8EN, UK;
i.sazonov@swansea.ac.uk

2 Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS),
119333 Moscow, Russia; dmitry.ew@gmail.com

3 Moscow Center for Fundamental and Applied Mathematics at INM RAS, 119333 Moscow, Russia
4 World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State

Medical University, 119991 Moscow, Russia
5 ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain; Andreas.Meyerhans@upf.edu
6 Infection Biology Laboratory, Universitat Pompeu Fabra, 08003 Barcelona, Spain
7 Institute of Computer Science and Mathematical Modelling, Sechenov First Moscow State Medical University,

119991 Moscow, Russia
* Correspondence: g.bocharov@inm.ras.ru
† These authors contributed equally to this work.

Abstract: Replication of Human Immunodeficiency Virus type 1 (HIV) in infected CD4+ T cells
represents a key driver of HIV infection. The HIV life cycle is characterised by the heterogeneity
of infected cells with respect to multiplicity of infection and the variability in viral progeny. This
heterogeneity can result from the phenotypic diversity of infected cells as well as from random effects
and fluctuations in the kinetics of biochemical reactions underlying the virus replication cycle. To
quantify the contribution of stochastic effects to the variability of HIV life cycle kinetics, we propose
a high-resolution mathematical model formulated as a Markov chain jump process. The model is
applied to generate the statistical characteristics of the (i) cell infection multiplicity, (ii) cooperative
nature of viral replication, and (iii) variability in virus secretion by phenotypically identical cells. We
show that the infection with a fixed number of viruses per CD4+ T cell leads to some heterogeneity of
infected cells with respect to the number of integrated proviral genomes. The bottleneck factors in the
virus production are identified, including the Gag-Pol proteins. Sensitivity analysis enables ranking
of the model parameters with respect to the strength of their impact on the size of viral progeny.
The first three globally influential parameters are the transport of genomic mRNA to membrane,
the tolerance of transcription activation to Tat-mediated regulation, and the degradation of free and
mature virions. These can be considered as potential therapeutical targets.

Keywords: HIV life cycle; mathematical model; stochastic processes; Markov chain; heterogeneity;
sensitivity analysis

1. Introduction

Infection with the Human Immunodeficiency Virus type-1 (HIV) remains a global
problem of public health concern, with more than 70 million people infected since the early
1980s [1]. Unfortunately, there are no efficient vaccines against HIV [2]. The within-host
infection dynamics is characterized by (i) a variability of the disease course in infected
individuals [3], (ii) the ability of the virus to rapidly establish a large population of latently
infected cells [4], (iii) an increasing genetic diversity of the virus quasi-species [5–7], (iv)
heterogeneity of the infected cells with respect to the multiplicity of infection [8–11],
and (v) the resulting variability in viral progeny [12]. The multi-physics nature of the
HIV infection calls for the development of computational models integrating the infection-
driven processes across the systemic physiological-, organ and tissue-, and single-cell
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levels of resolution. The description of within-cell virus replication is a cornerstone of the
development of multiscale mathematical models of HIV infection [13,14].

The virus life cycle in permissive cells represents the primary driver of HIV infection.
So far, a number of mathematical models have been developed to simulate the replication of
HIV in an infected cell at different levels of details (see for a list [15]). Importantly, the high-
resolution models represent a deterministic description of the biochemical reaction steps
underlying the HIV life cycle. However, many of the replication stages are characterized
by low numbers of reactants, and hence there is a strong impact of random effects and
fluctuations in the reaction kinetics [16]. A systematic analysis of the contribution of
stochastic processes to HIV-replication is still missing.

We have recently developed a detailed in silico model of the HIV life cycle in pro-
ductively infected CD4 T cells [15] formulated with a system of 24 ordinary differential
equations (ODE). This deterministic model enables estimation of biochemical parameters
of HIV replication. The resulting mechanistic description of the HIV life cycle established a
mechanistic basis for the development of a stochastic description of the process kinetics
using the Monte Carlo framework.

In this paper, we formulate the stochastic Markov chain-type model of HIV replication
in productively infected cells in the form of Gillespie’s algorithm [17]. We propose a
modification of this algorithm that accelerates the computation process by a factor of
200 compared with the classical Gillespie’s algorithm. This is essential, because to obtain
the comprehensive statistical data, a very large number of realisations of the stochastic
process should be computed.

We apply the stochastic model to examine the statistical characteristics of key aspects
of single-cell infection:

• Cell-to-cell variability in HIV progeny production;
• Multiplicity of single-cell infection;
• Global sensitivity of specific reaction steps on net virus production.

Our study delineates the contribution of random effects to (i) the multiplicity of
infection, (ii) the cooperative nature of viral replication, and (iii) the variability in the scale
of virus secretion by phenotypically identical cells.

2. Results
2.1. Governing Deterministic Equations

The HIV-1 replication cycle presented in Figure 1 consists of multiple stages described
below. The specific biochemical reactions and model parameters are from our previous
work [15].
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Figure 1. Biochemical scheme of the HIV-1 replication cycle.

2.1.1. Virus Entry

The entry stage is split into three steps (see also [15]) represented in Figure 1:
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1. Virion binding to CD4 receptors (the viral glycoprotein gp120 binds to CD4 receptors
on the T cell surface);

2. Binding to the co-receptor CCR5 or CXCR4;
3. Virus membrane and cell membrane fusion, i.e., the nucleocapsid is uncoated and the

viral RNA is injected into the cell.

The above is described by the following equations:

ẋ1 = −(kbound + d)x1 (1)

ẋ2 = kboundx1 − (kfuse + dbound)x2 (2)

where:
x1 = [Vfree] is the number of free virions outside the cell;
x2 = [Vbound] is the number of virions bound to CD4 and the co-receptor.

The model parameters
kbound = 3.1 h−1; kfuse = 0.7 h−1;
d = 0.38 h−1; dbound = 0.0008 h−1;
represent the rate of virion binding to the CD4+ T cell membrane, the rate of virion fusion
with the cell, the clearance rate of free mature virions, and the degradation rate of bound
virions, respectively. Their reference values and admissible ranges are specified in [15].

2.1.2. Reverse Transcription

Bound virions fuse with the host cell membrane. This step results in the release of
the virion content into the cell cytoplasm setting up the stage of reverse transcription [18].
The reverse transcription creates a double-stranded proviral DNA from two single-stranded
RNA genomes.

The reverse transcription reaction consists of three sequential processes [15]:

1. Synthesis of minus-strand DNA from viral RNA;
2. Synthesis of plus-strand DNA;
3. Double-strand DNA formation.

This stage is modelled by the following equations:

ẋ3 = kfusex2 − (kRT + dRNAcor)x3 (3)

ẋ4 = kRTx3 − (kDNAt + dDNAcor)x4 (4)

where:
x3 = [RNAcor] is the number of genomic RNA molecules in the cytoplasm;
x4 = [DNAcor] is the number of proviral DNA molecules synthesized by reverse transcription.

The model parameters
kRT = 0.43 h−1; kDNAt = 0.12 h−1;
dRNAcor = 0.21 h−1; dDNAcor = 0.03 h−1; represent the reverse transcription rate, the trans-
port rate of DNA from cytoplasm to nucleus, the degradation rate of RNA in the cytoplasm
and the degradation rate of DNA in the cytoplasm, respectively. Their reference values
and admissible ranges are specified in [15].

2.1.3. Integration

The synthesized proviral DNA associates with virus-encoded integrase (IN) and other
proteins. This forms a high-molecular-weight nucleoprotein complex (pre-integration
complex, PIC). The PIC is transported into the nucleus for subsequent integration of
proviral DNA into the host cell chromosomal DNA [19]. The change in the amount of
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proviral DNA in the nucleus and the amount of integrated DNA are modelled with the
following equations [15]:

ẋ5 = kDNAt x4 − (kint + dDNAnuc)x5 (5)

ẋ6 = kintx5 − dDNAint x6 (6)

where:
x5 = [DNAnuc] is the number of DNA molecules in the nucleus;
x6 = [DNAint] is the number of integrated DNA.

The model parameters
kint = 0.14 h−1; dDNAnuc = 0.001 h−1; dDNAint = 0.00002 h−1; represent the integration rate,
the degradation rate of DNA in the nucleus and the degradation rate of DNA integrated
into the chromosome, respectively. Their reference values and admissible ranges are
specified in [15].

2.1.4. Transcription

The transcription of HIV starts after the infected cell receives external activation
signals. It results in the synthesis of three types of messenger RNA (mRNA), i.e., the full-
length (around 9 kb), singly-spliced (around 4 kb) and doubly-spliced (around 2 kb) [20].
The transcription stage is followed by the transport of mRNAs to the cell cytoplasm.
The viral Tat and Rev proteins regulate the transcription and mRNA distribution. These
stages are described by the following equations considering the specific parameterizations
of the feedback regulation similar to those presented in [21,22]:

ẋ7 = fTR x6 −
(
kssRNAg gRev + keRNAg fRev + dRNAg

)
x7 (7)

ẋ8 = kssRNAg gRev x7 −
(
kdsRNAss gRev + keRNAss fRev + dRNAss

)
x8 (8)

ẋ9 = kdsRNAss gRev x8 − (keRNAds + dRNAds)x9 (9)

ẋ10 = keRNAg fRev x7 − (ktp,RNA + dRNAg)x10 (10)

ẋ11 = keRNAss fRev x8 − dRNAss x11 (11)

ẋ12 = keRNAds x9 − dRNAds x12 (12)

where:
x7 = [mRNAg] is the number of HIV mRNA molecules in the nucleus: g for genomic or
full-length;
x8 = [mRNAss] is the number of HIV singly spliced (ss) mRNA molecules in the nucleus;
x9 = [mRNAds] is the number of HIV doubly spliced (ds) mRNA molecules in the nucleus;
x10 = [mRNAcg] is the number of HIV mRNA molecules in the cytoplasm: g for genomic
or full-length;
x11 = [mRNAcss] is the number of HIV singly spliced (ss) mRNA molecules in the cytoplasm;
x12 = [mRNAcds] is the number of HIV doubly spliced (ds) mRNA molecules in the cytoplasm.
fTR = fTR(x16) = TRcell + fTat(x16)TRTat; fTat = fTat(x16) = x16/(θTat + x16);
fRev = fRev(x17) = x17/(θRev + x17);
gRev = gRev(x17) = 1− β fRev.

The model parameters
TRcell = 15 h−1; TRTat = 1500 h−1;
θTat = 103 molec.; θRev = 7.7 × 104 molec.; β = 0.9;
kssRNAg = 2.4 h−1; keRNAg = 2.3 h−1; keRNAss = 2.3 h−1;
kdsRNAss = 2.4 h−1; keRNAds = 4.6 h−1; ktp,RNA = 2.8 h−1;
dRNAg = dRNAss = dRNAcds = 0.12 h−1; represent the cell intrinsic rate of basal transcription,
the level of transcription induced by Tat transactivation, the inhibitory effect of Rev on
the splicing rates implying their 1/(1− β)-fold reduction at the saturation level of Rev,
the rate of splicing for full-length virus RNA, the rate of [mRNAg] export from the nucleus,
the rate of [mRNAss] export from the nucleus, the rate of splicing for singly spliced virus
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RNA, the rate of [mRNAds] export from the nucleus, the transport rate of [mRNAg] to the
cell membrane, and the degradation rates of [mRNAi], i ∈ {g, ss, ds}, respectively. Their
reference values and admissible ranges are specified in [15].

2.1.5. Translation

Ribosomes function to translate the viral mRNA into specific proteins. The Gag and
Gag-Pol proteins are coded by the full-length mRNA. The gp160, Vif, Vpu, and Vpr proteins
are coded by singly spliced mRNAs. Finally, the Tat, Rev, and Nef proteins are coded by
doubly spliced mRNAs. The synthesized proteins then fold into active proteins. In our
deterministic model we consider the kinetics of the Gag-Pol, Gag, gp160, Tat, and Rev
proteins [15]. The following set of differential equations is used:

ẋ13 = ktrans fg,Gag-Polx10 − (ktp,Gag-Pol + dp,Gag-Pol)x13 (13)

ẋ14 = ktrans fg,Gagx10 − (ktp,Gag + dp,Gag)x14 (14)

ẋ15 = ktrans fss,gp160x11 − (ktp,gp160 + dp,gp160)x15 (15)

ẋ16 = ktrans fds,Tatx12 − dp,Tatx16 (16)

ẋ17 = ktrans fds,Revx12 − dp,Revx17 (17)

where:
x13 = [PGag-Pol] is the number of protein molecules: Gag-Pol;
x14 = [PGag] is the number of protein molecules: Gag;
x15 = [Pgp160] is the number of protein molecules: gp160;
x16 = [PTat] is the number of protein molecules: Tat;
x17 = [PRev] is the number of protein molecules: Rev.

The model parameters
ktrans = 524 h−1;
fg,Gag-Pol = 0.05; fg,Gag = 0.95; fss,gp160 = 0.64; fds,Tat = 0.025; fds,Rev = 0.2;
ktp,Gag-Pol = 2.8 h−1; ktp,Gag = 2.8 h−1; ktp,gp160 = 2.8 h−1;
dp,Gag-Pol = 0.09 h−1; dp,Gag = 0.09 h−1; dp,gp160 = 0.02 h−1;
dp,Tat = 0.04 h−1; dp,Rev = 0.07 h−1; represent the rate of mRNA to proteins translation,
fij stand for the fraction of [mRNAi] coding [Pj], i ∈ {g, ss, ds}, j ∈{Gag-Pol, Gag, gp160,
Tat, Rev}. Following them, the parameters define the rates of protein [Pj] transport to
membrane, j ∈ { Gag-Pol, Gag, gp160}, and the degradation rates of proteins Gag-Pol,
Gag, gp160, Tat and Rev, respectively. Their reference values and admissible ranges are
specified in [15].

2.1.6. Assembly, Budding and Maturation

The last stages of the HIV-1 replication cycle consist of the transport of the proteins
(both regulatory and accessory), viral glycoproteins and the full-length mRNA molecules
to the cell plasma membrane. The viral proteins (Gag-Pol, Gag, gp160) undergo a number
of post-translational modifications. These include folding, oligomerization, glycosylation,
and phosphorylation [23]. The final step is the assembly of Gag and Gag-Pol proteins at
the cell membrane followed by encapsidation of the viral RNA genomes. The budding of
the synthesized virions ends with their maturation [24]. The respective equations of the
deterministic model read:

ẋ18 = ktp,RNAx10 − kcombNRNA fc − dRNAg x18 (18)

ẋ19 = ktp,Gag-Polx13 − kcombNGag-Pol fc − dmem,Gag-Polx19 (19)

ẋ20 = ktp,Gagx14 − kcombNGag fc − dmem,Gagx20 (20)

ẋ21 = ktp,gp160x15 − kcombNgp160 fc − dmem,gp160x21 (21)
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where: x18 = [RNAmem], x19 = [Pmem,Gag-Pol], x20 = [Pmem,Gag], x21 = [Pmem,gp160] are,
respectively, the number of viral RNA molecules and the Gag-Pol, Gag, and gp160 viral
protein molecules at the membrane.

The model parameters
ktp,RNA = 2.8 h−1; ktp,Gag-Pol = 2.8 h−1; ktp,Gag = 2.8 h−1; ktp,gp160 = 2.8 h−1;
kcomb = 8.0 h−1; NRNA = 2; NGag-Pol = 250; NGag = 5000; Ngp160 = 24; represent the
rates of RNA and protein [Pj] transport to the membrane, j ∈ {Gag-Pol, Gag, gp160},
the incorporation rate of molecules into pre-virion complexes, the number of viral RNA
transcripts in a new virion, the number of Gag-Pol molecules in a new virion, the number
of Gag molecules in a new virion, and the number of gp160 molecules in a new virion,
respectively. Their reference values and admissible ranges are specified in [15].

The model parameter KVrel entering the virion complex assembly function,

fc = fc(x18, . . . , x21) = x18 ·
x19

x19 + KVrel NGag-Pol
· x20

x20 + KVrel NGag
· x21

x21 + KVrel Ngp160
,

KVrel = 103 refers to the characteristic scale of the viral progeny per replication cycle [13].
The model parameters
dRNAg = 0.12 h−1; dmem,Gag-Pol = 0.004 h−1;
dmem,Gag = 0.004 h−1; dmem,gp160 = 0.014 h−1; represent the degradation rates of [RNAmem],
the membrane-anchored protein Gag-Pol, the membrane-anchored protein Gag, and the
membrane-associated gp160, respectively. Their reference values and admissible ranges
are specified in [15].

In the current model of HIV replication, the Michaelis–Menten-type parametrization
is used to limit the rate of assembling of progeny virions by the least abundant protein
component out of the three considered [Pmem,Gag-Pol], [Pmem,Gag], [Pmem,gp160]. The parame-
ters KVrel , NGag-Pol, NGag, Ngp160 specify the reference amount of the viral progeny per cell
and the number of protein molecules Gag-Pol, Gag, and gp160 required for each virion,
respectively.

Note that the above function fc(x18, . . . , x21) is the only difference from the similar
equations presented in [15], where the corresponding function reads as fc = x18x19x20x21.
This modification was proposed in a model of influenza A virus replication [25,26].

At the late phase of virus replication, the viral RNA and viral proteins at the membrane
associate with the pre-virion complex and then combine to generate a new virion, as shown
in Figure 1

ẋ22 = kcomb fc − (kbud + dcomb)x22 (22)

ẋ23 = kbudx22 − (kmat + dbud)x23 (23)

ẋ24 = kmatx23 − dx24 (24)

where:
x22 = [Vpre-virion] is the number of virions on the membrane;
x23 = [Vbud] is the number of free viruses after budding from the cell;
x24 = [Vmat] is the number of mature virions outside the cell.

The model parameters
kcomb = 8 h−1; kbud = 2.0 h−1; kmat = 2.4 h−1;
dcomb = 0.52 h−1; dbud = 0.38 h−1; d = 0.38 h−1; represent the incorporation rate of
molecules into pre-virion complexes, the budding rate of new virions, the maturation rate,
the degradation rate of the assembled pre-virion complex, the degradation rate for budded
immature viral-like particles, and the clearance rate of free mature virions, respectively.
Their reference values and admissible ranges are specified in [15].

The solution of the deterministic system (1)–(24) with initial condition [Vfree](0) = 4
is presented in Figure 2.
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2.2. Stochastic Markov Chain Modelling

The use of ordinary differential equations for the biochemical species concentrations
assumes that they vary continuously and in a deterministic manner. However, some of the
HIV-1 replication steps are characterized by low numbers of the reactants and the greater
impact of the random fluctuations in the reaction rates, thus invalidating to a certain degree
the deterministic approach. The stochastic re-formulation of the model allows one to
overcome the limitations of the deterministic framework. A general approach to stochastic
formulation is based on considering the reactions as Markov processes, i.e., random walks
in the state space of the system, implemented numerically using Monte Carlo techniques.
Markov chain model considers the exact number of species with a discrete change in their
numbers according to the probabilities of the individual reaction to happen per unit of time.
The later are defined by the reaction rates and the abundance of the chemical species of the
underlying deterministic model listed in Table 1. We follow the Gillespie approach [17]
as detailed below. The full details of the Markov chain are presented in Table 1. Here,
superscript ++ in x++

n means that this component is increased by one, and −− in x−−n
means that this component is decreased by one.
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Figure 2. Numerical solution of the deterministic model of HIV-1 replication.

2.2.1. Algorithm

The realizations of the stochastic Markov chain model are inherently variable in their
dynamics. To robustly estimate the mean trajectories and uncertainty in the dynamics,
an averaging is required over a large ensemble of realizations (∼105). This might appear to
be computationally demanding and depends on the simulation time for a single run of the
model. Therefore, a method for computer modelling of the Markov chain (1) should be fast
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and accurate. To model a Markov chain numerically, several methods have been proposed;
the most often used is Gillespie’s direct method [17,27,28].

During the process, some components can reach large numbers. This essentially
slows down the computation process, as a high population number causes extremely
short time intervals between events in the Markov chain. At the same time, the evolution
of highly populated components can be modelled accurately enough by a deterministic
process described by an appropriate ODE. To overcome this issue, a hybrid approach
has been proposed in [29,30] in which the simulation process is switched from stochastic
to deterministic for all components simultaneously as soon as the component with the
smallest population size exceeds a certain threshold (see also [28]). In [31,32], a method
was applied in which the deterministic dynamics for highly populated components and
the stochastic dynamics for smaller populated components are coupled and computed
in parallel.

Table 1. Markov chain: the list of individual reactions m, the corresponding state transitions and the propensities of
reactions which define the probabilities of the individual reactions to occur over a small time interval δt.

m Transition Propensity, am m Transition Propensity, am

1 x−−1 , x++
2 kboundx1 27 x−−13 dp,Gag-Polx13

2 x−−1 dx1 28 x++
14 ktrans fg,Gagx10

3 x−−2 , x++
3 kfusex2 29 x−−14 , x++

20 ktp,Gagx14
4 x−−2 dboundx2 30 x−−14 dp,Gagx14
5 x−−3 , x++

4 kRTx3 31 x++
15 ktrans fss,gp160x11

6 x−−3 dRNAcor x3 32 x−−15 , x++
21 ktp,gp160x15

7 x−−4 , x++
5 kDNAt x4 33 x−−15 dp,gp160x15

8 x−−4 dDNAcor x4 34 x++
16 ktrans fds,Tatx12

9 x−−5 , x++
6 kintx5 35 x−−16 dp,Tatx16

10 x−−5 dDNAnuc x5 36 x++
17 ktrans fds,Revx12

11 x−−6 dDNAint x6 37 x−−17 dp,Revx17
12 x++

7 fTR(x16)x6 38 x−−18 kcombNRNA fc(x18,...,21)
13 x−−7 , x++

8 kssRNAg gRev(x17)x7 39 x−−18 dRNAg x18
14 x−−7 , x++

10 keRNAg fRev(x17)x7 40 x−−19 kcombNGag-Pol fc(x18,...,21)

15 x−−7 dRNAg x7 41 x−−19 dmem,Gag-Polx19
16 x−−8 , x++

9 kdsRNAss gRev(x17)x8 42 x−−20 kcombNGag fc(x18,...,21)
17 x−−8 , x++

11 keRNAss fRev(x17)x8 43 x−−20 dmem,Gagx20
18 x−−8 dRNAss x8 44 x−−21 kcombNgp160 fc(x18,...,21)
19 x−−9 , x++

12 keRNAds x9 45 x−−21 dmem,gp160x21
20 x−−9 dRNAds x9 46 x++

22 kcomb fc(x18,...,21)
21 x−−10 , x++

18 ktp,RNAx10 47 x−−22 , x++
23 kbudx22

22 x−−10 dRNAg x10 48 x−−22 dcombx22
23 x−−11 dRNAss x11 49 x−−23 , x++

24 kmatx23
24 x−−12 dRNAds x12 50 x−−23 dbudx23
25 x++

13 ktrans fg,Gag-Polx10 51 x−−24 dx24
26 x−−13 , x++

19 ktp,Gag-Polx13

Here we further develop this approach and propose an algorithm with coupled
stochastic and deterministic processes with capability to automatically switch the dynamics
of any component, xn, from stochastic to deterministic and back as soon as this component
exceeds a predefined threshold X̄ or, respectively, becomes below it. Therefore, at any
time interval between the transitions, all components are divided into two time-varying
sets: SX = {n : xn ≤ X̄} and SX = {n : xn > X̄}. Components, xn ∈ SX, currently
having a relatively small number of particles are modelled stochastically by the Markov
chain described in Table 1. Other components, xn ∈ SX, with a large population size
are modelled by the corresponding deterministic Equations (1)–(24). With the change of
population, a component, xn, can be moved automatically from one set to another.
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We also divide the reactions into the sets of stochastic ones, ST , for which the transition
in Table 1 contains at least one stochastically modelling component, and deterministic ones,
ST , with transitions without such a component at the current time interval. The stochastic
reactions m ∈ ST are modelled by Gillespie’s next reaction method: at every step two
uniformly distributed random numbers r1, r2 on (0, 1) are generated. The first number gives
the next time step ∆t = −(ln r1)/A where A = ∑m∈ST

am. The second random number
determines the next reaction index p ∈ ST : the smallest integer satisfying Ap > Ar2

where Ap = ∑
p
m=1, m∈ST

am, i.e., the summations are made on stochastic reactions only.
As we have to search between up to 51 reactions, the binary search is used to accelerated
finding the reaction p. Additionally, to accelerate the computation, the propensity is
updated only for reactions in which am depends on changed components in the given
step. For this purpose, a special array is prepared in which propensities to be updated are
indicated for a given component xn and another similar array for every reaction m. As for
deterministically varying components, xn, n ∈ SX , the corresponding equations from the
ODE system (1)–(24) are integrated employing the predictor–corrector method, as described
in [32]. To provide a proper accuracy, the time step is restricted by the value ∆tmax.

The algorithm is implemented in C++. Here arrays of pointers to functions are actively
used to directly call functions that should be calculated for a given reaction without
spending time on other reactions; this also accelerates the computation. We compute
functions of propensities am for stochastic reactions or the right-hand sides of ODEs (1)–(24)
for deterministic reactions.

The hybrid code is flexible: for a negative threshold X̄ < 0, only deterministic equa-
tions are integrated. Here the solution coincides with that shown in Figure 2 obtained by
direct integration of ODEs (1)–(24) with the use of high order adaptive step size methods.
If the threshold is set extremely high, say, 1010, such that the probability to reach this
value for any component is infinitesimal, then all components are treated as stochastic,
modelled by Markov chain Table 1 and computed by Gillespie’s method. This allows the
estimation of the accuracy of the hybrid algorithm by comparing histograms for the hybrid
and the fully stochastic models. We set the threshold X̄ = 2000 for our computations. Our
study showed that the computed statistical characteristics coincide very closely with those
obtained by Gillespie’s method.

The computations were run on an Intel Xeon E3-1220 v5 CPU 3GHz×4. One realization
of the full model with [Vfree](0) = 4 required about 14 s of CPU time, while the hybrid
model was computed in 60 milliseconds on average. Thus, the use of the modified hybrid
scheme proposed here accelerates the computation by a factor of 200. We computed 105

realizations for every value of an initial number of free virions [Vfree](0) to obtain the
statistic characteristics described in the next section.

2.2.2. Stochastic Modelling Results

The stochastic modelling enables computation of the probability of a cell to be infected
in a certain time depending on the initial number of free virions attaching to the cell.
Experimental data presented in [10] indicate that the number of provirus copies in splenic
cells of SIVmac251-infected rhesus macaques ranged from one to three. A number of
virions attaching to the target cell equal to four ([Vfree](0) = 4) enables the integration of a
similar number of proviral DNA, thus approximating the scenario of in vivo infection. The
corresponding plots are shown in Figure 3A. There is a smooth monotonically growing
dependence on [Vfree](0) tending to one with the growth of this value. Furthermore,
the probability of successful integration increases with time.
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Figure 3. Probability of cell infection (i.e., integration of at least one proviral DNA molecule [DNAint])
at a certain time as a function of the initial number of free virions [Vfree](0) (A). Histograms of number
of integrated proviral DNA molecules [DNAint] (B), number of released matured virions [Vmat] (C) at
t = 36 h for initial condition [Vfree](0) = 4.

The random effects in reaction kinetics result in a heterogeneous distribution of cells
with respect to the amount of integrated proviral DNA (Figure 3B). The simulation results
indicate that for the parameter settings specified in Table 1, infection with four virus
particles leads to a distribution of integrated DNAs ranging from zero to four with the
median value of two. The distribution of [DNAint] defines the phenotypic diversity of
secreted virions as shown in Figure 3C. Note that the above computation did not consider
intracellular restriction mechanisms that would modify these values.

The evolution of the histograms of the stochastic model variables for initial condition
[Vfree](0) = 4, i.e., MOI = 4, is presented in Figure 4. They show that the abundance
of the biochemical components underlying the virus replication is not homogeneous but
displays multi-hump patterns indicated by strips with darker colours. The number of
humps depends on the species and ranges from two to five. This is clearly seen in Figure 5,
where the histograms of all components are presented at time t = 36 h for initial condition
[Vfree](0) = 4.

The variance in the intensities of individual reaction stages of the life cycle is shown in
Figure 6. They are consistent with the transcription and translation data presented in [33].

2.3. Sensitivity Analysis

In a previous work [15], the local sensitivity of the deterministic model was computed
using the adjoint method to identify the potential targets for antiviral therapy. As we
have modified the model by considering the features of the assembly in more detail, we
conducted the sensitivity analysis for the extended model. We considered the global
variance-based method of sensitivity analysis, which is used to determine the contributions
of individual parameter variations to the changes in the variance of the model output while
allowing simultaneous variations across the whole input space of all model parameters.
Let y = f (p) be the model output where p = [p1, . . . , pL] is a vector of inputs, i.e., model
parameters, which are treated as independently distributed random variables. The variance-
based methods of global sensitivity analysis rely on the following decomposition of the
output variance [34,35]:

Var(y) =
L

∑
i=1

Vi +
L−1

∑
i=1

L

∑
j=i+1

Vij + ... + V1 2...L, (25)

which includes the variance Vi caused by varying pi alone, the variance of second-order
interactions Vij caused by varying pi and pj simultaneously (additionally to individual
Vi and Vj) and of the other higher-order interactions, up to the variance V1 2...L caused by
varying all components.
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Figure 4. Temporal evolution of the histograms of the stochastic model variables for the initial
condition [Vfree](0) = 4.
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Figure 5. Histograms of the stochastic model variables at t = 36 h for the initial condition
[Vfree](0) = 4.
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Figure 6. Temporal dynamics of the intensities of stages of the HIV-1 replication life cycle. The propen-
sities that constitute each stage intensity are indicated on the vertical axis. The propensities represent
the average values over stochastic realizations normalized by their maximum values.

The first-order Si and total-order Stotal
i sensitivity indices are defined as

Si =
Vi

Var(y)
=

Varpi (Ep∼i (y|pi))

Var(y)
, (26)

Stotal
i = 1−

Varp∼i (Epi (y|p∼i))

Var(y)
, (27)

where p∼i = {pl}l 6=i
l∈ 1,L

is a set of all parameters except pi. The sensitivity index Si measures
the effect of varying parameter pi alone, averaged over variations in other parameters p∼i,
while Stotal

i approximates the effects of variations of pi including all of the variance caused
by its interactions with other parameters.

There are two well-established methods to compute the sensitivity indices specified in
Equations (26) and (27). Sobol’s method employs low-discrepancy sequences and Monte-
Carlo integration methods to explore the input space of parameter variations. The extended
Fourier amplitude sensitivity testing (eFAST) method makes use of Fourier decomposition
to search in the frequency space along mono-dimensional search curves for each parameter,
which makes it possible to obtain both first- and total-order indices with a lower number
of model evaluations than with Sobol’s method [36].

2.3.1. Sensitivity Analysis of the Deterministic Model towards the Cumulative
Virion Release

To study the sensitivity of the processes towards the cumulative number of released
virions throughout 36 h (the area under the curve-type of the metric for released virions

J(y) =
T∫
0
[Vmat]dt , which characterises the availability of the virus for infection of other

cells, or the total virus exposure), we applied the eFAST method to the deterministic model
with [Vfree](0) = 4 virions. We assumed the uniform distribution of model parameters in
the ranges specified in [15]. For the newly introduced parameter KVrel = 103 we assumed
the range from 102 to 104 virions. As proposed in [37], we included in the input variables a
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“dummy” input, which is uniformly distributed in the unit segment and is not presented in
the model. The total sensitivity index of dummy input Stotal

dummy should have a low value
that represents the variance from interactions between other parameters but not with the
parameter of interest, which is included in the definition of the total order index (27) [37].
The dummy input can be regarded as a negative control to determine significant sensitivity
indices relative to the level of variance Stotal

dummy.
The first- and total-order sensitivity indices to the cumulative number of released

virions throughout 36 h computed with the eFAST method are presented in Figure 7. We
used Nr = 20 resamples of the method to obtain the means and standard errors of the
means of sensitivity indices, and to test for their significance with Welch’s t-test. The sample
size for each search curve was set to Ns = 104. The sensitivity indices of the parameters
that have the significant effects are summarized in Table 2.

Table 2. Sensitivity indices of the model parameters that have the biggest influence on cumulative virion release. The param-
eters are sorted in descending order by total order sensitivity indices. The means ± SEMs obtained on Nr = 20 resamples
are indicated.

Parameter Description Sensitivity Indices
First Order Total Order

ktp,RNA Transport of genomic mRNA to membrane 0.099 ± 0.006 0.669 ± 0.004

θTat
Tolerance of transcription activation

to Tat-mediated regulation
0.089 ± 0.009 0.450 ± 0.009

ktrans fds,Tat Translation of Tat molecules 0.019 ± 0.001 0.235 ± 0.001
d Degradation of free and mature virions 0.022 ± 0.002 0.226 ± 0.004

ktrans fg,Gag-Pol Translation of Gag-Pol molecules 0.0155 ± 0.0009 0.201 ± 0.002
ktrans fg,Gag Translation of Gag molecules 0.0153 ± 0.0006 0.177 ± 0.006

dDNAcor Degradation of DNA during RT 0.019 ± 0.002 0.158 ± 0.005
kcomb Assembly of pre-virion complexes 0.0028 ± 0.0001 0.068 ± 0.002
TRTat Tat-induced transcription rate 0.0049 ± 0.0004 0.066 ± 0.003

kcombNGag Gag contribution to pre-virion assembly 0.0014 ± 0.0001 0.063 ± 0.002
kcombNGag-Pol Gag-Pol contribution to pre-virion assembly 0.00125 ± 0.00005 0.063 ± 0.002

dRNAds Degradation of doubly-spliced mRNA 0.0027 ± 0.0003 0.058 ± 0.004
KVrel NGag

Tolerance of pre-virion assembly
to Gag availability on membrane

0.0036 ± 0.0006 0.051 ± 0.003

2.3.2. Sensitivity Analysis of Early Stages of Cell Infection Using the Stochastic Model

An important aspect of HIV-1 infection is the establishment of a pool of latently
infected cells. After the proviral genome integration into the chromosome of the host cell
[DNAint] the provirus may remain silent, i.e., transcription of viral genes can be suppressed
by the infected cell. Although our model does not describe the mechanisms by which
this suppression is regulated, we can investigate the impact of variations of the early
stage processes on the distribution of the number of integrated proviral DNA molecules
[DNAint](36) using the stochastic model.

To perform a sensitivity analysis on the stochastic model, one needs to define the
model output that can be compared between the ensembles of stochastic realizations with
perturbed parameters. Given the ensemble of model runs, histograms and empirical cdfs
approximate the pdf and cdf of the variables at certain times, and various distance functions
defined on them can be used. In [38], the sensitivity analysis of stochastic Markov Chain
models was performed using the histogram distance between the unperturbed model
output and the output with perturbed parameters. The histogram distance between sets x
and y is defined as

D(x, y) =
K

∑
k=1

∣∣∣∣
∑nx

j=1 χ(xj, Ik)

nx
−

∑
ny
j=1 χ(yj, Ik)

ny

∣∣∣∣ (28)
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where nx and ny are the number of elements in x and y, respectively, K is the number of
histogram bins dividing the range from min{xmin, ymin} to max{xmax, ymax} in Ik intervals,
and χ(xj, Ik) is a characteristic function that is equal to 1 if xj lies in Ik and 0 otherwise.
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Figure 7. Sensitivity indices for the cumulative number of released virions up to 36 h computed with
the deterministic model. The bars and the error bars correspond to the means ± SEMs obtained on
Nr = 20 resamples. The significance levels of Welch’s t-test for comparing total order indices against
Stotal

dummy are p < 10−20 (∗∗∗), p < 10−10 (∗∗), p < 10−5 (∗).
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The local sensitivity indices can be defined as

Si =
D(x0, xpi)

∆pi
, Ŝi = Si pi (29)

where x0 is the set of model outputs with baseline parameters, xpi , with the increased
parameter pi on a small value ∆pi. The indices Ŝi were scaled on baseline parameter values
to make their ranking possible.

Here, we only implement the local sensitivity approach due to the computational
costs needed to obtain the ensemble of stochastic realizations with a fixed set of parameters.
However, the low-cost screening methods of global sensitivity analysis, such as the Morris
method [39,40], can also be effectively implemented for stochastic models [38].

The model output is the number of integrated proviral genomes x6 = [DNAint] at
t = 36 h. We obtained an ensemble of 105 model runs for each parameter set. For this
number of runs, the measured baseline self-distance D(x0, x0) equals zero. The baseline
parameter values are perturbed by 1%. In all stochastic realizations, the possible values
for model output {0, 1, 2, 3, 4} are the same. Hence, K = 5. The sensitivity indices Ŝi are
reported in Table 3.

Table 3. Local sensitivity indices Ŝi of the stochastic model parameters having the most influence on
the number of integrated proviruses [DNAint](36).

Parameter Description Sensitivity

kbound Binding rate of free virions to CD4+ T cell membrane 0.498
d Degradation rate of HIV particles 0.752

kfuse Rate of virion fusion into the cell 0.988
dbound Degradation rate of virions bound to membrane 1.080

kRT Rate of reverse transcription 0.804
dRNAcor Degradation rate of viral RNA in cytoplasm 0.712
kDNAt Rate of viral DNA transfer to nucleus 0.738

dDNAcor Degradation rate of viral DNA in cytoplasm 0.464
kint Rate of viral DNA integration into host chromosome 0.446

dDNAnuc Degradation rate of viral DNA in nucleus 0.346
dDNAint Degradation rate of DNA integrated into chromosome 0.582

3. Discussion

Our study provides a high-resolution model of the stochastic dynamics of HIV replica-
tion in productively infected cells. The model is built as a Markov chain and implemented
by a Gillespie-type algorithm [17]. In contrast to the deterministic prototype model [15],
the stochastic version considers a Mechaelis–Menten type description of the engagement
of Gag and Gag-Pol polyproteins and gp160 glycoproteins into an assembly of nascent
virions forming around dimeric viral RNA. The numerical implementation of the model
was characterised by using (i) a hybrid method to adaptively manage the low and high
abundance of molecular components, (ii) binary search, and (iii) a list of pointers of active
reaction components at each step. These make single runs fast and computationally less
demanding. A global sensitivity analysis method, i.e., the extended Fourier amplitude
sensitivity testing (eFAST) [36,37], was implemented. Note that the representation of the
Mechaelis–Menten kinetics in the stochastic algorithm requires further systematic analysis
and justification.

Extensive simulations with the model led to a number of biologically relevant insights
concerning the heterogeneity of cell infection and viral replication. First, the infection
with a fixed number of viruses per CD4 T cell (V0 = [Vfree](0)) leads to a heterogeneity of
infected cells with respect to the number of integrated proviral genomes ranging from zero
to V0 (see Figure 3). This finding suggest that in the analysis of the mechanisms behind
multiply infected cell populations, not only phenotypic differences in cell susceptibility
need to be considered [11] but also the inherent randomness and the discrete nature
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of the biochemical stages of HIV infection. The multiplicity of infection translates into
histograms of the viral progeny showing multimodal Gaussian-type distributions with
clear peaks at some regularly spaced values with increasing variance from left to the right.
Second, the computed dynamics of the distributions of the 24 HIV life cycle components
allows one to identify the bottleneck factors in virus production (see Figure 5). For the
reference set of the model parameters, these are Gag-Pol proteins. The stochastic model
provides a direct insight into the intensities (fluxes) of the reaction steps through the life
cycle of the virus (see Figure 6), which are comparable with experimentally measured
transcription and translation events [33]. Third, local and global sensitivity analysis of the
stochastic model provided a ranking of model parameters that strongly affect the size of
viral progeny, and thus can be considered as potential therapeutic targets. In contrast to the
local sensitivity features of the deterministic model [15], the first three globally influential
parameters are:

• Transport of genomic mRNA to membranes;
• Tolerance of transcription activation to Tat-mediated regulation;
• Degradation of free and mature virions.

From a biological point of view, an extension of the model is required to consider an-
tiviral defence mechanisms activated in the infected cells (e.g., type I interferon, SAMHD1,
Tetherin) and the counteraction of the viral proteins (Vpu, Vif) inhibiting them. These
mechanisms will impact the proviral copy numbers and virion burst size. In addition,
the transport kinetics of the virus life cycle constituents requires a proper incorporation
into the model [41]. These will be subject of our future work. Overall, our results provide a
new tool to simulate the HIV life cycle in infected cells and suggest that stochastic effects
inherent in the HIV replication cycle must be considered among the relevant mechanisms
contributing to the phenotypic diversity and variability of dynamics of HIV infection.
A clear distinction between deterministic and stochastic components of HIV-infected host
cell interactions will provide a better understanding of the origins of heterogeneity of the
viral replication. The knowledge could be further utilized in the analyses of variability of
other virus infections, such as HBV, HCV, SARS-CoV-2.
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