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Abstract: Let ∆n be the n-dimensional simplex, ξ = (ξ1, ξ2, . . . , ξn) be an n-dimensional random
vector, and U be a set of utility functions. A vector x* ∈ ∆n is a U -absolutely optimal portfolio if
E(u(ξTx∗)) ≥ E(u(ξTx)) for every x ∈ ∆n and u ∈ U . In this paper, we investigate the following
problem: For what random vectors, ξ, do U -absolutely optimal portfolios exist? If U2 is the set
of concave utility functions, we find necessary and sufficient conditions on the distribution of the
random vector, ξ, in order that it admits a U2-absolutely optimal portfolio. The main result is the
following: If x0 is a portfolio having all its entries positive, then x0 is an absolutely optimal portfolio
if and only if all the conditional expectations of ξi, given the return of portfolio x0, are the same. We
prove that if ξ is bounded below then CARA-absolutely optimal portfolios are also U2-absolutely
optimal portfolios. The classical case when the random vector ξ is normal is analyzed. We make a
complete investigation of the simplest case of a bi-dimensional random vector ξ = (ξ1, ξ2). We give a
complete characterization and we build two dimensional distributions that are absolutely continuous
and admit U2-absolutely optimal portfolios.

Keywords: random vector; utility function; absolutely optimal portfolio; CARA absolutely opti-
mal portfolio

1. Introduction. Defining the Problem

Let (Ω, K, P) be a fixed probability space and ξ: Ω→ Rn be an n–dimensional random
vector. The random vector ξ = (ξ1, ξ2, . . . , ξn) will be called the vector of return rates (or
the financial market). Let S be a positive number. A portfolio of sum S is a vector x ∈ Rn

+

with the property that x1 + . . . + xn = S. The set of all portfolios of sum S will be denoted by
∆n(S). A standard portfolio is a portfolio of sum 1, that is, an element of standard simplex
∆n(1).

We shall also use the set Pn−1(S) = {x ∈ Rn−1|xi ≥ 0 ∀ i = 1, . . . , n − 1 and x1 + . . . +
xn−1 ≤ S}. Instead of Pn−1(1), we shall write Pn−1. We shall denote by e the n-dimensional
vector with all entries equal to one, that is e = (1, 1, . . . , 1). The return of portfolio x is the
random variable

Y(x) = xTξ = x1ξ1 + . . . + xnξn (1)

A utility function is a continuous non-decreasing function u: I→ R, where I ⊆ R is an
interval. Usually, the interval is either [0,∞) or the whole real line. A utility function of the
form u(x) = erx, x ∈ I (with r > 0) or u(x) = − e−rx, x ∈ I (r > 0) is called a CARA-utility.

The set of CARA-utilities will be denoted with U 3.
The main problem in the portfolio theory is to find “the best” portfolio. How do you

compare two portfolios in order to decide which of them is better? In the framework of
expected utility theory, any decision maker has a utility function U: I→ R and he tries to
maximize the expected utility of a portfolio: that is, he tries to maximize

V(x, ξ; u) = Eu
(

xTξ
)

(2)
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for all portfolios x ∈ ∆n(S), provided that xTξ ∈ I.
From the point of view of expected utility theory, a decision maker with utility u

prefers the portfolio y to portfolio x if

V(x, ξ; u) ≤ V(y, ξ; u)⇔ Eu
(

xTξ
)
≤ Eu

(
yTξ

)
To avoid trivialities, we shall also suppose that the relation (1.2) makes sense; more

precisely, we shall always assume that we deal with utilities having the property u(xTξ) ∈
L1(Ω, K, P) for any x ∈ Rn

+.
A decision maker is called risk-avoiding if the utility is concave. The reason for this is

that if u is concave then, by Jensen’s inequality, Eu(Y) ≤ u(EY) for any random variable Y.
The meaning of this is that such a decision maker always prefers a sure amount of money
to any random one having the same expected value.

We shall assume in the sequel that all the decision makers are risk-avoiding—after all,
they will not be interested in portfolio theory otherwise.

Let U 2(S, ξ) denote the set of all concave utilities, u having the property that u (xTξ)
makes sense and, moreover, u (xTξ) ∈ L1(Ω, K, P) for all x ∈ ∆n(S).

Let ξ be a fixed random vector from Rn and u ∈ U 2(S, ξ) be a fixed utility. Consider
the problem:

P(S): max{Eu(xTξ): x ∈ ∆n(S)}

The meaning of the above optimization problem is that that any rational decision
maker wants to maximize his expected utility. Notice that the mapping x→ Eu(xTξ),
x ∈ ∆n(S) is concave and continuous. The concavity is obvious and the continuity comes
from Lebesgue’s domination principle: if xn → x, the sequence of random variables
(u(xn

Tξ))n converges to u(xTξ) and is dominated by the random variable

maxi(|u(S ξi)|) ∈ L1 (Ω K,P)

As ∆n(S) is a compact set and the mapping h is continuous, the problem P(S) always
has solutions. Moreover, the set of solutions is a closed convex subset from ∆n (S). This is
called the set of optimal portfolios and is denoted by Opt(ξ,S;u). A portfolio x ∈ ∆n (S) is
called an equal weight portfolio if all its entries are equal, that is x =

(
S
n , . . . ., S

n

)
.

Our study was motivated by the following well known fact:

Theorem 1. If ξi, I = 1, 2, . . . , n are independent and identically distributed (i.i.d.) random
variables, ξ = (ξ1, ξ2, . . . , ξn) then the equal weight portfolio is optimal for the problem P(S):

xo =

(
S
n

, . . . .,
S
n

)
∈ Opt(ξ, S; u) for every u ∈ U 2(S, ξ) (3)

In other words, any risk-avoiding decision maker agrees that the equal weight portfo-
lio is optimal, provided that the random variables (ξi)1≤i≤n are i.i.d. Put another way, if the
return of the assets has the same distribution and they are independent, then the investor’s
choice to put the same amount of money in each asset is optimal from the point of view of
the expected utility of the return.

In [1], Samuelson generalized the above result. He showed that the hypothesis “ξi,
I = 1, 2, . . . , n are i.i.d. random variables” may be replaced by a more general condition:

Denote by Fξ the distribution of the random vector ξ, that is Fξ (B) = P(ξ ∈ B). Call
Fξ symmetrical if Fξoσ = Fξ for any permutation σ of the set {1, 2, . . . , n}. Here, ξ σ means
the vector (ξσ(1), ξσ(2), . . . , ξσ(n)).

Samuelson [1] showed that if the distribution of ξ is symmetrical, then the equal
weight portfolio is optimal for the problem P(S).



Mathematics 2021, 9, 2032 3 of 16

Hadar and Russell [2] gave an alternative proof of Samuelson’s result based on
stochastic dominance. In [3], Tamir found a more general condition than that belonging
to Samuelson. He showed that, if Fξoσ = Fξ for σ = (2, 3, . . . , n, 1), then the equal weight
portfolio is optimal for the problem P(S). Thus, it is enough that F(ξ1,ξ2,...,ξn) = F(ξ2,...,ξn,ξ1)

in order that the equal weight portfolio be optimal no matter the concave utility, u. In other
words, the equal weight portfolio is absolutely optimal.

Another direction of research was initiated in Deng and Li [4]. They found necessary
and sufficient conditions for the optimality of equal weight portfolios for the minimum
variance problem.

An interesting problem is to find larger classes of matrices A with the following
properties:

(i) Fξ(Ax) = Fξ(x) for every x ∈ Rn;
(ii) The equal weight portfolio is optimal for the problem P(S);

Tamir’s result [3] for cyclically symmetry of Fξ is the most general condition we know
so far on Fξ .

Definition 1. We state that xo is an absolutely optimal portfolio with sum S if xo ∈ Opt(ξ,S;u) for
every utility u ∈ U 2(S, ξ). We state that ξ (or better Fξ) has the absolute optimal portfolio property
(AOP) if an absolutely optimal portfolio does exist.

In the following, we shall write ‘simply absolute portfolio’ instead of ‘absolutely
optimal portfolio’.

We investigate the following problem: For what random vectors, ξ, do U -absolute
portfolios exist?

In the second section, we recall some facts about stochastic dominance relations and
we prove some auxiliary results.

In Section 3, we solve the problem, if U = U 2, what is the set of concave utility
functions; we find necessary and sufficient conditions in order that Fξ has the AOP property,
i.e., Fξ admits an absolute portfolio. The main result is the following: If x0 is a portfolio
having all its entries positive, then x0 is an absolute portfolio if and only if all the conditional
expectations of ξi, given the return of portfolio x0, are the same.

In Section 4, we prove that, if ξ is bounded below, then CARA-absolute portfolios are
also U2-absolute portfolios. In the case when ξi are rates of returns of assets in a financial
market, then all ξi are bounded below, hence the above assertion holds.

In Section 5, the classical case when the random vector ξ is normal is analyzed.
We make a complete investigation of the simplest case of a bi-dimensional random

vector ξ = (ξ1, ξ2) in Section 6. We give a complete characterization and we build two
dimensional distributions that are absolutely continuous and admit U 2-absolute portfolios.

The AOP property is connected with the stochastic ordering; actually, this means that
the set of probability distributions of the random variables xTξ, x ∈ Pn(S) has a maximum
in the increasing concave order.

2. Stochastic Dominance

The increasing concave order, denoted by “icv”, is extensively used in economics,
where it is called second-order stochastic dominance: see Belzunce [5], Levy [6], Sriboon-
chita [7], or Shaked and Shantikumar [8]. Firstly, let us recall the definition of the increasing
concave order.

Definition 2. Let X,Y be two integrable random variables. We state that X is dominated by Y in
the increasing concave order if:

Eu(X) ≤ Eu(Y) for every concave utility u such that u(X), u(Y) ∈ L1 (4)
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We shall denote this domination relation by “X ≺icv Y”. If the inequality (4) holds
for any concave function, u, not necessarily non-decreasing, we say that X is concavely
dominated by Y and write “X ≺cv Y”. It is known that X ≺cv Y if, and only if, X ≺icv Y
and EX = EY. Notice that the relation “≺icv” is an order relation between the probability
distributions F and G of X and Y and can be better stated as:

F ≺icv G ⇔
∫

udF ≤
∫

udG for every u ∈ U 2 such that
∫
|u|dF,

∫
|u|dG < ∞

In this case, we can restate (3) as:

Proposition 1. Let ξ = (ξ1, ξ2, . . . , ξn) be a random vector with i.i.d. integrable entries and xo =(
S
n , . . . ., S

n

)
with S > 0. Then xTξ ≺icv (xo)Tξ for every x ∈ ∆n(S).

Proof. Let X = (xo)Tξ = S ξ1+ξ2+...+ξn
n . We confirm that E(ξi|X) = E(ξ1|X). Indeed, E(ξi|X)

is a random variable of the form gi(X) having the property that E(ξih(X)) = E(gi(X)h(X)) for
every bounded measurable function h:R→R. As ξi are i.i.d.,

E(ξih(X)) =
∫

xih( S
n (x1 + . . . + xn))dF⊗n(x1, x2, . . . , xn)

=
∫

x1h( S
n (x1 + . . . + xn))dF⊗n(x1, x2 , . . . , xn) = E(ξ1h(X))

The last equality holds because of the equality dF⊗n(xσ(1), . . . ,xσ(n)) = dF⊗n(x1, . . . ,xn).
It follows that E(ξi|X) = E(ξ1|X) ∀ i = 2 , . . . , n.
Consequently X = E(X|X) = E(S ξ1+ξ2+...+ξn

n |X) = S
n (E(ξ1|X) + E(ξ2|X) + . . . +

E(ξn|X)) = S
n ·n·E(ξ1|X) = SE(ξ1|X). It follows that E(ξ1|X) = X/S.

Let x ∈ ∆n(S) be arbitrary and v(x) = u(x/S). Then, by Jensen’s inequality,
Eu(xTξ) = E(E(u(xTξ)|X)) = E

(
Eu(S

(
x1ξ1+...+xnξn

S

)
|X)

)
= E

(
Ev
(

x1ξ1+...+xnξn
S

)
|X)

)
≤

E
(

v(E
(

x1ξ1+...+xnξn
S

)
|X)

)
= E(v(E(ξ1|X))) = E(v(X/S)) = Eu(X).

Therefore, Eu(xTξ) ≤ Eu(X) = Eu((xo)Tξ); hence, xo is indeed optimal. �

Remark. Taking into account the fact that ξi have the same expectation (recall that they are
identically distributed) we could say even more: xTξ ≺cv (xo)Tξ for every x ∈ ∆n(S). Moreover,
from the above proof, one can easily see that the assumption that the entries ξi were i.i.d. was not
essential. What we really used was the fact that the distribution F⊗n is symmetrical (A random
vector ξ = (ξ1, ξ2, . . . , ξn) is said to be symmetrically distributed if all its permutations (ξσ(1),
. . . ,ξσ(n)) have the same distribution as ξ). Thus, the result from Proposition 1 holds for every
symmetrically distributed random vector.

It is important to keep in mind the following simple properties:

Proposition 2.

(i) If X≺icv Y then EX ≤ EY;
(ii) If X≺cv Y then Var(X) ≥ Var(Y);
(iii) If f :R→R is non-decreasing and concave, then X≺icv Y⇒ f (X)≺icv f (Y);
(iv) (Invariance with respect to convolution): If Xj ≺icv Yj, j = 1,2 and (X1, X2) are independent

and (Y1, Y2) are independent, then X1 + X2 ≺icv Y1 + Y2;
(v) (Invariance with respect to mixture): If Fj ≺icv Gj, j = 1,2 and 0 ≤ λ ≤ 1, then (1 − λ)F1 +

λF2 ≺icv (1 − λ)G1 + λG2;
(vi) (Invariance with respect to weak convergence): If Fn ≺icv Gn ∀ n, Supp(Fn) ⊆ [0, ∞), ∀ n.

Supp(Gn) ⊆ [0, ∞) ∀ n and Fn ⇒ F, Gn ⇒ G then F≺icv G.

Proof.

(i) Take the utility u(x) = x;
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(ii) Take the concave function f (x) = − x2;
(iii) Notice that if u,f are non-decreasing and concave, then u◦f is also non-decreasing

concave;
(iv) See, for instance [5–8];
(v) Obvious;
(vi) We know that

∫
udFn ≤

∫
udGn for any concave utility u:[0,∞)→ R and we want

to check that
∫

udF ≤
∫

udG. We claim that
∫

udFn →
∫

udF,
∫

udGn →
∫

udG . The
reason for this is that:∣∣∫ udF−

∫
udFn

∣∣ ≤ ∣∣∫ udF−
∫

min(u, M)dF
∣∣+∣∣∫ min(u, M)dF−

∫
min(u, M)dFn

∣∣ = I1(M) + I2(M, n)

Let ε > 0. Then there exists Mε > 0, such that I1(Mε) < ε/2. The function f = min(u,Mε)
is continuous and bounded; hence, I2(Mε,n)→ 0 as n → ∞ . Thus, for n that is great enough,∣∣∫ udF−

∫
udFn

∣∣ < ε. Therefore,
∫

udFn →
∫

udF,
∫

udGn →
∫

udG .
Thus, our problem becomes:
Let ξ = (ξ1, ξ2, . . . , ξn) be a random vector, S > 0, Fx = P#(xTξ)−1 be the distribution

of the random variable xTξ, and let D(ξ) = {P#(xTξ)−1|x ∈ ∆n(S)}. When does the family
D(ξ) have the greatest element with respect to the order “≺icv”?

Or, even better.
Let F be a probability distribution on Rn, Lx: Rn → R be the linear mappings Lx(y)

= xTy, and Fx = Fo(Lx)−1 and D(F) = {Fx|x ∈ ∆n(S)}. When does D(F) admit the greatest
element with respect to the order “≺icv”?

Then Proposition 1 states that, when F = G⊗n with G a probability distribution on the
real line, then D(F) admits the greatest element. Or, more generally, that if F is symmetric,
it also has the greatest element. �

A portfolio xo ∈ ∆n(S), with the property that Fxo is the greatest element of D(F), will
be called an absolutely optimal portfolio of sum S associated to F. We chose this name
because all risk-avoiding decision makers will agree that this maximal element is the best
among all portfolios of sum S.

We restate the Definition 1. in stochastic order terms:

Definition 3. We state that the random vector ξ has the absolute optimum property (AOP) for sum
S if the family D(ξ) has greatest element with respect to the order “≺icv”. If an absolute optimal
portfolio corresponding to this greatest element is xo ∈ ∆n(S), we will write that ξ has the property
AO (xo) or that ξ ∈ AO (xo). In terms of distributions, we state that F ∈ AO (xo). Precisely:

ξ ∈ AO (xo)⇔ xTξ≺icv (xo)Tξ for every x ∈ ∆n(S)

Or, in terms of distributions:

F ∈ AO (xo) ⇔ F ◦ (Lx)
−1 ≺icv F ◦ (Lxo)−1 for every x ∈ ∆n(S)

where Lx is the linear form Lx (y) = xT y, y ∈ Rn.
Then, for a given S > 0, the class AO of distributions on Rn is defined by:

AO = ∪
xo∈∆n(S)

AO(xo)

3. Properties of Class AO

At this point, we do not know if the AO class contains other distributions on Rn beside
the symmetric ones. However, the following properties of the class AO are immediate. We
shall state them both in terms of random vectors and in terms of distributions.
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Proposition 3. Invariance Properties. Let S > 0 be fixed.

(i) If ξ ∈ AO (xo), a ∈ R, λ > 0 then a·e + λξ ∈AO (xo). Here e = (1, 1, . . . , 1) ∈ Rn

(invariance with respect to scaling);
(ii) If ξ1, ξ2 are independent and both belong to AO (xo), then ξ1 + ξ2 ∈ AO (xo) (invariance

with respect to convolutions);
(iii) If ξ1, ξ2 are independent, A ∈ K is independent on both of them and ξ1, ξ2 ∈AO (xo), then

the random vector ξ = ξ11A + ξ21Ac also belongs to AO (xo) (invariance with respect to
mixtures);

(iv) If (ξn)n is a sequence of non-negative random vectors and ξn → ξ (in distribution), then
ξn ∈ AO(xo) ∀ n implies ξ ∈ AO(xo) (invariance with respect to weak convergence of
nonnegative distributions);

(v) Let ξ ∈ AO(xo). Then xo/S is absolutely optimal among all the portfolios of sum 1, or the
same thing in terms of distributions.

(i) F ∈ AO(xo), a ∈ R, λ > 0 ⇒ δa·1 ∗ Fo(hλ)−1 ∈ AO(xo); here, hλ is the homothety
hλ(x) = λx;

(ii) F1, F2 ∈ AO(xo)⇒ F1∗F2 ∈ AO(xo);
(iii) F1, F2 ∈ AO(xo), 0 ≤ λ ≤ 1⇒ (1 − λ)F1 + λF2 ∈ AO(xo);
(iv) Supp(Fn) ⊆ Rn

+ ∀ n, Fn ⇒ F, Fn ∈ AO(xo) ∀ n⇒ F ∈ AO(xo);
(v) Suppose that xo ∈ ∆n(S) and F ∈ AO(xo), then F ∈ AO(xo/S) as well. This means that

when dealing with distributions of class AO we always can assume that S = 1.

Proof.

(i) The assumption is that xTξ ≺icv (xo)Tξ ∀ x ∈ ∆n(S). Notice that xT(a·e + λξ) = aS +
λxTξ and (xo)T(a·e + λξ) = aS + λ(xo)Tξ. Let X = xTξ and Xo = (xo)Tξ. We know that
X≺icv Xo. Then aS + λX≺icv aS + λXo, because of Proposition 2., the function x 7→
aS + λx is increasingly concave.

(ii) Now we know that xTξ1 ≺icv (xo)Tξ1 ∀ x ∈ ∆n(S) and that xTξ2 ≺icv (xo)Tξ2. By
Proposition 2. (iv), we see that xT(ξ1 + ξ2)≺icv (xo)T(ξ1 + ξ2).

(iii) Let Fj = Po(ξj)−1 with j = 1,2 and 1 − λ = P(A). Then the distribution of ξ is
(1 − λ)F1 + λF2. We assumed that Fj ∈ AO(xo) ⇔ Fj ◦ (Lx)

−1 ≺icv Fj ◦ (Lxo)−1∀
x ∈ ∆n(S), j = 1,2. Then, by Proposition 2. (v), we have (1− λ)

(
F1 ◦ (Lx)

−1
)
+

λ
(

F2 ◦ (Lx)
−1
)
≺icv (1− λ)

(
F1 ◦ (Lxo)−1

)
+ λ

(
F2 ◦ (Lxo )−1

)
or ((1− λ)F1 + λF2) ◦

(Lx)
−1 ≺icv ((1− λ)F1 + λF2) ◦ (Lxo)−1 for every x ∈ ∆n(S), hence (1 − λ)F1 + λF2 ∈

AO(xo).
(iv) A consequence of Proposition 2 (v).
(v) Obvious: xTξ≺icv (xo)Tξ ∀ x ∈ ∆n(S)⇒ xTξ/S≺icv (xo)Tξ/S ∀ x ∈ ∆n(S)⇔ yTξ≺icv

(xo/S)Tξ ∀ x ∈ ∆n(1). �

Important Remark Based on the above proposition, namely on point (v), it suffices to assume that
S = 1. In the sequel we shall agree that always S = 1. Thus, ∆n will mean ∆n(1). Now we
give a necessary and sufficient condition in order that a distribution on Rn, F be in the class AO(xo),
provided that x0

i > 0 for all i = 1, . . . , n.

Proposition 4. Let xo ∈ ∆n be such that x0
i > 0 ∀ i =1, . . . ,n. Let also X0 = (xo)Tξ. Then

ξ ∈ AO (xo) ⇔ E(ξ1

∣∣∣X0 ) = E(ξ2

∣∣∣X0 ) = . . . = E(ξn

∣∣∣X0 ) = X0 (5)

Proof. The easy part is “⇐”. Indeed, let x ∈ ∆n and let u ∈ U 2(1, ξ). Then

Eu(xTξ) = E[Eu(xTξ|X0)] ≤ E[u(E(xTξ|X0)] = E[u(x1E(ξ1|X0) + x2E(ξ2|X0) + . . .+
xnE(ξn|X0))] = Eu(x1X0 + x2X0 + . . . + xnX0) = Eu(X0) = Eu((xo)T ξ);
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hence, xo is an absolute optimum. We prove now “⇒”. Let u ∈ U 2(1, ξ). Consider the
function hu:Pn−1 → R defined by:

hu(x1, . . . ,xn−1) = Eu(x1ξ1 + . . . + xn−1ξn−1 + (1 − x1 − . . . − xn−1)ξn) (6)

�

Suppose that u is differentiable, then hu is also differentiable. Let g = Grad(hu). Thus,

gi(x1, . . . , xn−1) =
∂hu

∂xi
(x1, . . . , xn−1) = E[(ξ1 − ξn)u′(x1ξ1 + . . . + xn−1ξn−1 + (1− x1 − . . .− xn−1)ξn] (7)

Let yo =
(

x0
1, x0

2, . . . , x0
n−1
)
∈ Pn−1. We know that hu attains its maximum at yo and yo

is an interior point in Pn−1. Then:

g(yo) = 0 ⇔ E
[
(ξi − ξn)u′(X0 )] = 0 ∀ i = 1, . . . , n− 1 ∀ u ∈ U 2(1,ξ) (8)

Recall that u is non-decreasing and concave; hence, u’ is decreasing, continuous,
and non-negative. Conversely, any function g:R→ [0,∞) continuous and decreasing is
the derivative of some concave utility. Taking a sequence of this kind of functions that
monotonically converges to 1(−∞,a], we arrive at the conclusion that:

E
[
(ξi − ξn); X0 ≤ a

]
= 0 for every i = 1, . . . , n− 1 and a ∈ R (9)

Denote by B (R) the σ-algebra of the Borel sets on the real line.
Let C = {A ∈ B (R): E((ξi − ξn)1A(X0) = 0}. According to (9), C contains all the intervals

(−∞, a]. Moreover, it fulfills the following conditions:

(i) R ∈ C;
(ii) A ∈ C⇒ Ac ∈ C;
(iii) An ∈ C and (An)n are disjoint⇒ ∪

n
An ∈ C.

Property (i) follows if we let a→ ∞. Property (ii) results from the following series
of equalities: 0 = E(ξi − ξn) − E((ξi − ξn)1A(X0) = E((ξi − ξn)(1 − 1A)(X0). Property (iii)
follows from the Lebesgue’s domination principle.

Such a family of sets is called a Dynkin − system or a U-system. SoC is a U-system that
contains the intervals (−∞, a]. It then contains the U-system generated by these intervals, but it
is standard knowledge that this U-system is the Borel σ-algebra on the real line, B (R). Thus,
C contains all the Borelian sets. The conclusion is that:

E
[
(ξi − ξn) 1A(X0)

]
= 0 ∀ I = 1 , . . . , n− 1 ∀ A ∈ B (R) (10)

By a standard argument (if (10) holds for indicators, then it holds for simple functions
and it holds for positive measurable functions). It follows that:

E
[
ξi f (X0 )] = E

[
ξn f (X0)

]
∀ i = 1, . . . , n− 1 ∀ f : R → R measurable bounded (11)

The conclusion is that E(ξi|X0) = E(ξn|X0). Indeed, E(ξi|X0) is a random variable
of the form ϕi(X0) with the property that E(ϕi(X0)f (X0)) = E(ξif (X0)) for any f that is
measurable and bounded. Hence, E(ϕi(X0)f (X0)) = E(ϕn(X0)f (X0)) for any f that is mea-
surable and bounded; therefore, ϕi(X0) = ϕn(X0). We claim that, in this case, E(ξi|X0) =
X0. Indeed,

X0= E(X0
∣∣X0 ) = E(xo

1ξ1 + . . . + xo
nξn
∣∣X0 ) = x0

1 E(ξ1
∣∣X0 ) + . . . + x0

n E(ξn
∣∣X0 ) =

(x0
1 + . . . + x0

n )E(ξn
∣∣X0 ) = E(ξn

∣∣X0)
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Hence:
E(ξi

∣∣∣X0 ) = E(Xn

∣∣∣X0 ) = X0

As a consequence, we find a necessary condition in order that ξ may have the property
AO.

Corollary 1. If ξ ∈ AO (xo) and x0
i > 0 ∀ I = 1, . . . ,n, then Eξ1 = Eξ2 = . . . = Eξn.

Proof. According to Proposition 3.2, E(ξ1|X0) = E(ξ2|X0) = . . . = E(ξn|X0). If we average
the preceding sequence of equalities, we obtain the conclusion of the Corollary. �

What if ξ∈ AO (xo) but some of the components of xo are equal to 0? Is that possible?
In order to answer this question, let us suppose that the components of ξ are ordered

in such a way that EX1 ≤ EX2 ≤ . . . ≤ EXn. It is possible that some of the expectations
coincide. In general, we shall use the convention:

µ1 ≤ µ2 ≤ . . . ≤ µk < µk+1 = µk+2 = . . . = µn

Denote by INC(k), the set of all random vectors ξ = (ξ1, ξ2, . . . , ξn) with the above
property.

For k = 0, we imply that all the expectations coincide and for k = n − 1 imply that
µn−1 < µn. Then Corollary 1. states that, if ξ has an absolute optimal portfolio with all the
components positive, then ξ ∈ INC(0).

Proposition 5. Let ξ ∈ INC(k) with k ≥ 1.

If ξ has an absolute optimal portfolio xo, then x0
1 = . . . = x0

k = 0. Moreover, Var((xo)Tξ)
≤ Var(xTξ) ∀ x ∈ ∆n.

In words: If an absolute optimal portfolio does exist, it should both maximize the
expectation and minimize the variance.

Proof. Let X0 = (xo)Tξ. Suppose, ad absurdum, that xo
i > 0 for some i ≤ k. Then EX0 < EXn;

hence, X0 cannot be optimal, according to Proposition 2. (i), which states that EXn ≤ EX0.
Therefore, the possible absolute optima must be of the form xo =

(
0, 0, . . . , x0

k+1, . . . , x0
n

)
.

All the portfolios x with xj = 0 ∀ j ≤ k have the property that E(xTξ) = µn = max1≤j≤n µj.
The absolute optimal portfolio xo, provided that it does exist at all, should dominate them
in the “≺icv” order. As it has the same expectation, µn, it should dominate them in the
concave order “≺cv”; according to Proposition 2 (ii), Var((xo)Tξ) ≤ Var(xTξ) for all such x.
If another portfolio, say y ∈ ∆n, would exist such that Var((xo)Tξ) > Var(yTξ), then (xo)Tξ

could not dominate yTξ in the “≺icv” order. �

Let us denote Pn−1(k) = {y ∈ Pn−1: y1 = . . . = yk = 0, yj > 0 ∀ j > k }. Note that Pn−1(0)
is the interior of Pn−1. Let ∆n,k = {x ∈ ∆n: x1 = . . . = xk = 0, xj > 0 ∀ j > k }. Note that
∆n,0 = {x ∈ ∆n: xj > 0 ∀ j}. We want to find necessary and sufficient conditions in order
that ξ ∈ AO (xo), xo ∈ ∆n,k. We shall use the following particular case of Kuhn–Tucker
conditions, which probably is well known:

Lemma 1. Let f: Pn−1 → R be concave and differentiable and let g = Grad(f). Let a ∈ Pn−1 (k).
Then:

f (a) ≥ f (y) ∀ y ∈ Pn−1 ⇔ gj(a) ≤ 0 ∀ j ≤ k, gj(a) = 0 ∀ j > k (12)
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Proof. “⇒”: Let a,y ∈ Pn−1 and ϕa,y: [0,1]→ R be defined as ϕa,y(t) = f ((1 − t)a + ty),
t ∈ [0,1]. Then, ϕa,y is differentiable, concave, and its maximum is at t = 0. Therefore, it is
non-increasing, hence (ϕa,y)’ (0) ≤ 0. As a ∈ Pn−1(k), and we see that:

(ϕa,y)′ (0) = ∑n−1
j=1

(
yj − aj

)
gj(a)= ∑k

j=1 yjgj(a) + ∑n−1
j=k+1

(
yj − aj

)
gj(a) ≤ 0 ∀y ∈ Pn−1

If we choose y ∈ Pn−1(k), the condition becomes ∑n−1
j=k+1

(
yj − aj

)
gj(a) ≤ 0, which of

course implies gj(a) = 0 ∀ j > k (we can choose y = a ± εej with ε > 0 small enough). Thus,
we get:

∑k
j=1 yjgj(a) ≤ 0 ∀ y ∈ Pn−1 ⇒ gj(a) ≤ 0 ∀ j ≤ k

Conversely, if gj(a) ≤ 0 ∀ j ≤ k, gj(a) = 0 ∀ j > k, it is obvious that (ϕa,y)’ (0) ≤ 0; as ϕa,y
is concave, this fact implies that ϕa,y is non-increasing, hence ϕa,y (0) ≥ ϕa,y (1)⇔ f (a) ≥
f (y). �

Proposition 6. Let xo ∈ ∆n,k and Xo = (xo)Tξ. Then ξ ∈ AO (xo)⇔ E(ξj/X0 ≤ a) ≤ E(ξn/X0

≤ a) ∀ j ≤ k, a ∈ R and:
E(ξ j

∣∣∣X0 ) = X0 ∀ j > k (13)

Proof. Let u be a concave differentiable utility, z ∈ Pn−1(k), defined as:

z =
(

0, 0, . . . , x0
k+1, . . . , x0

n−1

)
and hu(y) = Eu(y1ξ1 + ...+ yn−1ξn−1 +(1− y1 –...− yn−1)ξn)

If ξ ∈AO (xo), then the concave differentiable function, hu, attains its maximum at z.
Let g = Grad(hu). According to Lemma 1, gj(z) ≤ 0 ∀ j ≤ k, gj(z) = 0 ∀ j > k or:

E
[
(ξ j − ξn)u′(X0 )] ≤ 0 ∀ j ≤ k, E

[
(ξ j − ξn)u′(X0 )] = 0 ∀ j > k ∀ u ∈ U 2 differentiable (14)

�

In the same way as we did in the proof of Proposition 4., we can take u’ to be 1(−∞, a].
Thus, (14) becomes:

E
[
(ξ j − ξn)1(−∞,a](X0) ] ≤ 0 ∀ j ≤ k, E

[
(ξ j − ξn) 1(−∞,a] (X0)

]
= 0 ∀ j > k ∀ a ∈ R (15)

which implies (13), by the same argument used in the proof of Proposition 4.:

E(ξ j

∣∣∣X0 ) = E(ξn

∣∣∣X0) ∀ j > k

which implies that:

Xo = E(Xo|Xo) =
n

∑
j=k+1

xo
j E(ξ j|Xo) =

(
n

∑
j=k+1

xo
j

)
E(ξn|Xo) = E(ξn|Xo)

Hence, E(ξj|Xo) = Xo for every j > k.
Conversely, if the conditions from the right hand of (13) hold, then E(ξiu’(Xo)) ≤

E(ξnu’(Xo)) ∀ j ≤ k and E(ξiu’(X0)) = E(ξnu’(X0)) ∀ j > k for any u concave that is differen-
tiable and non-decreasing. By Lemma 1., the function hu attains its maximum at xo for any
differentiable concave utility. Thus Eu((xo)Tξ) ≥ Eu((x)Tξ) for any x ∈ ∆n, u differentiable
concave that is non-decreasing. However, the restriction that u be differentiable is not a
serious one: any utility is the uniform limit of differentiable ones.
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Corollary 2. Let xo ∈ ∆n,k. A sufficient condition in order that ξ ∈ AO (xo) is

E
[
(ξ j − ξn)

∣∣∣X0 ] ≤ 0 ∀ j ≤ k, E
[
(ξ j − ξn)

∣∣∣X0)
]
= 0 ∀ j > k (16)

Proof. Obviously, E[(ξj − ξn)|X0] ≤ 0 implies E(ξiu’(X0)) ≤ E(ξnu’(X0)) ∀ u differentiable,
concave, and non-decreasing, such that the integral makes sense. �

4. The Class CARAAO

In this section, we shall deal only with short tailed random vectors. A random vector
ξ = (ξ1,...,ξn) is short tailed if the moment generating functions, mi(t) = E[exp(tξi)], are
finite in a neighborhood of 0. If we consider only CARA utilities of the form u(x) = − e−rx,
we can give the following.

Definition 4. Let xo ∈ ∆n and ξ be a random vector. We say that ξ has the property CARAAO(xo)
(and write ξ ∈ CARAAO(xo)) if:

Ee−r(xo)Tξ ≤ Ee−rxTξ (17)

for any r > 0 such that both the expectations are finite. The union of all the classes CARAAO(xo) is
defined to be the class CARAAO.

It is obvious that, if ξ ∈ AO(xo), then ξ ∈ CARAAO(xo)
The fact is that, in some cases, the classes CARAAO and AO coincide. Some conditions

under which the equality of classes holds are presented in the following proposition.

Proposition 7. Suppose that ξ is bounded below, in the sense that there exists m ∈ R such that ξi
≥ m a.s. ∀ i = 1,...,n. Then, CARAAO(xo) = AO(xo) for every xo ∈ ∆n,0. Or, in words: if all the
components of xo are positive, then the classes CARAAO(xo) and AO(xo) coincide.

Proof. Let xo ∈ ∆n,0 and yo =
(
x0

1, x0
2, . . . , x0

n−1
)
∈ Pn−1. Let h: Pn−1 → R defined by

h(x) = e−r(x1ξ1+...+xn−1ξn−1+(1−x1−...−xn−1)ξn), x ∈ Pn−1

The function h is concave and attains its maximum at yo, which is an interior point of
the compact Pn−1. Let X0 = (xo)Tξ. Then:

(Grad h)(yo) = 0⇔ E[(Xi − Xn)e−rξ] = 0 ∀ r ≥ 0, i = 1,..,n − 1

Let Z = e−X0 ≤ e –m a.s. The condition (Grad h)(yo) = 0 becomes:

E(ξ jZr) = E(ξnZr) ∀ r > 0 ∀ j = 1, ..., n− 1 (18)

Which further implies:

E(ξjf (Z)) = E(ξnf (Z)) for any polynomial function f, ∀ j = 1,...,n − 1 (19)

As the polynomials are dense in C([0.e−m]), equality (19) holds for any bounded
continuous function, f. The standard procedure is: Approximate the indicators 1(a,b] with
continuous functions and check that (19) implies the equality E(ξj 1(a,b](Z)) = E(ξn 1(a,b](Z))
∀ j = 1,...,n ∀ a < b ∈ R. The conclusion is that E(ξj|Z) = E(ξn|Z) for any j = 1,...,n − 1. As
Z and X0 generate the same σ-algebra; we see that condition (5) is satisfied. The proof is
finalized by applying Proposition 4. �
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Remark. In the case when ξI are rates of returns of assets in a financial market, we have ξi ≥ −1
for all i. The hypothesis that ξi are bounded below from the preceding proposition is verified.

Example. Suppose that ξj ~ Gamma(aj,aj), j = 1,...,n with aj > 0 and (ξj)1≤j≤n are independent.
Then ξ ∈ CARAAO (xo) with:

xo =
( a1

S
,

a2

S
, . . . ,

an

S

)
, S =

n

∑
j=1

aj

Indeed, we have to minimize the function:

h(x1, ..., xn−1) = ln
[
Ee−r(x1ξ1+...+xn−1ξn−1+(1−x1−...−xn−1)ξn)

]
with x ∈ Pn−1

As (ξj)j are independent,

h(x) = a1ln
a1

a1 + rx1
+a2ln

a2

a2 + rx2
+... + anln

an

an + sxn
with xn = 1− x1 − ...− xn−1

After some calculus, one obtains the gradient g = Grad(h). Its components are:

gi(x) =
r2(aixn − anxi)

(ai + rxi)(an + rxn)
thusGrad(h) = 0 ⇔ xi =

a1

an
xn

Therefore, xo =
( a1

S , a2
S , . . . , an

S
)
. From the above proposition, xo is an absolute optimal

portfolio.

Remark. Even for n = 2, it is not true that if ξ1 and ξ2 are independent and Eξ1 = Eξ2, then
(ξ1,ξ2) has the property AO. Suppose that ξ1 ~ Uniform(−a,a) and ξ2 ~ Uniform(−b,b) for some
a,b > 0, a 6= b. Then the minimum point of the function

h(x) = Ee−rxξ1−r(1−x)ξ2 =
sinh(arx)sinh(br(1− x)

abr2x(1− x)
, 0 ≤ x ≤ 1

depends strongly on r; hence, ξ cannot belong to CARAAO.

Counterexample. Proposition 7 says that if the CARA-absolute optimal portfolio is in the interior
of the simplex ∆n, then in many cases it is an absolutely optimal portfolio as well. However, if xo is
not an interior point, if it belongs to the face ∆n,k, k ≥ 1 of the simplex, that fails to be true. Let x1
= (0;1), x2 = (0;3), x3 = (1;3), and x4 = (3;2) four points in the plane, and suppose that (ξ1,ξ2) ~(

x1 x2 x3 x4
α γ δ β

)
. Then ξ1 ~

(
0 1 3

α + γ δ β

)
, ξ2 ~

(
1 2 3
α β γ + δ

)
.

The condition that xo = (0;1) is the absolute optimal portfolio is that:

E(ξ1|ξ2 ≤ a) ≤ E(ξ1|ξ2 ≤ a) ∀ a

One can easily check that xo = (0;1) is the absolute optimal portfolio if and only if
β ≤ α; xo = (0;1) is an absolute CARA-optimal portfolio if and only if [ β

2α ≤ 1 and 3γ + 2δ

≥ β − α] or [ β
2α > 1 and 3γ + 2δ ≥

(
β

2α

)2
]. ξ1 ≺icv ξ2 ⇔ Eξ1 ≤ Eξ2 ⇔ 3γ + 2δ ≥ β − α.

Thus, there exists no implications that “x0 is an absolute CARA-optimal portfolio,
⇒ x0 is an absolute optimal portfolio” or even “ξ1 ≺icv ξ2 ⇒ xo = (0;1) is an absolute
CARA-optimal portfolio”, as we thought.
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5. The Normal Case

This is the classic case. The literature concerning it is extensive. The unidimensional
normal distributions are very convenient because the “≺icv” order is easy to establish:

Normal (µ,σ2)≺icv Normal (µ’,σ’2)⇔ µ ≤ µ’, σ ≥ σ’.
Moreover, if ξ ~ Normal (µ,C) is a n-dimensional random vector and x ∈ ∆n(S) is a

portfolio of sum S, then xTξ ~ Normal(xTµ, xTCx). Therefore, it is very easy to compare
two portfolios x and y:

xTξ ≺icv yTξ⇔ xTµ ≤ yTµ and xTCx ≥ yTCy (20)

Because these relations are homogeneous, the sum S does not matter; hence, we
always can restrict ourselves to consider only portfolios from ∆n.

We can now answer the question: when does ξ ∈ AO provided that ξ ~ Normal (µ,C)?
Assuming the convention INC(k), we agree that µ1 ≤ µ2 ≤ . . . ≤ µk < µk+1 = µk+2 =

. . . = µn.

Proposition 8. Let ξ ~ Normal (µ,C). Then ξ ∈ AO if the Pareto problem
maximize

(
xTµ

)
minimize

(
xTCx

)
xT ·e = 1, x ≥ 0,

(21)

admits at least solution.

Proof. Obvious from (20). �

Proposition 9. Let ξ ~ Normal (µ,C) ∩ INC(k). Then

(i) If k = 0, then ξ ∈ AO;
1. If k ≥ 1 then ξ ∈ AO if at least one solution xo of the problem{

minimize
(
xTCx

)
xT ·e = 1, x ≥ 0,

(22)

has the property that x0
j = 0 ∀ j ≤ k. A sufficient condition for that to happen is that

ci,j ≥ cn,j ∀ j = k + 1,...,n ∀ i = 1,...,k (23)

Proof.

(i) There is nothing to prove: all the portfolios have the same expectation.
(ii) (Replace xn with 1 − x1 − x2 − . . . − xn−1 and let f (x) = Var(xTCx). Then:

f (x) = ∑
1≤i,j≤n−1

ci,jxixj + 2 ∑
1≤i≤n−1

ci,nxi(1− x1 − . . .− xn−1)+

cn,n(1− x1 − . . .− xn−1)
2

(24)

Its gradient g = Grad(f ) has the components:

gi(x) =
n

∑
j=1

(
ci,j − cn,j

)
xj, 1 ≤ i ≤ n− 1 (25)

We claim that the inequalities (23) imply that f attains a minimum at points of the
form xo = (0,..., 0, xk+1,..., xn−1). Notice first that (23) implies that gi(x) ≥ 0 ∀ 1 ≤ i ≤ k
for points of form x = (0,..., 0, xk+1,..., xn−1), because gi(x) = ∑n

j=k+1
(
ci,j − cn,j

)
xj. In order

to prove our claim, let us consider the convex function h: [0,∞) → R, h(s) = f (sx1,...,sxk,
xn-k+1,...,xn−1).
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Note that h’(s) = ∑k
i=1 xigi(sx1, . . . , sxk, xk+1, . . . xn−1); hence:

h′(0) = ∑k
i=1 xigi(0, . . . , 0, xk+1, . . . xn−1) ≥ 0

However, h is convex, hence its derivative is non-decreasing, hence it is non-negative,
therefore h is non-decreasing itself. It follows that:

h(0) ≤ h(1)⇔ f (0,..., 0, xk+1,..., xn−1) ≤ f (x1,..., xk, xk+1,..., xn−1)

In conclusion, f can attain its minimum only in points of the form (0,...,0,xk+1,...,xn−1).
gi(x) = ∑n

j=1
(
ci,j − cn,j

)
xj, 1 ≤ i ≤ n− 1. �

Corollary 9. Let C be a non-negative defined matric. Let ci,· be its i’th row of C. A sufficient
condition that ξ ~ N(µ,C), ξ ∈ INC(k) belong to AO is that ci,· ≥ cn,· ∀ i = 1,2,...,k.

Example. Take µ =

 1
2
2

 and C =

 6 3 2
3 2 1
2 1 2


Note that ξ ~ N(µ,C) ∈ AO(xo) for some xo from ∆3,1 because its first row is greater

than the third one (each component of the first row is greater than the corresponding
component of the third row).

One sees that xo = (0, 1
2 , 1

2 ) implies X0 ~ N(2,
√

3
2

2
). This is the absolute optimum.

Remark. The conditions from Corollary 3. are only sufficient, not necessary. For instance, the

vector ξ ~ N(µ,C) where µ =

 1
a
b

 and C =

 9 0 1
0 9 1
1 1 1

, 1 ≤ a ≤ b admits xo = (0, 0, 1).

Hence, X0 ~ Normal(b,1), in spite of the fact that neither the first row nor the second one are greater
than the third row of the matrix.

Remark. If we want the absolute optimum porfolio to be of the form xo = (0,x2,...,xn), then the
necessary and sufficient condition is that c1,2 ≥ cn,2,..., c1,n ≥ cn,n. This is the same as the condition
c1,· ≥ bn,· Indeed, because ci,j = σiσjρi,j with Var(ξi) = σi

2 and ρi,j is the correlation coefficient
between ξi and ξj, then the inequality c1,i ≥ cn,i is equivalent to σ1ρ1,i ≥ σnρn,i ∀ i = 2,...,n; hence,

σ1 ≥ σn max
(

ρn,2
ρ1,2

, ρn,3
ρ1,3

, . . . , ρn,n
ρ1,n

)
and this clearly implies c1,1 ≥ c1,n ⇔ σ1 ≥ σnρ1,n. However,

for k ≥ 2, this is not true anymore. For instance, for k = 2, the conditions “ci,j ≥ cn,j ∀ j = 3,...,n ∀ i
= 1,2” and “c1,·≥ cn,·, c2,· ≥ cn,·” are not the same; the second one is stronger.

For n = 4, an example could be C =


16 0 4 2
0 9 1 2
4 1 4 1
2 2 1 1

.

Here, σ1 = 4, σ2 = 3, σ3 = 2, σ1 = 1. The minimum point is of form xo = (0,0,α,1 − α),
in spite of the fact that neither the first row nor the second one are greater than the fourth
one. Indeed, the components of the gradient are:

g1(x) = 14x1 − 2x2 + 3x3 + x4, g2(x) = − 2x1 + 7x2 + x4

and has the property that g1(x) ≥ 0, g2(x) ≥ 0 for x ∈∆4,2. The reader may check that
xo = e4. The optimal portfolio is e4 = (0,0,0,1) whenever ξ~N(µ,C) with µ1 ≤ µ2 < µ3 = µ4.
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6. The Case n = 2

In this section, we consider the case when the random vector ξ is bi-dimensional. This
is the next simple case. Now ξ = (X,Y) and instead of writing OA(s,t) with s,t ≥ 0, s + t = 1
we write OA(s). We shall give the method of how to construct probability distributions on
R2 with property OA(s), s ∈ [0,1). We shall assume that ξ either has a density f or has a
discrete distribution on the set of integers. The same letter f will denote the density in the
first case and the probability law in the second one: f (x,y) will denote P(X = x,Y = y). We
shall state the conditions in both cases.

The case s > 0. We want the absolute optimum return to be Z = sX + (1− s)Y. According
to Proposition 4, the condition is that E(X|sX + (1 − s)Y) = E(Y|sX + (1 − s)Y).

In terms of densities, the condition means that:∫
{sx+(1−s)y=a}

(x− y) f (x, y)dx = 0∀a (Absolutely continuous case) (26)

∑
{sx+(1−s)y=a}

(x− y) f (x, y) = 0∀a (Discrete case)

Or, explicitly written:∫ (
x− a− sx

1− s

)
f
(

x,
a− sx
1− s

)
dx = 0∀a (Absolutely continuous case) (27)

∑
{x}

(
x− a− sx

1− s

)
f
(

x,
a− sx
1− s

)
∀a (Discrete case)

We shall focus on the absolute continuous case. After the substitution u = x − a in (27)
one obtains: ∫

u f (a + u, a− λu)du = 0∀a
(

with λ =
s

1− s

)
(28)

Let us put ρ(a) = 1
1−s
∫

f (a + u, a− λu)du. Then ρ is a probability density. Let also

pa(u) =
f (a + u, a− λu)
(1− s)ρ(a)

(29)

Then pa is also a probability density and (28) becomes:∫
upa(u)du = 0 ∀a (30)

The meaning of (30) is that, if Za are random variables with density pa, then EZa = 0.
This is very easy to construct; take any random variables and center them. The conclusion
is that we may construct as many distributions F ∈ OA(s) as follows:

(i) Take a probability density on [0,∞), denoted by ρ;
(ii) Take a family of densities on the real line, pa, with property (30);
(iii) Set f (a + u, a− λu) = (1− s)pa(u)ρ(a) or substituting a + u by x and a− λu by y, we

obtain:

f (xy) = (1− s)psx+(1−s)y((1− s)(xy))ρ(sx + (1− s)y) and F = f · λ2 (31)

where λ2 is the Lebesgue measure in the plane.
Then F ∈ OA(s).

Example 1. Take pa = 1
2a 1[−a,a] and ρ = 1[0, 1]. Then:

f (x, y) = (1− s)psx+(1−s)y((1− s)(y− x))ρ(sx + (1− s)y) =
1− s

2(y− s(y− x))
1∆(x, y)
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where ∆ is the interior of the triangle ABC with A(0,0), B(0, 1
1−s ), C( 1+2s

2s , 1−4s2

4s(1−s) ).

Notice, as a particular case, that if s = 1
2 , then f (x,y) = 1

2(x+y)1∆(x, y) with A(0,0), B(0,2),
C(2,0); and now the distribution F is symmetric. The reason for this is that all the densities,
pa, are symmetrical. The general form of a density of a distribution F ∈ OA( 1

2 ) is:

f (x, y) =
1
2

p x+y
2

(
x− y

2

)
ρ

(
x + y

2

)
which, of course, may not be symmetric.

A sufficient condition that the equality (28) holds is that the density, f, satisfies the
condition:

f (a + x,a − λx) = f (a − x, a + λx) for any a,x (32)

This condition is similar to the symmetry. We can construct many such densities,
starting with a symmetric density. It is enough to take a symmetric density, call it g,
(meaning that g(x,y) = g(y,x) ∀ x,y !). The reader can check that:

f (x, y) =
2

1− s
g
(

2s− 1
1− s

x + 2y,
x

1− s

)
(33)

is a density that satisfies (32). For s = 1
2 we discover again the symmetric densities because

(33) becomes f (x,y) = 4g(2y,2x).

Example 2. g(x,y) = 1[0, 1]×[0, 1](x,y)⇒ f(x,y) = 2
1−s 1D(x,y) where D = {(x, y) ∈ R2 : 0 ≤ x ≤

1− s, 0 ≤ (2s− 1)x + (2− 2s)y ≤ 1− s}.

This is the uniform distribution in the interior of the parallelogram ABCD with A(0,0),
B(t, (s− t)/2), C(t,s), D(0, 1

2 ). Here t = 1− s. If g would be the uniform density in the interior
of the unity circle, then f would be the density for the uniform density in the interior of
some ellipse, etc.

The case s = 0. The condition is that E(X; Y≤ a)≤ E(Y; Y≤ a) ∀ a. A sufficient condition
is that E(X|Y) ≤ Y. Otherwise written, the pair (Y,X) should be a sub-martingale (or rather
the first two terms of a sub-martingale). It is very easy to construct such distributions.

7. Conclusions

Our work was motivated by a result from mathematical folklore, which states that
in the case of a financial market where the asset rates of return are i.i.d., the equal weight
portfolio was an optimal portfolio for all risk-averse investors. Our attention was focused
on finding necessary and sufficient conditions for the distribution of a financial market
so that the equal weight portfolio is the optimal portfolio for all risk-averse investors.
We generalized the previous problem by replacing the equal weight portfolio with a
given portfolio. The necessary and sufficient conditions found were formulated using
the conditional mean. In case the financial market has two assets, we have provided an
algorithm for construction of the financial market that admits a given optimal portfolio.
It is a challenge to find algorithms for the construction of probability distributions with
property AOP in the case n > 2. The study in this paper could be developed considering
sets of utility functions whose derivatives have a constant sign. For example, one can study
existence conditions for absolute portfolios when the set of utility functions is composed
from U 2 utility functions that have a non-negative third derivative. More generally, one
can investigate existence conditions for absolute portfolios in the case where the set U of
utility functions is composed of functions u with the property that (−1)iu(i) ≤ 0, i = 1, 2,
. . . , k.
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