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Abstract: Pension funds became a fundamental part of financial security in pensioners’ lives, guaran-
teeing stable income throughout the years and reducing the chance of living below the poverty level.
However, participating in a pension accumulation scheme does not ensure financial safety at an older
age. Various pension funds exist that result in different investment outcomes ranging from high
return rates to underperformance. This paper aims to demonstrate alternative clustering of Latvian
second pillar pension funds, which may help system participants make long-range decisions. Due to
the demonstrated ability to extract meaningful features from raw time-series data, the convolutional
neural network was chosen as a pension fund feature extractor that was used prior to the clustering
process. In this paper, pension fund cluster analysis was performed using trained (on daily stock
prices) convolutional neural network feature extractors. The extractors were combined with different
clustering algorithms. The feature extractors operate using the black-box principle, meaning the
features they learned to recognize have low explainability. In total, 32 models were trained, and eight
different clustering methods were used to group 20 second-pillar pension funds from Latvia. During
the analysis, the 12 best-performing models were selected, and various cluster combinations were
analyzed. The results show that funds from the same manager or similar performance measures are
frequently clustered together.

Keywords: pension funds; clustering; convolutional neural networks; feature extractor; python

1. Introduction

Retirement is one of the most fascinating yet stressful periods of life. If planned well,
it can bring lots of happiness and fulfillment, but retirement is associated with uncertainty
about financial independence and fear of not having enough savings. One of the ways
to ensure financial security in older age is regularly allocating money for pension funds.
Pension funds are long-term investments in stocks and bonds, with the expected return
serving as an income after retirement.

Pension funds invest in a different and diverse range of assets to balance the risk of
investment loss and earned profit. Investments considered safe usually do not generate
profits as significant as higher-risk investments, which can lead to loss. Many predictive
machine learning models are trained to help reduce the risk of investments by determining
future stock and bond prices [1]. The models usually use past stock price time-series or
their statistical features for training and learn how past prices impact the current value of
investments. Deep learning models such as recurrent neural networks are widely applied
for similar tasks. Mapping history prices to prediction requires more complex non-linear
machine learning models. Such models can capture the hidden patterns between time-series
and handle an abundance of data. However, stock and bond prices are heavily impacted
by external forces that are not directly presented in data and can cause unexpected price
rises or decreases. Therefore, it is unreliable to assess pension fund risk and profitability
based on price prediction. Financial time-series behavior is determined by underlying
patterns and trends within data. Behavior comparison between pension funds can help
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identify their performance while considering the external force effect. The same underlying
factors can impact the price change and stability of multiple pension funds. With this
approach, pension funds can be grouped in separate subsets where each of the subsets
contains pension funds with similar yet distinct behavior.

The best way to group data into smaller subsets that exhibit similar behavior is to
use clustering algorithms. Before the clustering process, pre-trained feature extractors will
be used to extract feature vectors from pension funds. The convolutional neural network
feature extractors will be trained on similar financial data. Before clustering, such feature
extractors will be used as a preprocessing step, because they have learned to identify
important key features and patterns in similar financial data. In addition, they are shift and
translation invariant. Therefore, feature extractors combined with clustering can help find
hidden patterns in pension funds and identify subsets with unique underlying behaviors.

The main goal of this work is to group second-pillar Latvian pension funds using
convolutional neural network extracted features. The paper is structured as follows. First,
in Section 2, a comprehensive literature review is performed. In Section 3, the experiment’s
methodology is described, and in Section 4, the main results are summarized, and the
limitations are discussed. The paper is finished with conclusions.

2. Literature Review

Many publications exist in the pension fund domain covering various topics from
the pension fund importance, the strategies that pension fund managers implement, the
investment risk factors, and their performance. In addition, literature about machine
learning and its types will be discussed. Machine learning has extensive research associated
with its models, performance, and usages in different real-life tasks. A new approach of
financial time-series clustering will be examined. A convolutional neural network (CNN)
feature extractor will preprocess pension fund time-series before clustering. In addition,
some publications of machine learning method application in the pension fund domain
exist and, therefore, will be discussed.

2.1. Pension Funds

Individuals can claim a state pension and retire from work if they reached a certain age
and have spent enough years working. However, pensioners often struggle to make ends
meet with the received state pension. In addition, different factors such as health condition,
housing type, marital status, and gender impact pensioners’ financial deprivation. Women
are more likely to have lower pensions than men because raising children led to taking
breaks in careers. During the career breaks, the number of assets in women’s pension
plans did not increase. The most notable difference between the number of assets held by
each gender was seen in an age group of 55 to 64 [2]. In that age group, men on average
have 65,000 euros in pension plans, while women have only 40,000 euros, thus creating
a relative difference of 35% on the average amount in assets. Being a tenant and having
poor health at an older age contributed to financial deprivation [3]. In addition, increasing
longevity and reduction in birth rates create pronounced demographic changes that strain
the government’s ability to provide an adequate pension for the retired, creating the need
to increase retirement age, since state pension is provided by the government from the taxes
paid by the employed. Thus, the reducing workforce and the rising human lifespan mean
fewer people must support a more significant number of pensioners for a more extended
period. To reduce the number of pensioners living in poverty and increase their income,
different pension schemes have evolved, which can be classified into three pillars [4]:

• The first pillar is a state-based pension scheme that emphasizes poverty prevention;
• Second-tier pension consists of occupational pension schemes that involve regular

employer contributions and have a goal of ensuring adequate income;
• The third pillar is made of voluntary funded plans that supplement the income from

the first two tiers.
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Pension plans can be classified based on the bearer of investment risks into two broad
categories as defined contribution (DC) and defined benefit (DB) [5]:

• In DC-type plans, the employee decides where the money is invested, taking respon-
sibility for the risks associated with investment and potential loss. A pensioner can
outlive the investment, and it is not protected from inflation. Its return depends on
the contributions made and investment performance.

• In the DB type of pension plans, the employer guarantees lifetime pension income
regardless of funds’ performance, thus committing to covering the remainder of
the underperforming fund. The plan provides lifetime income for retirees, which
depends on the salary and years spent working. In addition, DB pension plans protect
investment against inflation and are managed by pension fund supervisors.

Although DC-type plans are gaining popularity due to the risk shift from employer to
employee, DB category pension schemes are still popular among second-tier pension plan
participants in the EU [6].

Pension funds heavily rely on investments in different equities and bonds, which
carry the risk of loss or inability to provide the expected return. Pension fund managers
usually follow the target-date practice using a glide path. The glide path determines
the percentage of the fund invested in equities compared to more stable bonds based on
participants’ age [7]. Its goal is to maximize pension fund profit and reduce the chance of
loss. At the beginning of participation in a pension scheme, a more significant percentage
of investments consist of equities, which help build and increase pension fund value. Later,
the focus of investment switches to lower risk assets such as bonds, so the value the pension
fund reached would be kept stable [8]. However, stocks often outperform bonds and show
a higher return rate over long periods. More conservative funds have a lower percentage
of investments in equities compared to different risk portfolios. Including more bonds in
the pension portfolio when approaching retirement reduces the risk of losing accumulated
funds from equity investments. Equities experience price dips and increases due to the
volatile stock market. Having a large proportion of equities in the portfolio just before
retirement can, in the worst case, lead to a substantial financial loss caused by an equity
decline in value. It can be difficult to recover loss due to income provision to pensioners,
reducing the fund’s overall value. However, using a glide path as a key rule for portfolio
management is not optimal, since it only takes into account the participants’ age relative to
the time left until retirement.

As an alternative to target-date pension fund management, a different investment
strategy of pension schemes has been proposed [9]. Instead of relying on participants’
age, a switch to either more risky or traditional assets is based on cumulative investment
performance and the target investors set to reach at the stage. The switch to different risk
assets could happen at any time. Such strategy has a dynamic approach to asset allocation.
According to the paper [9], it outperforms the target-date strategy in most cases.

The pension fund’s accumulated amount also depends on the managers who provision
the pension fund investments. The manager creates investment portfolios of different asset
classes and equities to keep investments in a specified risk range [10]. In addition, the
manager adjusts the portfolio throughout the time depending on how many years are left
until retirement and the economic situation. When the traditional management style is
used, pension portfolios are composed of investments in securities across all asset classes
based on long-term expected returns. In addition, the manager may also make some asset
allocation decisions that can benefit from short-term market fluctuations. The evidence
suggests that on average, pension fund managers do not add too much value compared
to investments in the market index. This can be explained by the fact that some pension
managers make better investment decisions and perform better, while others use more
impaired judgment. Even small changes in portfolio investment returns can add up to
significant changes in the value of pension funds. However, it does not mean that the
investment portfolios created by individuals perform better compared to the pension funds
managed by fund managers [11]. Data from the United States show that individuals tend
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to reduce the amount invested in equities when approaching pension age and select safer
investments. However, the amount held in equities is still relatively high. More than one
in five workers who are close to retirement hold around 90% of their portfolios in equities,
meaning that in the worst-case scenario, if the equity value dramatically decreases due to a
volatile market, they might face huge losses that might not get recovered.

Detailed descriptions of the Latvian pension system may be found on the Manapensija
web page [12]. Nevertheless, a short summary of the main features of the second pillar
in Latvia and Baltic states, which are similar but have some minor differences, will be
provided. All Baltic states (Estonia, Latvia, and Lithuania) have a three-pillar pension
system. The first pillar is the so-called state social security system based on the Pay-As-You-
Go (PAYG) pension scheme. The second and third pillars are based on the Anglo-Saxon
model with state-funded and supplementary/voluntary schemes. Furthermore, the second
pillar is based on defined contribution (DC) plans managed by private companies (for more
details about the Latvian system, see [12] or [13] about Lithuania). While the second pillar
is mainly compulsory in Latvia, the third pillar is entirely voluntary. Currently, the second
pillar (in August 2021) is diverse and has five category funds: conservative, balanced,
active 100% (of stock), active 75%, and active 50%. The fund is assigned to a category
by a financial market regulator [14] according to pension law (for a summary, see [12] ->
laws and regulations). The category to which the fund will be assigned depends on the
portfolio’s share of risky assets (stocks). Moreover, Latvia, different from Lithuania (which
has 57 life cycle funds) and Estonia (with 25 classical pension funds), is a mixture of these
funds. In Latvia, there are 21 classical funds (all have a long enough history, as some were
introduced in 2002) and 11 life cycle funds (mainly introduced in 2019). Nearly 25% of
participants are concentrated in a single fund Swedbank pensiju ieguldı̄jumu plāns “Dinamika”
class of active 50% funds. This fund controls assets worth over 1.4B EUR. Three funds
share another 25% of the market SEB aktı̄vais plāns, CBL Aktı̄vais ieguldı̄jumu plāns, and
Swedbank pensiju ieguldı̄jumu plāns “Stabilitāte” (all above 8% of participants). The rest (87%
of Latvian pension funds) share 50% of the market (less than 5% each). Such diversity is a
nightmare for system participants, as it is challenging to make a long-term decision.

In addition to the low diversity and high concentration of participants in the few
selected funds, Latvian pension funds rarely receive more in-depth attention from re-
searchers. Most of the existing papers focus on the systematic analysis of pension funds
and how they affect their economy [15]. Some point out fundamental problems such as
high rates of older pensioners being susceptible to poverty or social exclusion [16]. Based
on the research, Latvia has one the highest rates of income inequality among the elderly
in Europe. However, the solutions suggested, such as developing social programs, are
hard to implement and take time to come into effect. Instead of depending on pending
changes, pension fund participants can choose better funds that generate more returns
than other funds. Therefore, more research is needed that evaluates specific pension funds
and compares their performance.

2.2. Machine Learning Models and Their Application to the Real-World Tasks

Machine learning became an increasingly popular artificial intelligence (AI) branch
widely applied to the business world. Its application ranges in a variety of tasks such as
data classification or prediction. Machine learning can be broken down into two main
categories: supervised and unsupervised learning. Supervised learning models are applied
to labeled data, while unsupervised learning models find insights about data without
prior information [17]. A supervised learning subset called deep learning started recently
gaining popularity. Deep learning models can process large amounts of complex data
such as images or speech. Such models reach good results in complex tasks, which require
finding connections within data [18]. Traditionally, recurrent neural networks are used
with sequential data and convolutional neural networks (CNN) are used with images.
However, CNN can also reach high accuracy in sequential data classification [19]. A raw
time-series CNN classifier outperformed other models such as support vector machine
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with weighted dynamic time warping kernel and Gorecki’s method. The CNN classifier
reached the highest accuracy on five out of eight different real-world time-series datasets.
The idea behind using CNN on raw time-series is that its feature extractor can learn to
extract deep features. The features are robust against translation and scaling.

Unsupervised learning algorithms can be used for data clustering that groups data
points into subsets based on their similarity. Clustering methods are widely applied to
customer behavior analysis and segmentation. The clusters from the K-means application
on African credit card transaction data represented customer segments that differed in
spending habits [20]. Customers differed in shopping frequency, the value of items bought,
and the category of purchases. Customer segmentation can help create personalized
marketing strategies and increase credit card popularity.

Clustering methods have different advantages and disadvantages. Their usage de-
pends on the specific problem and data [21]. Partition-based algorithms are high in
computing efficiency but are sensitive to outliers. Hierarchy-based methods perform well
on arbitrary shape data but are high in time complexity. Density-based algorithms are
efficient but highly dependent on the selected parameters. In addition, it was found that
on average, the algorithms perform alike when different clustering methods with various
distance metrics were analyzed [22]. The methods were used on 128 time-series datasets.
The results showed that no algorithm exists that performs best in all datasets. Thus, the
algorithm performance is highly dependent on the dataset used. Clustering algorithms
are primarily used for behavior analysis on static data. The methods are not applied to
time-series data due to their complex properties and temporal ordering, representing value
change over time. Different approaches were developed to convert time-series data into
static representations by extracting predefined statistics before the clustering process [23].

CNN feature extractors can be successfully applied to extract distinct characteris-
tics from images. A study [24] used pre-trained CNN models from the Keras library in
combination with different clustering methods for image grouping. The best-performing
combination pair outperformed or reached similar results as the other four popular state-
of-the-art image clustering methods. Different clustering methods with default parameters
such as K-means, mini-batch K-means, affinity propagation, mean shift, agglomerative hi-
erarchical clustering, DBSCAN, and Birch were used for the analysis. For feature extraction,
pre-trained models such as Inception V3, Resnet 50, VGG 16, VGG 19, and Xception were
used. The results show that the best-performing combination was Xception CNN trained on
ImageNet and used with the agglomerative clustering method. In addition, the DBSCAN
algorithm performed the worst from all clustering algorithms, which was followed by the
mean shift method. This research [24] shows that CNN trained on large datasets with many
classes can extract helpful features that are better than other engineering approaches.

2.3. The Application of Machine Learning in Pension Funds

Machine learning has been applied in various fields such as psychology, web and
social media, the medical field, and risk management. These methods have helped solve
specific problems [17] or understand data better. Different machine learning methods can
be applied to pension funds to derive meaningful information.

Machine learning models can also help determine the optimal retirement utilization
of DC pension funds [25]. A deep neural network model was created to help retirees
decide the best amount to withdraw from the accumulated pension funds that would be
sufficient under a lifetime utility. The model was trained on the retiree’s data such as
age, wealth, risk aversion, portfolio returns, and different economic variables, including
inflation rates and simulated asset returns. The research focused on using the Australian
fund management fees and other practical aspects that influence the received DC benefit.
The model estimates optimal consumption level at a given time and can adjust to different
financial conditions. Finally, the model was compared with six deterministic strategies
that use various criteria and rules to determine the DC pension fund utilization. The
results show the model outperformed all deterministic strategies by providing a higher
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lifetime consumption for all testing scenarios. In addition, the model improved lifetime
consumption utility densities. The model can potentially be used in real life. Another
research [25] shows that the optimal utility is not proportional to the retiree’s wealth. In
addition, it found that gender has a negligible impact on the level of utility due to the
difference in longevity between genders. It also indicates that females have to be cautious
with the consumption rate until the age of 84.

In another paper [26], researchers developed an AI model to detect management
differences among pension fund managers. Japan’s government pension funds’ active
returns and excess earnings have been relatively low, even though the payments to the
asset managers and companies were high. The Style Detector Array model was proposed
to detect pension fund managers’ trading behaviors and help evaluate the profitability and
risks associated with fund management styles. Virtual trading data generated by virtual
managers and market performance metrics were used for training. The investment style
logic was simulated using historical data from 2005 to 2017. The model was able to identify
management styles and capture the changing behavior within a single pension fund. In
addition, the analysis showed that some investment strategies that relied on different
indicators resulted in similar manager behavior. Resembling manager behavior can lead to
similar fund results [26].

Clustering can be used in pension fund analysis to gain more insights into pension
fund behavior and find patterns that help to evaluate their performance [27]. Clustering
analysis was performed on OECD pension fund activity data ranging from 2001 to 2010 [27].
The data contained information about the structure of pension funds, the total sum invested,
and the investment shares in different category assets. Hierarchy-based agglomerative
clustering that uses Ward’s method was chosen. The quality of clusters was evaluated using
the root mean square standard deviation (RMSSTD). The clustering was performed on the
different yearly data such as 2001, 2004, 2007, 2008, and 2009. The goal was to capture the
changes in pension fund investments across the countries. The clusters resulting from all
yearly data except 2004 and 2008 had higher RMSSTD differences; thus, they were not so
homogeneous. In most cases, the analysis resulted in two clusters with yearly changing
composition, indicating that countries were changing their investment policies depending
on the economic circumstances. The comparison of pension fund clusters showed two
groups of pension funds that differ in associated risk of investments. One group invested
more in assets with higher risk, and the other group chose more safe investments.

Another research study [28] that performed pension fund cluster analysis also resulted
in clusters with different associated investment risk. The cluster analysis was performed
on 26 second-tier Lithuanian pension funds ranging from 2011 to 2015. The funds can be
separated into four categories based on the percentage of investments in equity shares.
Three different kinds of raw time-series data such as daily returns, monthly returns, equity
curves, and statistical risk and performance measures (Sharpe, Sortino ratios, STARR,
Rachev, MAD) were used. Four different cases, such as return, risk measures, and perfor-
mance ratios of daily and monthly returns were analyzed. The clustering was performed
using a K-means algorithm with varying distance metrics such as Euclidean, Cosine, Cor-
relation, and Cityblock. The goodness of clusters was evaluated using a silhouette score.
Time-series cluster analysis resulted in the best fund separation using two clusters. The
funds with a higher percentage of investments in equity shares belonged to the same cluster.
A similar result was returned when the performance of daily returns data was grouped
into two clusters. One of the clusters contained almost all conservative funds, while the
other cluster contained the more risky funds. The research [28] shows that the clustering
method could sometimes group funds of similar risk. However, the groups similar to the
official risk categories were returned only by grouping daily returns into four clusters.

The literature analysis showed the importance of pension funds, since pensioners’
financial stability depends on their performance. The pension fund underperformance can
result in pensioners living at the poverty line. Therefore, it is crucial to evaluate pension
funds’ performance long before retirement. The value of pension funds depends on many
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different factors. The investment percentages in equities and bonds, the economic situation,
and the management style impact fund performance. Machine learning methods have been
successfully applied already in the pension fund domain. However, some of the factors that
affect fund value cannot be directly measured or found due to a lack of publicly available
information. Therefore, a different approach to measure the performance of pension funds
is required. Unsupervised learning methods can help get insights about data or create
clusters of elements that are similar. However, the clustering methods are not used on
raw time-series, as seen in the analyzed literature. Clustering methods cannot deal with
raw time-series high dimensionality and have difficulty capturing existing higher-level
patterns. Therefore, a data preprocessing technique that can deal with dimensionality and
extract good features is required. Applying a pre-trained CNN feature extractor on raw
image data gives better performance than other used state-of-art models [24]. In addition,
convolutional neural networks can perform well in tasks not associated with computer
vision. Pre-trained on similar data, a convolutional neural network feature extractor will
be used to extract time-series features that will be clustered with different algorithms.

3. Materials and Methods

The main methods of this research consist of training convolutional neural networks
with different parameters and datasets. The goal is to create models that have learned
to classify better than the classifiers that predict the most frequently occurring class. As
a result, a classifier with a feature extractor, which can generate useful feature maps, is
created. The feature extractors will extract pension fund features from raw time-series, as
seen in Figure 1. Different clustering algorithms with a set of distinct parameters will group
generated feature maps. Their performance will be measured using predefined metrics.
The results of the best feature extractors and clustering algorithms will be discussed.

The CNN network is trained on different data to map time-series of n length to the
class they belong to. Each pension fund divided into m time-series of length n becomes the
trained network’s input. After the feature extractor application, the resulting feature maps
are taken and used as an input of clustering methods.

3.1. Datasets and Preprocessing

Daily historical stock prices from 1970 to 2018 provided by Evan Hallmark at kaggle.com
(accessed on 11 May 2021) were used for training models. The dataset consists of historical
stock prices and historical stock datasets. The historical stock prices have columns such
as ticker (symbol of stock), open price, close price, adjusted closed price, the low price,
the high price, the volume, and the date [29]. The historical stock dataset has the ticker,
exchange name, company name, sector to which it belongs, and industry columns. The
data are grouped into 12 sectors and 136 industries. The adjusted closed price column is
used as an input feature for all models.

The pension fund dataset used for clustering is taken from the Manapensija [12]
website, which provides historical second-tier pension fund prices of 32 pension funds.
Some pension funds from the dataset are still active, while others are not. The dataset
contains the following:

• Column ID.
• Pension fund name.
• Date in force.
• Calculation date.
• NAV value in Latvian lats and euros.
• Amount of units.
• Total asset value in Latvian lats and euros.
• The number of participants.

kaggle.com
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Figure 1. Scheme of CNN application for preprocessing and clustering process.

The dataset contains pension fund information from CBL, Luminor, SEB, SwedBank,
ABVL, INVL, INDEXO, and Nasdaq. In addition, pension funds are divided into groups
based on their risk: active plans (with up to 50, 75, or 100% of stocks), balanced plans, and
conservative plans.

In addition, both datasets used for model training and pension fund clustering numer-
ical columns are scaled X′ = X−min(X)

max(X)−min(X)
before usage. Scaling helps create more stable

models and increases clustering methods’ performance.
The statistical analysis was performed only on pension fund return values. Return first

quartile, mean, third quartile, standard deviation, kurtosis, and skewness were computed
for each pension fund. In addition, the Sharpe ratio, with the risk-free rate equal to 0, was
provided to compare the performance of each fund.

3.2. Training the Neural Networks

A neural network is a base of deep learning networks composed of differently con-
nected neuron interactions. Different neural networks exist, such as artificial neural net-
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works (ANN) and convolutional neural networks (CNN). The Keras library was used for
CNN training [30].

3.2.1. Artificial Neural Networks

ANN is one of the most widely used machine learning algorithms, which can learn
complex patterns within data and is used for prediction or classification. The ability to
learn complex patterns stems from the neural network architecture [31], which is based
on densely connected layers where the outputs of one layer of neurons serve as an input
to other layers of neurons. A neuron is a function that takes features as an input and
multiplies the input by a vector representing a set of parameters called neuron weights and
later adds a bias. The resulting expression is followed by an activation function that adds
non-linearity:

a(x) = θ

(
z(x)) = θ(

n

∑
i=1

xiwi + b

)
,

where θ is the activation function; z—neuron output; x—input features; n—the number of
input features; w—weights; and b—bias.

The choice of the activation function plays a crucial role in the speed of the neural
network and the way it performs. More complex non-linear functions take longer to
compute the result. A modification of one of the most popular activation functions known
for its speed and simplicity is often chosen as an activation function and is called a leaky
rectified linear unit (LReLu): θ(z) = max(αz, z), α is a parameter. Another activation
function that is also quite popular as an output activation function for binary classification
that maps values between 0 and 1 is called sigmoid θ(z) = 1

1+e−z . Multiclass classifiers

have different output activation functions called softmax θ(z) = e−zi

∑j 1+e−zj
.

A neuron is just a single unit of an artificial neural network that usually contains
many layered neurons. Neural layers are densely connected, meaning that each neuron
of one layer will be connected to all neurons from the previous layer. If the neuron takes
data features as an input, it is part of an input layer, and if the neuron takes other neuron
outputs as its input, it is part of an output layer. The real power of the neural network lies
in the back-propagation algorithm, during which each neuron’s weights and biases are
updated to minimize cost function and find its local minima. The cost function evaluates
the model’s ability to map an input to output in terms of numeric values. One of the most
popular cost functions used for the classification tasks is called the cross-entropy function:

C(y, ŷ) = − 1
n

n

∑
i=1

ylnŷ + (1− y)ln(1− ŷ)

where y is the predicted value, ŷ—ground truth value, and n—the number of observations.
In order to find the cost function minima, neuron weights and biases must be adjusted.

In the below equation, the gradient of neuron weights is computed:

∂C

∂w[l]
i

=
∂C

∂z[l]i

∂z[l]i

∂w[l]
i

=
∂C

∂z[l]i

∂
(

w[l]
i a[l−1] + b[l]

)
∂x

=
∂C

∂z[l]i

a[l−1],

where l—the index of layers; i—the index of neurons in a layer; a—the output of activation.
The update of bias values is done similarly. The updated weights of a single neuron

are equal to w[l]
new = w[l]

i − α ∂C
∂w[l]

[i]

, where wnew represents new neuron weights that become

the weights of a neuron used for further computations, w—current neuron weights that
will be updated during back-propagation, and α—a learning rate.

Many optimization algorithms exist that try to speed up the back-propagation algo-
rithm and find better local minima. One of the best optimizers is the Adam algorithm.
It has an adaptive learning rate, which is adjusted based on past observations [32]. An
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optimizer updates weights and adjusts them by moving the weights a step closer to the
local minima. Thus, during each backward pass, weights and biases are updated. Another
important artificial neural network parameter that affects performance is called an epoch.
An epoch is a forward and backward pass of the whole training dataset a single time. Not
enough epochs can lead to underfitting—the model cannot generalize the dataset causing
low performance. However, too many epochs can lead to overfitting, which means the
model adjusts to training data and starts learning the noise. Such a model is unable to
capture the general tendencies in data. The overfitting problem can be avoided by using
regularization methods such as dropout or weight decay. These methods increase the
generalizing ability by decreasing the model’s reliance on certain neurons chosen either by
the value of weights or randomly.

3.2.2. Convolutional Neural Networks

Convolutional neural networks belong to the deep learning algorithm family and are
widely used for image-related tasks. CNN models are mainly used for image classification
tasks. The 2D image data have spatial patterns or repetitions such as edges or visual
patterns. The CNN model’s ability to learn spatial patterns stems from its architecture that
is based on 2 main parts, as seen in Figure 2: the feature extractor and a classifier. The
feature extractor consists of convolution and pooling layers that are used to extract visual
information, which is then fed to the artificial neural network classifier.

Figure 2. Standard CNN architecture.

A convolutional layer is based on convolution operation between the kernel, which is
a small matrix of numbers, and an input image, resulting in a feature map [33]:

G[m, n] = (f ∗ h)[m, n] = ∑j ∑
k

h[j, k]f[m− j, n− k],

where G—a feature map; m—row index of a feature map; n—column index of a feature
map; f—input image; h—filter matrix.

Each convolutional layer contains a filter consisting of n number of kernels that
convolve with input images and result in n feature maps. The number of original image
units (pixels) shifted by a kernel through a single convolution depends on a stride size. If
the stride is equal to 1, then the kernel moves 1 pixel at a time during each convolution.
Since the kernel size is smaller than the original image, it might not cover the image fully
during the convolution; therefore, image padding is used. Valid padding keeps only valid
parts of the image where the kernel could fully convolve. Thus, after the operation, the
feature map size is smaller than the original image. However, the same padding is used
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to keep the feature map the same size as the original image, increasing the image size by
adding zeros. Finally, the convolution operation is followed by non-linearity functions [33].

Another component of the feature extractor is the pooling layer. The pooling layer is
used after the convolution layer to reduce the size of a feature map. Although it reduces di-
mensions, it still keeps the important information. The pooling operation behaves similarly
to a kernel. Instead of transformation, it performs aggregation, taking the maximum value
of overlapping feature map units or their average. Although pooling and convolution
layers contain the kernel or pooling size and stride parameters, they are entirely different.
The pooling layer uses a predetermined aggregation function. In contrast, the convolu-
tional layer filter values are adjusted using the back-propagation algorithm discussed in a
previous section [31].

The number of convolution and pooling layers that the feature extractor contains
depends on a problem. A shallower CNN is used for easier tasks, while more complicated
tasks require more complex architectures. A feature extractor is followed by a flattening
layer that reshapes the final feature maps to a single vector. Such a vector is fed to the
artificial neural network for classification.

A convolutional neural network can also be applied to sequential data interpreted as
a one-dimensional (1D) image consisting of a vector with a sequence. In 1D filters, one
dimension size is equal to the number of vectors used. The other dimension is smaller
than the length of the sequence. In such a network, the kernel or aggregator moves only
through the sequence [19].

3.2.3. Classifier Performance Evaluation

Classifier performance can be evaluated by different metrics, which rely on comparing
correct values to predictions. Correct values can be compared to the predictions by using a
confusion matrix that determines the types of accurate predictions and errors the classifier
makes. The confusion matrix for a binary classification task measures the positive and
negatives classes (positive class refers to a class whose label is 1, while a negative class
refers to a class whose label is 0) to the prediction:

• True positive (TP)—the model correctly predicted a positive label;
• False positive (FP)—the model predicted a positive label when the actual label was

negative;
• True negative (TN)—the model correctly predicted a negative label;
• False negative (FN)—the model predicted a negative label when the actual label was

positive.

A popular way to measure classifier performance is to use the area under the curve
(AUC) receiver operating characteristics (ROC) curve. The AUC-ROC curve measures the
performance at different threshold settings, which separate positive and negative classes
based on their prediction probability. The ROC curve is a probability curve plotted with
TPR on the y-axis and FPR on the x-axis. AUC determines how well the classifier separates
the two classes and is computed by taking the area under the ROC curve. The closer to
1 the AUC value is, the better the model performs; AUC equal to 0.5 means the classifier
cannot distinguish positive and negative classes [34].

3.3. Clustering

Clustering is part of the unsupervised learning algorithm family that groups data into
distinct clusters without prior knowledge of existing labels. Since clustering operates on
unlabeled data, it is an inexpensive way to find subgroups within pension fund data and
analyze their behavior regardless of their risk category. For clustering, different algorithms
from the sklearn library will be used [35]. However, clustering methods do not use labels. As
a result, it is hard to directly understand what behavioral differences exist between clusters
and the relationship of data points that belong to the same cluster. Thus, an additional
cluster analysis is required. In addition, different clustering methods find distinct clusters
that can be completely different. Therefore, it is crucial to evaluate the goodness of each
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cluster combination without using any external labels. Clustering performance is measured
using a silhouette score, which determines how well the clustering algorithm separates
data into clusters. Data points belonging to the same clusters are compared to different
cluster points using some distance metric. The silhouette score value ranges from −1 to
1, where −1 indicates that the data points were assigned to the wrong clusters, while the
score of 1 means clusters are separated [21]. The score of 0 shows that groups overlap [21].
Clustering methods find similarities between data points by calculating distance. Therefore,
different distance metrics are used with some methods.

Clustering methods can be classified into different categories based on the principle
of cluster construction: partition based, hierarchy based, density based, and graph based.
Clustering methods that will be used in this work are grouped based on the categories [21]:

• Partition based: K-means, mini batch K-means;
• Hierarchy based: BIRCH, agglomerative clustering;
• Density based: DBSCAN, OPTICS, mean shift;
• Graph based: affinity propagation.

Clustering algorithms have different parameters that depend on the group they be-
long to and their characteristics. However, some clustering algorithms share the same
parameters, which have similar functions [35]:

• Number of clusters—indicates to how many clusters the algorithm should group data;
• Random state—the seed to use for the pseudo-random number generator responsible

for randomness;
• Min samples—the number of data points surrounding the point required to become a

core of a cluster;
• Algorithm—the algorithm used for pointwise distance computation and nearest-

neighbor calculation;
• Distance—the distance metric used by the algorithm.

Distance metrics are functions that measure the distance between two points. Some
clustering algorithms can use a more diverse range of distance metrics, not only Euclidean.
Other distance metrics that can compute the distance between two vectors using Euclidean
distance as a basis are L2, which returns the Euclidean norm, while Squeclidean calculates
the squared distance, and Seuclidean standardizes the distance. Manhattan (L1 or City-
block) takes the sum of the absolute difference between vectors; Chebyshev computes the
maximum distance. The Minkowski distance is a generalized form of Euclidean or Man-
hattan distances. The weighted Minkowski distance multiplies the difference between two
vector coordinates by some value called weight. Other distance metrics such as correlation,
cosine, Bray–Curtis, and Canberra use different approaches in the distance [22,36].

The silhouette score distance metric will be changed to the same metric used by the
clustering method to evaluate the goodness of clusters more precisely.

3.3.1. Initial Clustering and Feature Extractor Performance

Many different CNN models will be trained and used as feature extractors. Therefore,
it is important to select the best-performing algorithms and discard the models that cannot
extract relevant and distinct features for clustering algorithms. Initial clustering methods
will help evaluate and determine which feature extractors can obtain the most informative
features. Clustering algorithms with good quality features create clusters that have high
silhouette scores. The algorithms selected for this initial process are K-means, mini batch
K-means, BIRCH, and mean shift. Each initial clustering algorithm uses only a couple of
parameters but none of the other distance metrics.

The K-means algorithm creates clusters by randomly selecting the number of points
equal to the clusters expected. The selected points are initial cluster centers used for
distance computation with all other data points [21,37]. The data points closest to the
cluster centers are included in the clusters. Afterwards, the cluster center coordinates
are recomputed to represent the expanded cluster center. The process is repeated until
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all data points are clustered. Since the cluster composition depends on the initial center
coordinates selected, choosing initial data points wisely is important. One of the methods
used for better K-means centroid selection is the K-means++ method. The method selects
centroids in a smarter way than taking random data points and is by default used in the
chosen clustering library. The main K-means algorithm parameters are the number of
clusters and random state discussed in Section 3.3. An enhanced version of K-means called
the mini batch K-means algorithm uses subsets of data for each iteration [21,37]. Using
batches reduces the computational power required to cluster data. The main mini batch
K-means algorithm parameters are the same as the K-means algorithm. However, it has an
additional parameter of batch size, which defines the number of data points used for each
iteration.

The mean shift algorithm uses a different approach for cluster construction compared
to previous methods. The method uses non-parametric kernel density estimation of
underlying data distribution by iteratively shifting data points toward the closest density
surface peak that represents the cluster. The kernel bandwidth, which indicates the shape
of the estimated dataset density, is selected by the estimation function. The function
computes bandwidth value by incorporating the K-nearest neighbors algorithm. Lower
bandwidth values lead to more peaks, while higher values lead to more smoothing and
a lower number of peaks. One of the main parameters of the mean shift algorithm is bin
seeding, which indicates if all points are kernel locations. Another parameter controls if
outliers (data points far from clusters) should also be clustered. The last algorithm used for
initial clustering is the hierarchical-based method BIRCH. It is a method that uses clustering
on a summarized dataset instead of an entire dataset by firstly computing cluster features
using statistical information. Cluster features represent the data of more dense regions.
The cluster features can be composed of more cluster features, thus creating a tree structure
where a global clustering algorithm clusters subclusters of clustering features [21,37]. The
BIRCH algorithm contains a parameter that defines the number of clusters. Another
parameter is a threshold that indicates the radius of the subcluster after combining the
data point with the closest subcluster. However, a new subcluster is created if the radius is
exceeded after the combination process.data point with the closest subcluster. However, a
new subcluster is created if the radius is exceeded after the combination process.

3.3.2. Pension Fund Clustering

After the worst-performing feature extractors are discarded, additional clustering
methods will be used for pension fund analysis. Additional clustering methods are ag-
glomerative clustering, DBSCAN, OPTICS, and affinity propagation.

Agglomerative clustering initially creates clusters equal to the number of samples.
Then, it iteratively merges the most similar clusters based on the chosen linkage and affinity
parameters. Combined clusters have the smallest distance; therefore, the iterative process
creates a clustering hierarchy. The process is repeated until the final predefined number
of clusters is reached. The other clustering methods that can also use different distance
metrics and algorithms are DBSCAN and OPTICS. Both algorithms are density-based and
automatically detect the number of clusters present in the dataset. The DBSCAN method
creates clusters by computationally finding high-density areas using some algorithm and
distance metric on samples. Clusters of such areas are separated by lower-density data
points. The area of high density contains at least a selected number of samples that are
close to each other based on a distance metric and predefined maximum distance between
samples (used to determine if data points are nearby). The samples that are part of a high-
density area are considered core points that belong to a cluster, while samples that are not
close enough to the most immediate high-density area are outliers. The OPTICS algorithm
works similarly to DBSCAN, except it uses a range of values that define the maximum
distance between samples used to determine if they are neighbors and are close to each
other. Affinity propagation is another algorithm that automatically finds the number of
clusters present in the data by iteratively using graphs between data points to find the
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best points representing cluster centers. The main parameter of affinity propagation is the
damping factor, which ranges from 0.5 to 1 and affects the convergence of the method with
higher values leading to faster converging [21].

3.4. Post Hoc Testing

Statistical hypothesis testing will be used to determine if the groups created by the
clustering method are statistically significantly different. Since the distribution of pension
fund raw time-series is unknown, tests that do not assume data distribution will be used.
One of such tests is the non-parametric one-way ANOVA Kruskal–Wallis test, which is used
to determine if all groups have equal medians or at least two groups have differing means.
If the test shows that at least two groups have different medians, then the non-parametric
post hoc Dunn’s tests are used to determine which groups have differing medians.

3.5. Summary of Research Methods

This section discusses the convolutional neural network architecture with different
parameters required to create the classifiers. Different CNN classifiers will be created,
changing key parameters such as kernel size, number of layers, number of filters, and
epochs. The trained models must perform better than a dummy classifier that guesses the
most common class. After the models are trained, their feature extractor performance is
measured by using the silhouette score. The initial clustering methods (K-means, BIRCH,
mini batch K-means, and mean shift) will group pension fund feature maps generated
by each feature extractor. The mean silhouette score reached by each model will be used
to determine their feature extractor performance, and the models that perform better
than others will be selected. The selected feature extractors will be used for further
clustering with algorithms such as DBSCAN, OPTICS, agglomerative clustering, and
affinity propagation. The cluster combinations will be analyzed based on their frequency
of occurrence, and the performance of models and clustering methods will be discussed.
In addition, one of the most frequent cluster combinations will be analyzed using the
non-parametric statistical tests discussed in Section 3.4 to determine if median values are
different between the groups. The possible interpretation of the most common pension
funds will be discussed. Finally, the discussion and future steps will be provided.

4. Results

The research methods discussed in the previous section were implemented using 3.8.0
Python programming language with the Keras, Scipy, and Sklearn libraries. Pension funds
that were analyzed will be presented as well as their basic statistics computed on returns.
In addition, the information about the training process, such as parameter selection and
types of classifiers trained, will be discussed. The initial clustering methods applied to the
extracted features were used to determine and select the best models for data preprocessing
for the other clustering methods. The most frequent cluster combinations returned by
different clustering methods will be discussed, and their interpretation will be provided.

4.1. Pension Fund Analysis

Pension funds that were used for analysis dates range from 2 January 2018 to 26 April
2021. Although the dataset consists of 32 pension funds, only 20 were active during the
selected period; therefore, they were used for the analysis (see Table 1).

The first part of encoding (Table 1) determines the fund management company, while
another part separated by underscore indicates the category.

In order to get some insights into pension fund data, a basic statistical analysis was
performed on pension fund returns (see Table 2).

From Table 2, it is seen that statistical variation exists between different pension fund
returns. Although the mean values of pension funds do not differ that much, more variation
exists in kurtosis and skewness. The pension funds with the lowest return means are CBL_B
and CBL_A_2, since only these two funds have reached negative mean values, indicating
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the loss. The pension funds with the highest means are INVL_A and ABLV_A. The pension
fund with the highest standard deviation belongs to active categories such as CBL_A_2
and ABLV_A. However, lower standard deviation values are observed among conservative
pension funds, with SEB_C_2 and INVL_C having the lowest dispersion. SEB_C_2 and
CBL_C_1 pension funds have the highest Sharpe ratio, and the same funds reached the
lowest ratio with the lowest means. However, this information is not used during the
clustering procedure.

4.2. Convolutional Neural Network Training

One-dimension convolutional neural networks with different parameters and archi-
tectures were trained using a training set and validated on a validation set. The models
were trained on a daily historical stock prices dataset using time-series that tracked price
change over time. The dataset observations from 2010 to 2018 were used for training and
validation, since using a longer period resulted in poorer classifier performance. Two main
types of classifiers seen in Figure 3 were created: price classifiers and category classifiers.
Category classifiers predict the industry or sector to which time-series observation belongs.
Binary price classifiers predict whether the price after the defined number of time-steps
will increase or decrease, and multiclass price classifiers predict to which interval price
change belongs. In total, 4768 different stocks were used to train category classifiers, and
usually, training sets consisted of a few hundred thousand observations.

Table 1. Pension fund names, pension fund name encodings, management company, and risk category to which they
belong.

Pension Fund Name Encoded Name Manager Category

ABLV active investment plan ABLV_A ABLV Active

CBL Aktivais ieguldijumu plans CBL_A_1 CBL Active

Ieguldijumu plans “GAUJA” CBL_A_2 CBL Active

Ieguldijumu plans “INDEXO Izaugsme 47–57” INDEXO_A INDEXO Active

Ieguldijumu plans “INVL Ekstra 47+” INVL_A INVL Active

Luminor Aktivais ieguldijumu plans Luminor_A Luminor Active

SEB aktivais plans SEB_A_1 SEB Active

SEB Eiropas plans SEB_A_2 SEB Active

Swedbank pensiju ieguldijumu plans “Dinamika” Swedbank_A Swedbank Active

Ieguldijumu plans “VENTA” CBL_B CBL Balanced

Ieguldijumu plans “INVL Komforts 53+” INVL_B INVL Balanced

Luminor Sabalansetais ieguldijumu plans Luminor_B Luminor Balanced

SEB sabalansetais plans SEB_B SEB Balanced

CBL Universalais ieguldijumu plans CBL_C_1 CBL Conservative

Ieguldijumu plans “DAUGAVA” CBL_C_2 CBL Conservative

Ieguldijumu plans “INVL Konservativais 58+” INVL_C INVL Conservative

Luminor Konservativais ieguldijumu plans Luminor_C Luminor Conservative

SEB konservativais plans SEB_C_1 SEB Conservative

SEB Latvijas plans SEB_C_2 SEB Conservative

Swedbank pensiju ieguldijumu plans “Stabilitate” Swedbank_C_1 Swedbank Conservative
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Table 2. Statistical analysis of pension fund returns.

Encoding Q1 Mean Q3 Standard
Deviation Kurtosis Skewness Sharpe

Ratio

ABLV_A −0.00206 0.0002 0.00296 0.00562 16.424 −1.865 0.03596

CBL_A_1 −0.00099 0.00016 0.00176 0.00323 14.066 −1.675 0.04872

CBL_C_1 −0.00046 9 × 10−5 0.00072 0.00155 58.139 −4.841 0.05972

CBL_C_2 −0.00042 2 × 10−5 0.00075 0.00319 51.923 −4.836 0.00675

CBL_A_2 −0.00302 −0.00015 0.00321 0.00633 6.2933 −1.33 −0.02422

INDEXO_A −0.00139 0.00026 0.00263 0.00442 10.975 −1.448 0.0582

CBL_B −0.0015 −6 × 10−5 0.00195 0.00431 16.688 −2.514 −0.01394

INVL_A −0.00178 0.00022 0.00266 0.00526 14.894 −1.725 0.04239

Luminor_A −0.0015 0.00016 0.00229 0.00457 31.072 −3.096 0.03567

SEB_A_1 −0.0013 0.00016 0.00222 0.00463 23.401 −2.522 0.03415

SEB_A_2 −0.00163 0.00013 0.00257 0.00517 21.512 −2.329 0.02579

Swedbank_A −0.00129 0.00013 0.00202 0.00379 15.316 −1.821 0.03432

INVL_B −0.00108 0.00016 0.00161 0.00324 21.21 −2.195 0.04849

Luminor_B −0.00081 0.00011 0.00133 0.00302 45.314 −4.171 0.03505

SEB_B −0.00079 0.0001 0.00135 0.00283 27.892 −3.011 0.03426

INVL_C −0.00012 6 × 10−5 0.00033 0.00104 42.75 −4.118 0.05667

Luminor_C −0.00065 3 × 10−5 0.00087 0.00223 60.324 −4.754 0.01169

SEB_C_1 −0.00034 4 × 10−5 0.00059 0.00141 56.096 −4.94 0.02795

SEB_C_2 −0.00016 3 × 10−5 0.0003 0.00046 28.175 −2.727 0.07126

Swedbank_C_1 −0.00032 5 × 10−5 0.00055 0.00123 40.703 −3.78 0.04413

Figure 3. Time-series data labels are based on the type of classifier. Price classifier labels are denoted by comparing tn value
with tm, where m > n.

After labels and observations are prepared, the data were split. The dataset was split
using a stratified split that tries to keep the same class distribution between the training
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and validation set. Random state 42 was provided for the replicability, shuffling was turned
on, and the resulting sets were scaled using the standard scaler fitted on the training set.
Finally, the training and validation sets were prepared for the model. Different model
architectures that have a diverse set of parameters were used. However, the batch size
equal to 32 was kept unchanged, and the optimization algorithm used was Adam. Its
learning rate was sometimes adjusted but mainly equal to 0.0001 was used (the default
learning rate in Keras library is 0.001). Different loss metrics were chosen based on the
classifier task: a binary classifier that outputs only one value uses a binary cross-entropy
function.

In contrast, classifiers that output more values use categorical cross-entropy. All layers
that require activation function except the last layer use LeakyReLU activation with an α of
0.3, which is the default value in Keras. The last layer uses Sigmoid for binary classification
or Softmax for multiclass classification functions. Each classifier is trained on a different
number of epochs depending on the loss.

In total, 32 different models were trained (and each of their architectures are displayed
in Table A1 in Appendix A):

• 15 binary classifiers;
• Eight multiclass classifiers;
• Four sector classifiers;
• Three sector top five classifiers;
• One industry classifier; and
• One industry top 10 classifier.

The bigger the size of the feature extractor, the more complex features it can extract
from the data, since convolution layers get stacked on each other, and one layer’s output
becomes the input of another layer. This leads to the ability to extract higher-level features;
therefore, different CNN architectures were examined. The accuracy of trained models is
provided in Figure 4.

Most of the 32 trained models shown in Figure 4 (more information about the per-
formance is provided in Table A2 in Appendix A) have reached higher AUC values than
the baseline 0.5. In addition, they also achieved higher accuracies than the classifier that
only predicts the most frequent class. The accuracy results indicate that the models’ feature
extractors have learned to extract useful feature maps that help neural classifiers to classify
observations. The baseline accuracy is different for each model, since the models were
trained for various tasks. In addition, five models with the highest AUC scores have
different complexities ranging from the highest complexity of feature extractor with the
size of 10 to 5. However, three of the five models with the lowest measurable AUC scores
have feature extractors smaller than the mode. Still, the other two models have feature
extractors with the size of 10.

4.3. Cluster Analysis

The pension fund dataset used for clustering is not aggregated prior to feature extrac-
tor application, since all models were trained on a raw historical stock dataset that was also
not aggregated. Before feature extraction, pension fund data were scaled and divided into
a selected number of time-steps that were predefined by the model’s input time-steps. The
feature extractor was applied on pension fund time-series, which were later concatenated
and used for clustering. The cluster analysis compared pension fund groupings based on
their frequency of occurrence in clusters returned by different algorithms. All the clustering
method parameters can be seen in Table A3 in Appendix A. The frequency of occurrence
was assessed by mapping counts of how many times different grouping algorithms re-
turned the same clusters to categories: clusters that were returned 80–100% of the time
usually occur, while those that were returned 50–79% of the time were defined as occurring
often, those that were returned 25–49% of the time were defined as occurring sometimes,
those that were returned 10–24% of the time were defined as occurring occasionally, and
those that were returned 0–9% of the time were defined as occurring rarely. The best
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parameters and feature extractors using each clustering algorithm with 2, 6, and 10 clusters
are provided in Table A5 in Appendix C.

Figure 4. The accuracy, AUC, and dummy classifier scores of each model are sorted by AUC score. The black line indicates
the value of AUC at which the model cannot discriminate classes. Some models do not have computed AUC scores.

4.3.1. Initial Clustering Methods

Four clustering algorithms such as K-means, mini batch K-means, BIRCH, and mean
shift, with diverse parameters, were used for initial cluster analysis. The algorithms were
used to compare the performance of different feature extractors based on the computed
silhouette score of clusters. The K-means, mini batch K-means, and BIRCH algorithms
clustered extracted features into 2, 6, and 10 subgroups. Both K-means algorithms used
random state 42, and the BIRCH algorithm used a threshold ranging from 0.1 to 1 with
an increment of 0.1. The mean shift algorithm uses a combination of all-point clustering
parameters, not clustering outlier points, and bin seeding was turned on or off. A single
feature extractor and dataset overlap parameter were used 3648 times by algorithms with
different parameters. However, the overlapping did not give significantly different results
from non-overlapping cases. Therefore, it was not used in further analysis.
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The initial clustering algorithms have similar silhouette score box plots based on
Figure 5.

The algorithms have differing medians, with the BIRCH algorithm reaching the
highest median and the mini batch K-means reaching the lowest. In addition, some
combinations of parameters and feature extractors exist that result in higher silhouette
scores, which are visualized as outliers. Since all clustering methods have outliers, it can
be assumed that a feature extractor outperforms other models.

Few feature extractors outperform other models using all initial clustering methods,
as seen in Figure 6.

Out of three feature extractors with the highest silhouette scores, two are sector
classifiers with less complex feature extractors consisting of four layers, classifying all
sectors and the top five sectors. The other extractor is a multiclass classifier with a bit more
complex feature extractor architecture. However, it is hard to identify feature extractors
that extract less useful features, since other models perform similarly (see Figure 6 and
Table A1 in Appendix A) with some existent variation. In addition, some deviation exists
between different clustering methods that use the same feature extractor. On average, the
mean shift algorithm has reached the highest silhouette score from all algorithms using the
three best feature extractors. However, when the mean shift algorithm is used with other
feature extractors, its performance varies. In addition, in some cases, the method reached
the lowest score compared to other algorithms, implying that the mean shift algorithm
results highly depend on the feature extractor. The BIRCH and K-means algorithms have
low variation in performance, since both algorithms have reached the highest scores or
one of the highest within each feature extractor. However, the BIRCH algorithm mostly
outperforms K-means. The mini batch K-means method performs worst compared to
BIRCH or K-means. It has generally resulted in one of the lowest scores with all feature
extractors, since the mean shift algorithm sometimes outperformed it. In addition, a similar
deviation of silhouette score within the same feature extractor using different clustering
methods is also seen in Figure A1. The figure showing boxplots of each clustering method
for each model confirmed the findings of the performance of the mean shift algorithm.

Figure 5. Silhouette score box plots of initial clustering methods. The black line indicates the mean silhouette score using all
algorithms.
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Figure 6. The initial clustering algorithm mean silhouette score result bar plots based on used models and algorithms with
the black line indicating average silhouette score.

The models used for further clustering analysis were selected based on their average
silhouette scores. The feature extractors that have reached a higher average score than
the average overall silhouette score were selected for further analysis. In Figure 7, the
boxplots of all models are visualized, and the boxplots of models that were chosen for
further analysis are colored red.

Out of 32 models, 13 models were selected (see Figure 8):

• Seven out of 15 binary models;
• One out of eight multiclass classifiers;
• Two out of four sector classifiers;
• One out of three sector top 5 classifiers;
• One out of one industry top 10 classifier.

As seen in Figure 8, all the chosen models except one have feature extractors that
are made of six or fewer layers. All the models that contain fewer layers in the feature
extractor than the mode were selected. Only one feature extractor containing nine layers
was chosen, meaning that the less complex models can extract better feature maps. The
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average AUC score of the chosen models that have such metrics computed is 0.62 (average
AUC is 0.65), indicating that the quality of extracted feature maps does not directly depend
on the AUC score that the models reached. However, five of the models have missing AUC
scores. Although the number of selected model dense layers varies from two to three, all
three models with the highest mean silhouette score have neural network classifiers made
of two layers.

The initial clustering results of selected models with silhouette scores above the mean
score were compared by finding which cluster combinations occur most frequently using a
predetermined number of clusters with K-means, mini batch K-means, BIRCH, and mean
shift methods. When two clusters were used, CBL_A_2 and CBL_B pension funds were
very often grouped into a distinct cluster, indicating that these two funds differ the most
from all other funds; occasionally, the CBL_C_2 fund was included in the cluster.

Figure 7. Different model silhouette score boxplots with the black line indicating average silhouette score. The red color
represents models that were chosen for further analysis.
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Figure 8. Feature extractor size (sum of convolution layers and max pooling layers) bar plot separated by model types
based on their classification task. The black line indicates the mode of feature extractor size. Models with bolded box plot
edges were selected for further cluster analysis.

In addition, as seen in Figure 9, when funds were clustered into six subgroups, the
pension funds that usually formed a distinct cluster when two clusters were used also
were grouped into a separate subgroup most of the time. Among all clustering results,
a pension fund named CBL_C_2 was always isolated, since it belonged to a separate
cluster. Pension funds INVL_C, SEB_A_1, CBL_C_1, Swedbank_C_1, and SEB_C_1 were
often clustered together, although the cluster composition slightly varied, since other
pension funds were occasionally included. However, when funds were grouped into ten
clusters, this combination was split into subgroups where INVL_C, Swedbank_C1 belonged
to the same group, SEB_C_1 was isolated, and CLB_A_1 was linked with Indexo_A most of
the time. In addition, pension funds that are supervised by the same company and belong
to different categories such as SEB_A_2, SEB_B, and SEB_C_2 were often grouped together
when six clusters were used and usually occurred together with ten clusters, while with
the higher number of clusters, Luminor pension funds were also grouped together.
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Figure 9. The frequencies of different cluster combinations using initial clustering algorithm results that clustered the
dataset into six or ten clusters that also have silhouette scores above the mean score.

The clustering results of each initial clustering algorithm were also visualized using the
top 50 clustering results with the best silhouette scores. The same principle as before was
used, except 2, 6, and 10 clusters were visualized in the same graph. Different combinations
of the same cluster were visualized if the most common combination did not cover more
than 50% of the results (a maximum of three frequencies were visualized for the same
cluster). The results of BIRCH and mean shift will be compared to the concatenated results
of all algorithms since, as seen in Figure 6, BIRCH slightly outperformed the K-means.
However, both algorithms had similar performance, and the mini batch K-means performed
worse than both algorithms. In contrast, the mean shift method occasionally reached higher
silhouette scores than all the other models. The pension fund groupings of mini batch
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K-means and K-means using 2, 6, and 10 clusters are displayed in Figures A2 and A3 in
Appendix B.

The initial clustering results when two clusters were used are similar to the BIRCH
algorithm results seen in Figure 10. However, the mean shift algorithm separated the
CBL_C_2 pension fund that was also isolated by both BIRCH and initial clustering algo-
rithms when a higher number of clusters were used.

Figure 10. Top 50 best BIRCH algorithm results based on silhouette score using a different number
of clusters. The cluster value is noted in the parentheses, and a maximum of three frequencies are
visualized for the same cluster if the most frequent or the two most frequent combinations do not
cover more than 50% of the results.

When six clusters were used, the clustering results (Figure 10) differ, since the pension
funds such as INVL_C, SEB_C_1, and Swedbank_C_1 that also frequently occurred together
with initial algorithms were often present when BIRCH was used. However, the cluster
included the Luminor_C pension fund. In addition, the grouping of SEB_A_2, SEB_B,
and SEB_C_2 was also present with the BIRCH algorithm, although the cluster included
Swedbank_A and ABLV_A pension funds. Both initial clustering algorithms and BIRCH
grouped conservative and balanced category pension funds that belong to INVL and
Luminor companies together, although some variation exists. When ten clusters were
used, the BIRCH results and the initial algorithm’s most frequent cluster combinations are
identical.

4.3.2. Clustering Methods of Pension Funds

Four other clustering algorithms such as DBSCAN, agglomerative clustering, affinity
propagation, and OPTICS with diverse parameters were used for further cluster analysis.
For the analysis, the feature extractors with higher silhouette scores were used. The
agglomerative clustering algorithm clustered extracted features into subgroups ranging in
size from two to 10 using different affinity metrics and linkage algorithms. Both OPTICS
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and DBSCAN methods used 3, 5, or 10 minimum samples, different algorithms, and
distance metrics. In addition, DBSCAN also used 0.3, 0.5, or 0.8 maximum distance between
samples, while affinity propagation used random state 42 and damping parameters ranging
from 0.5 to 1 with a 0.05 step.

The DBSCAN and agglomerative clustering algorithms performed the best based on
Figure 11 compared to all other algorithms. In contrast, OPTICS and affinity propagation
performed the worst compared to the initial clustering algorithms, as seen in Figure 5.

Figure 11. Other clustering algorithm result box plots using selected models and different combinations of parameters.

In addition, the DBSCAN and agglomerative clustering algorithms reached higher
silhouette scores than the best performing initial algorithm results. The DBSCAN algorithm
with all the feature extractors except one outperformed other clustering methods, as seen
in Figure 12, and it sometimes reached a silhouette score twice as high as those of other
methods.

Agglomerative clustering performed worse compared to DBSCAN, since it reached a
lower mean silhouette score with all models. However, it still outperformed the affinity
propagation algorithm, although the difference in the performance of both methods was
not as high compared to the DBSCAN. The affinity propagation method with one feature
extractor managed to reach a higher score than the agglomerative clustering. Still, the
difference of scores reached by algorithms was minor. The spectral clustering algorithm
performed the worst out of all initial and other clustering algorithms used for the analysis.
It was the only method that reached negative silhouette score values, meaning the pension
funds were grouped into the wrong clusters. Spectral algorithm results will be omitted
from further analysis, since the algorithm underperformed, and its groupings do not
provide any useful information about funds. In addition, the results of affinity propagation
will also be omitted from the more detailed analysis due to its poor performance, as seen
from the box plot graphs in Figure 11. Based on the mean silhouette score bar plots, it
performed similarly to agglomerative clustering. However, the box plot of the method
is narrow, indicating it reached scores from the lower range and never reached a higher
score than 0.3, which was exceeded by all the initial clustering algorithms and DBSCAN,
agglomerative clustering methods.
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From all the other clustering algorithms, only the agglomerative method uses a
predefined number of clusters. The number of clusters found by other methods varies
based on selected parameters. It is not necessarily equal to the number of analyzed
groups. Therefore, generic analysis of all other algorithm results (without OPTICS) will be
performed. From Figure 13, it is visible that the most frequently occurred combination of
clusters is the same as using an initial clustering algorithms, since the CBL_A_2 and CBL_B
pension funds were grouped.

Figure 12. Initial clustering algorithm mean silhouette score result bar plots based on used models and algorithms. The
black line indicates the mean silhouette score.
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Figure 13. The frequencies of different cluster combinations using other clustering algorithms with omitted OPTICS results
clustered the dataset into two clusters with silhouette scores above the mean score.

In addition, the grouping that sometimes occurred in other clustering algorithm results
that consists of the same grouping as before but with the addition of the CBL_C_2 fund
also occurred using initial algorithms but less frequently. However, a new combination
of pension funds that was not observed using all initial algorithms occasionally occurred
with other clustering algorithms and consisted of isolation of the CBL_B pension fund from
all other pension funds.

The same approach to visualize the most frequently occurring algorithm clusters
was used as before. The clustering results of each algorithm were visualized using the
top 100 groups with the best silhouette scores. The frequency of groups was computed
as before, except all clusters were visualized in the same graph. The cluster number is
noted in the parentheses. The DBSCAN algorithm created only two or three clusters from
pension fund data. Therefore, the high scores reached by the algorithm can be explained
by the smaller number of clusters created. When the algorithm found two clusters, it often
isolated CBL_A_2 and CBL_B funds, similarly to other methods. However, it sometimes
created a unique grouping and isolated CBL_B fund. In addition, occasionally, previously
mentioned funds were grouped with CBL_C_2.

As seen in Figure 12, the agglomerative clustering method most frequently created
similar clusters when two clusters were used with all the other clustering algorithms.
Similarly, Figure 14 shows the results of the agglomerative clustering algorithm.
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Figure 14. Agglomerative clustering algorithm results using a different number of clusters with the number of subgroups
used noted in the parentheses.

When six clusters were used with the agglomerative algorithm, the resulting cluster
combinations varied a lot, since the most frequent combination occurred only occasion-
ally. The only consistent clusters with six subgroups were identical to the most frequent
combinations observed using three clusters. When data were grouped into ten clusters,
the agglomerative algorithm cluster combinations varied slightly less. The combinations
often observed among initial clustering algorithms with the same number of clusters were
also present. The SEB_A_1, SEB_A_2, and SEB_B pension funds subgroup and Swed-
bank_A (the most popular pension fund in Latvia) were isolated. The combinations that
frequently occurred using the affinity propagation algorithm with six clusters are provided
in Table A4.

The most frequently occurring cluster combination seen in Table 3 is used for statistical
test analysis to determine if groups are statistically different. This combination was selected,
since it often occurred among the top 200 clustering groups with the highest scores using
X1_4. The X1_4 feature extractor was chosen, since with it, more clusters had better
silhouette scores.

Table 3. The combination of pension fund clusters usually occurred in the filtered dataset when six
clusters were used. This combination of pension funds will be examined further using statistical
tests.

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

CBL_C_1
INVL_C
SEB_A_1
SEB_C_1

Swed-
bank_C_1

CBL_A_1
INDEXO_A
Luminor_A
Luminor_B
Luminor_C

ABLV_A
INVL_A
INVL_B

Swedbank_A

SEB_A_2
SEB_B

SEB_C_2

CBL_A_2
CBL_B CBL_C_2

The Kruskal–Wallis test was applied on the grouped (groups are visible in Table 3)
pension fund data using raw time-series, and the hypothesis testing resulted in a p-value
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of 0. This value indicates that at least two subgroups do not have the same median. For
further examination, Dunn’s test was applied, and the p-value results for each cluster are
visualized in Figure 15.

Figure 15. The results of Dunn’s test were applied to each cluster and used to compare the means
between the groups.

Based on the results, all clusters are statistically different. In this case, the CNN
feature extractor can extract useful feature maps that allowed clustering algorithms to
group pension funds into statistically significant subgroups.

4.4. The Interpretation of Results and Discussions

This section investigates the possible reasons why some pension funds were separated
or assigned to specific clusters. The convolutional layer method uses the sliding window
principle by multiplying the pension fund time-series with fixed-length kernel weights
and adding a bias. The convolution operation can be interpreted as a process that extracts
the behavioral information of time-series within the predefined period. Therefore, a final
feature map consists of aggregated behavioral information. The extracted feature maps
from pre-trained feature extractors correspond to the behavior that the model learned to
distinguish during the training phase. The models were trained using fewer time-steps than
the overall period of observation. Therefore, the dataset was split into the same number
of time-steps. The feature extractor was applied to each part and later concatenated, thus
creating features that can explain pension fund behavior during each part.

CNN was not trained to reduce input dimensionality but rather to find what feature
map representations lead to the best class separation during the training phase. Quite
often, the dimensions increased after the preprocessing step. Although the input vector
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was reduced after convolution and pooling operations, many different feature maps were
generated that were later flattened. The feature extractor consists of non-linear functions
that use parameters (filter weights) that are adjusted during back-propagation. A single
function returns one feature map; therefore, the number of feature maps depends on the
number of filters used. Usually, the CNN models were trained to generate 64, 128, or
256 feature maps before the flattening layer. It means that the feature extractors in this
study have learned many different non-linear function representations. CNN was chosen
over classical time-series preprocessing steps because such a network reduces the input
vector dimensions and extracts many different features simultaneously. Even though
models were trained on stock data, the feature extractors can also be used for pension
funds. The transition happens in the same financial time-series domain and is similar to
the widely applied transfer learning. The extracted features are relevant, since CNNs were
trained on a raw financial time-series to recognize different patterns that exist in data.

CNN feature extractors consist of stacked convolution and pooling layers. Deeper
CNNs that have more convolution and pooling layers can recognize more complex patterns.
The initial CNN layers tend to learn generic features that, when trained with natural image
data, are similar to Gabor filters and color blobs regardless of a specific dataset-trained
task [38]. Each CNN layer adds more complexity to the features extracted earlier, since
the previous layer output becomes the input of other layers. Hence, complex classification
tasks require deeper convolutional networks, and with each added layer, extracted features
become more specific for the trained task and less generic. The transferability of layers that
have learned patterns depends on how similar the training task is to the new target task
and the complexity of the feature extractor. The more alike training and target tasks are, the
more successfully feature extractors can be transferred. However, the transferability with
feature extractors that contain many layers can be hindered due to deeper layer adaptation
to recognize specific features and patterns. Therefore, a successful transfer would require
training and target tasks to be similar and ensure that the feature extractors recognize more
generic rather specific features.

Although previous papers [24,38] analyzed feature extractors trained on images,
similar results were observed with financial time-series. In this paper, CNN with different
complexity and training tasks were trained on historical stock prices. The only requirement
for trained CNN was to reach higher accuracy on the validation set than the dummy
classifier (most common class). If models could predict classes better than randomly, they
can extract valuable features from raw input data. In this paper, 20 different pension fund
time-series were preprocessed with feature extractors and then clustered. The quality of
feature extractors was evaluated by measuring clusters’ silhouette scores. The silhouette
score measures how similar data points are to their cluster compared to other data points.
If the model had a feature extractor with low transferability (bad feature extractor), then
the resulting pension fund clusters would have a low silhouette score, since all groups
would have very similar features. Using better feature extractors, more distinct features
are extracted.

Out of 32 trained models, 12 had the best feature extractors based on the cluster
analysis of pension funds. All the selected feature extractors had a lower number of
convolution and pooling layers compared to all models. This can indicate that similarly to
previous research [38], CNNs with fewer layers learn to recognize more generic features
that have better transferability, while deeper layers learn to distinguish more specifically
to the training set patterns. Different clustering methods such as K-means, mini batch
K-means, mean shift, BIRCH, agglomerative, affinity propagation, DBSCAN, and OPTICS
with different parameters were used for clustering. Pension funds that were grouped
into 2, 6, and 10 clusters were chosen for the analysis. OPTICS results were excluded
from the analysis, since this method highly underperformed compared to other methods.
Groupings were analyzed by comparing pension fund clusters based on their frequency of
being grouped together. The analysis showed that pension funds from the same company or
category are often clustered together. In addition, Kruskal–Wallis and post hoc Dunn’s tests
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were performed on often occurring cluster combinations with six subgroups. Statistical
tests were performed on raw but scaled time-series data (not the features that were used
for clustering). The results showed that all subgroups had statistically significant different
medians. Such results indicate that feature extractors trained on stock price learned to
recognize distinct and generic features that are also meaningful in other financial domains.

The statistical analysis seen in Table 2 was performed over the selected period returns
of pension funds; this approach is limited. The behavioral information between extracted
features from dataset parts that were concatenated is not displayed. However, it was still
used to try to find the statistical similarities or differences between the pension funds that
were often clustered together. Using Table 2, it is possible to explain why the CBL_C_2
pension fund was often isolated (cluster 5), since it has the lowest positive Sharpe ratio,
which is the standard deviation value that resembles balanced category pension funds, and
a high kurtosis value that differs from all other pension funds. Such values indicate that the
pension fund is highly impacted by jumps or drawdowns of the pension fund’s net value.
The Swedbank_C_1 and INVL_C pension funds (from cluster 0) have similar means, Sharpe
ratios, and standard deviation values that are some of the lowest in all the data analyzed.
Cluster 1 with different category funds belonging to Luminor frequently occurred. The
similarity between funds can be partly explained by both active and balanced funds having
the highest kurtosis and skewness in their categories. Based on Tables 2 and 3, all the funds
from cluster 3 have similar skewness. The conservative fund has the lowest kurtosis in
its group, indicating some statistical similarity based on their return. The CBL_A_2 and
CBL_B (cluster 4) pension funds were first isolated from all other pension funds when only
two clusters were used. They significantly differed from all other pension funds and are
the only pension funds with a negative Sharpe ratio.

Furthermore, different category pension funds that belong to the same supervisor
might exhibit similar behavior due to investments into similar assets. Although such funds
are within the corresponding category risk, they are not diversified enough, resulting in
similar forces that impact the fund’s value. Diversifying fund investments is vital for risk
management, since it can reduce dependence on volatile market price changes affecting
similar equities or bonds. The funds driven by similar factors show resembling behavior.
Since different category funds were clustered together, it can indicate that such pension
funds are not diversified enough. The same category funds that were clustered together
exhibit similar behavior, meaning that the funds behave in a way that is usual for the
corresponding category (such as in clusters 0 and 2). Cluster 0 (in Table 3) contains five
funds, with four belonging to the conservative category and a single SEB active fund. This
grouping can indicate that the active fund behaves similarly to conservative funds and
shows tendencies specific to low-risk funds that do not generate as much return as funds
with higher risk. The same category funds clustered together have characteristics usual to
the category. Therefore, selecting one of such funds can be a sound choice.

Non-parametric hypothesis testing (Figure 15) was performed only on a single clus-
tering combination. More combinations should be analyzed to see if clustering methods
can create statistically significant groups using CNN-extracted pension fund features. In
addition, the most frequently occurring combinations could be analyzed model-wise, since
the models have different performances and the features that are extracted depend on
the model. Therefore, it could be investigated if using the same model with different
algorithms results in cluster combinations with low variation and high frequency. The
statistical analysis could be performed on the predefined pension fund time-steps, since
the models extract characteristics from this range that are later concatenated with other
time-step feature maps. Therefore, it is hard to explain the pension fund groupings by
statistical analysis of whole pension funds.

The statistical tests were performed on only one clustering combination using data
processed by one of the feature extractors. Therefore, it is not known if other feature
extractors can also recognize distinct features. In addition, only one dataset was used to
train different models, and feature extractors were tested on a single type of data. It is not
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known how well feature extractors could perform on different kinds of financial data. In
addition, only a few years’ duration pension fund data were used for the analysis.

In addition, the selected period for the pension fund analysis included the time during
which COVID-19 caused the global financial crisis. Therefore, the composition of clusters
prior to and after the crisis could be analyzed, too.

5. Conclusions

The silhouette scores of different clustering algorithms are consistent with used con-
volutional neural network feature extractors. Different clustering algorithm performances
did not vary much between the models, since all clustering methods performed better
using some feature extractor. The results indicate that each model has learned to identify
different patterns within data and extract different feature maps.

Most of the selected models deemed as good had fewer layers in the feature extractor
part, implying that the less complex architectures or less deep feature extractors generate
feature maps that allow clustering algorithms to find better groupings within data.

On average, the selected models had a lower area under the curve (AUC) score than the
mean score of all models. The models that performed better on the task they were trained
for did not necessarily learn to identify better features than the models with a lower AUC.
The lower AUC score can be attributed to the more shallow composition of the selected
CNN models. In order to get better results in more complicated tasks, more complex and
deeper CNNs are used. Although the chosen classifiers performed worse on the training
task, their feature extractors learned to recognize more generic features that have better
transferability to other similar tasks. These results align with the findings in [38] that show
that less complex image feature extractors have better transferability. Statistical tests were
applied on a frequently occurring pension fund group that resulted from extracted feature
clustering. Kruskal–Wallis and post hoc Dunn’s tests were performed on a raw pension
fund time-series. They showed that groups had statistically significant different medians.
The results show that the clustering algorithms using an extracted features could create
clusters that also resulted in heterogenous pension fund subgroups using raw data.

The most frequently occurring pension fund groupings include subgroups that consist
of different risk category pension funds that belong to the same company, meaning that
the same custodian pension funds exhibit similar behavior that is distinct from all other
pension funds. Examples of such groupings:

1. Conservative, balanced, and active Luminor pension fund grouping.
2. Grouping of two active and one conservative SEB pension funds.
3. A consistent subgroup of CBL active and balanced pension funds.

Active and balanced CBL pension funds that were constantly clustered together and
isolated from other pension funds when the number of clusters used was as low as two
were the only funds with negative return mean and Sharpe ratio values.

Finally, this research answers an important question: clustering is possible using
raw financial data without specifying performance and risk measures (expected return,
variance, Sharpe ratio, Rachev ratio, etc.). Moreover, such clustering ensures that entire
distribution instead of point estimates was used.
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DC defined contribution;
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Appendix A. Trained Model Architectures, Clustering Algorithms, and Parameters

Table A1. Trained model architectures. All convolutional layers use stride 1 and valid padding, max pooling uses a stride
of 2 unless specified otherwise. Dropout uses a 0.2 parameter. The flatten layer is not specified unless dropout was not
used. The values written near the dropout indicate the flattened output of the feature extractor. Some models have the
same architecture but different input sizes. Therefore, the feature extractor output is different for such networks. Multiclass
classifiers compare future prices with the price of the last input element value and predict to which category price change in
percentages will fall. The mapping converts the price change percentage to one of the three categories. If the mapping uses
a range of 3, then the price change label is determined by the range in which the value falls: 3% + increase, from −3% to 3%,
or a greater decrease than −3%.

Model Name and Classifier Type Feature Extractor Neural Network and Neurons

X1_6 (binary price classifier)

16 kernels with size 2 Dropout 896

32 kernels with size 3 Dense 64

Max pooling Dense 1

64 kernels with size 5

128 kernels with size 5

Max pooling

X1_15 (binary price classifier)

16 kernels with size 2 Dropout 896

32 kernels with size 3 Dense 64

Max pooling Dense 1

64 kernels with size 5

128 kernels with size 5

Max pooling

https://www.manapensija.lv/en/2nd-pension-pillar/statistics/
https://www.manapensija.lv/en/2nd-pension-pillar/statistics/
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Table A1. Cont.

Model Name and Classifier Type Feature Extractor Neural Network and Neurons

X2_1 (multiclass price classifier)

32 kernels with size 2 Dropout 1736

64 kernels with size 3 Dense 256

Max pooling Dropout

124 kernels with size 5 Dense 64

Max pooling Dense 3

X2_4 (multiclass price classifier)
X2_3 (multiclass price classifier)

32 kernels with size 2 Dropout 3072

64 kernels with size 3 Dense 64

64 kernels with size 3 Dense 3

Max pooling

128 kernels with size 5

256 kernels with size 3

Max pooling

Y1_1 (sector classifier)

16 kernels with size 2 Flatten 320

Max pooling Dense 64

32 kernels with size 2 Dense 12

Max pooling

64 kernels with size 2

Max pooling

Y1_2 (sector classifier)

32 kernels with size 2 Dropout 256

Max pooling stride 3 Dense 64

64 kernels with size 2 Dense 12

Max pooling stride 3

X1_4 (binary price classifier)

32 kernels with size 2 Dropout 512

Max pooling stride 2 Dense 32

32 kernels with size 2 Dense 1

Max pooling stride 2

Y2_1 (industry classifier)

32 kernels with size 2 Dropout 2304

64 kernels with size 3 Dense 64

64 kernels with size 2 Dense 128

Max pooling

128 kernels with size 2

256 kernels with size 3

Max pooling

256 kernels with size 3

256 kernels with size 3

Max pooling



Mathematics 2021, 9, 2086 35 of 45

Table A1. Cont.

Model Name and Classifier Type Feature Extractor Neural Network and Neurons

X2_2 (multiclass price classifier)

64 kernels with size 2 Dropout 2304

128 kernels with size 3 Dense 256

Max pooling Dense 64

128 kernels with size 5 Dense 3

256 kernels with size 2

Max pooling

X2_7 (multiclass price classifier)
X2_6 (multiclass price classifier)

32 kernels with size 2 Dropout 2560

64 kernels with size 2 Dense 256

64 kernels with size 3 Dense 64

Max pooling Dense 3 (used range 5)

128 kernels with size 2

256 kernels with size 3

Max pooling

256 kernels with size 2

256 kernels with size 2

Max pooling

X1_14 (binary price classifier)
X1_13 (binary price classifier)

32 kernels with size 2 Dropout 1265, 2530

64 kernels with size 3 Dense 256

64 kernels with size 5 Dense 64

Max pooling Dense 1

128 kernels with size 2

256 kernels with size 3

Max pooling

253 kernels with size 3

Max pooling

X1_8 (binary price classifier)
X1_7 (binary price classifier)

64 kernels with size 2 Dropout 4096, 2304

128 kernels with size 3 Dense 256

Max pooling Dense 64

128 kernels with size 5 Dense 1

256 kernels with size 2

Max pooling

X1_9 (binary price classifier)
X1_10 (binary price classifier)
X1_11 (binary price classifier)

32 kernels with size 2 Dropout 1280, 2560

64 kernels with size 3 Dense 64

64 kernels with size 3 Dense 1

Max pooling

128 kernels with size 5

256 kernels with size 3

Max pooling
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Table A1. Cont.

Model Name and Classifier Type Feature Extractor Neural Network and Neurons

X1_12 (binary price classifier)

64 kernels with size 2 Dropout 1024

64 kernels with size 3 Dense 256

Max pooling Dense 64

128 kernels with size 2 Dense 1

Max pooling

128 kernels with size 6

256 kernels with size 3

Max pooling

Y3_1 (sector classifier taking top 5
most frequent sectors)

32 kernels with size 2 Dropout 288

Max pooling Dense 32

32 kernels with size 2 Dense 5

Max pooling

Y3_2 (sector classifier taking top 5
most frequent sectors)

Y3_3 (sector classifier taking top 5
most frequent sectors)

32 kernels with size 2 Dropout 512

64 kernels with size 3 Dense 64

64 kernels with size 2 Dense 5

Max pooling

128 kernels with size 2

256 kernels with size 3

Max pooling

256 kernels with size 3

256 kernels with size 3

Max pooling

Y1_3 (sector classifier)

32 kernels with size 2 Dropout 1265

64 kernels with size 3 Dense 64

64 kernels with size 2 Dense 12

Max pooling

128 kernels with size 2

256 kernels with size 3

Max pooling

253 kernels with size 2

Y1_4 (sector classifier)
X1_2 (binary price classifier)

32 kernels with size 2 Dropout 1024, 1408

64 kernels with size 3 Dense 64

64 kernels with size 2 Dense 12, 1

Max pooling

128 kernels with size 2

256 kernels with size 3

Max pooling

256 kernels with size 3

256 kernels with size 3
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Table A1. Cont.

Model Name and Classifier Type Feature Extractor Neural Network and Neurons

X1_3 (binary price classifier)

16 kernels with size 2 Dropout 1408

32 kernels with size 2 Dense 64

Max pooling Dense 1

64 kernels with size 2

128 kernels with size 2

Max pooling

X1_1 (binary price classifier)
X1_5 (binary price classifier)

64 kernels with size 2 Dropout 256

128 kernels with size 3 Dense 64

Max pooling Dense 1

Y4_1 (industry classifier taking top
100 most frequent industries)

32 kernels with size 2 Dropout 288

Max pooling Dense 32

32 kernels with size 2 Dense 10

Max pooling

X2_5 (multiclass price classifier)

32 kernels with size 2 Dropout 768

64 kernels with size 3 Dense 64

64 kernels with size 2 Dense 3

Max pooling

128 kernels with size 5

128 kernels with size 3

Max pooling

256 kernels with size 3

256 kernels with size 5

Max pooling

X2_8 (multiclass price classifier)

32 kernels with size 2 Dropout 256

64 kernels with size 3 Dense 64

64 kernels with size 3 Dense 3

Max pooling

128 kernels with size 4

128 kernels with size 5

Max pooling

256 kernels with size 3

256 kernels with size 3

Max pooling
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Table A2. The model output and input sizes predict price time-steps, overlap, epochs trained, accuracy, AUC, and dummy
scores. Only price classifiers have defined predict price time-steps. Overlap indicates whether the training and validation
dataset time-series could overlap within observations during the data preparation stage.

Model Name Input Size Predict Price Timestep Overlap Epochs Accuracy AUC Dummy Score

X1_15 50 5 5 300 0.5916 0.6408 0.5133

X1_6 50 5 5 400 0.5969 0.6472 0.5133

X1_5 50 5 0 400 0.5794 0.6263 0.5133

X2_1 60 5 0 300 0.5176 0.6834 0.4707

X2_5 60 5 0 200 0.5514 0.6741 0.5277

X2_8 60 5 0 200 0.5353 0.6881 0.5277

X2_3 60 5 5 200 0.5611 0.7002 0.5277

X2_4 60 5 10 200 0.5556 0.7012 0.5277

X1_9 30 5 5 100 0.5875 0.6331 0.5076

X1_10 30 5 5 100 0.5841 0.6292 0.5076

X1_11 50 5 5 200 0.6074 0.6590 0.5289

X1_14 60 10 10 100 0.5910 0.6371 0.5175

X1_13 100 80 30 100 0.6067 0.6259 0.5817

X2_7 100 80 30 200 0.5235 0.6160 0.5047

X2_6 100 80 30 100 0.5137 0.6167 0.5047

Y1_3 60 - 0 200 0.2834 0.6516 0.1786

Y1_4 60 - 0 200 0.2965 0.6674 0.1786

Y3_2 40 - 0 200 0.3807 0.6759 0.2601

Y3_3 40 - 0 205 0.3918 0.6756 0.2601

Y2_1 100 - 0 400 0.1556 0.7007 0.0704

X1_12 50 5 5 200 0.5915 0.6405 0.5289

X2_2 50 15 20 200 0.5361 0.6749 0.5136

X1_8 80 15 20 200 0.5800 0.6298 0.512

Y1_1 50 - 0 200 0.2320 - 0.1786

X1_4 70 7 0 200 0.5118 - 0.5

Y1_2 40 - 0 150 0.2026 0.5659 0.1786

X1_7 50 15 20 200 0.5800 0.6298 0.5120

Y3_1 40 - 0 180 0.3123 0.6072 0.2601

X1_2 50 5 0 200 0.5388 - 0.5168

X1_3 50 10 0 200 0.5265 - 0.5168

X1_1 50 5 0 400 0.5532 0.5974 0.5133

Y4_1 40 - 0 200 0.3159 - 0.26



Mathematics 2021, 9, 2086 39 of 45

Table A3. Clustering algorithm parameters.

Algorithm Name Parameter Name Parameter Value

K-means, mini batch K-means n_clusters 2 to 10

Birch
n_clusters 2 to 10

threshold 0.1 to 1 with 0.1 step

Mean shift
bin_seeding true, false

cluster_all true, false

Affinity propagation damping 0.5 to 1 with 0.05 step

DBSCAN eps 0.3, 0.5 or 0.8

Optics leaf_size 30

DBSCAN, Optics

min_samples 3, 5 or 10

algorithm, metric

kd_tree Euclidean, l2, Minkowski,
Manhattan, Chebyshev

ball_tree

Euclidean, L2, Minkowski,
Manhattan, L1, Chebyshev,

Wminkowski, Canberra,
Bray–Curtis

brute

Euclidean, L2, Minkowski,
Manhattan, Chebyshev,
Wminkowski, Canberra,

Braycurtis, Correlation, Cosine,
Squeclidean

Agglomerative

n_clusters 2 to 10

linkage Ward, Average, Complete, or single

affinity Euclidean, L1, L2, Manhattan, Cosine
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Appendix B. Clustering Results

Figure A1. Silhouette score box plots for each model using different algorithms.
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Figure A2. Top 50 best mini batch K-means algorithm results based on silhouette score using different number of clusters.
The cluster value is noted in the parentheses, and the most often occurring combinations are visualized.
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Figure A3. Top 50 best K-means algorithm results based on silhouette score using a different number of clusters. The cluster
value is noted in the parentheses, and most often occurring combinations are visualized.

Table A4. Top 100 best affinity propagation algorithm results based on silhouette score using different
parameters that result in a different number of clusters. The table shows the composition of often
occurring cluster combinations when six clusters were used.

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

CBL_C_1
INVL_C
SEB_C_1
SEB_C_2

Swed-
bank_C_1

CBL_A_1
INDEXO_A
Luminor_A
Luminor_B
Luminor_C

ABLV_A
INVL_A
INVL_B

Swedbank_A

SEB_A_1
SEB_A_2

SEB_B

CBL_A_2
CBL_B CBL_C_2

Appendix C. Best Parameters and Models for Each Clustering Algorithm

Table A5. Best parameters of each algorithm with the number of clusters used equally to 2, 6, or 10. The algorithm
parameters column is empty when the best results depend on the model. The best model column is empty if the best result
achieved depended mainly on the method parameters.

Algorithm
Name Clusters Total Com-

binations

Mean
Silhouette

Score
Top Taken

Mean
Silhouette
Score Top

Best Model Algorithm
Parameters

K-means 2 152 0.2638 10 0.6916 Y1_1, Y1_2,
Y3_1 -

K-means 6 152 0.2184 10 0.31 Y1_1 -
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Table A5. Cont.

Algorithm
Name Clusters Total Com-

binations

Mean
Silhouette

Score
Top Taken

Mean
Silhouette
Score Top

Best Model Algorithm
Parameters

K-means 10 152 0.2064 10 0.2931
X1_5,
X1_1,
Y1_1

-

BIRCH 2 1368 0.2746 10 0.7035 Y1_1 -

BIRCH 6 1368 0.228 10 0.3266 X1_5 -

BIRCH 10 1368 0.2165 10 0.314 X1_5 -

Mini batch
K-means 2 152 0.2556 10 0.6916 Y1_1, Y1_2,

Y3_1 -

Mini batch
K-means 6 152 0.2017 10 0.303 Y1_1, Y1_2,

Y3_1 -

Mini batch
K-means 10 152 0.1777 10 0.2788 X1_5 -

Mean shift 2 117 0.1856 10 0.2859 Y2_1,
X2_7 -

Agglomerative
clustering 2 400 0.421 10 0.8666 Y1_1, Y1_2,

Y3_1
Affinity:
cosine

Agglomerative
clustering 6 400 0.2216 10 0.4354 -

Linkage:
average or
complete;
Affinity:
cosine

Agglomerative
clustering 10 400 0.2125 10 0.4293 -

Linkage:
average or
complete;
Affinity:
cosine

OPTICS 2 382 0.0813 10 0.3825 X1_3 -

OPTICS 10 1 0.1928 1 0.1928 X1_14

Algorithm:
ball_tree;
Metric:

Bray–Curtis

DBSCAN 2 321 0.4583 10 0.8349 Y1_1, Y1_2,
Y3_1

Algorithm:
brute;

Metric:
correlation,
Bray-Curtis

Affinity
propaga-

tion
6 99 0.2052 10 0.286 Y1_1, X1_5 Damping:

0.5, 0.55, 0.6
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28. Kabašinskas, A.; Šutienė, K.; Kopa, M.; Valakevičius, E. The risk-return profile of Lithuanian private pension funds. Ecnonomic

Res. 2017, 30, 1611–1630. [CrossRef]
29. Kaggle: Daily Historical Stock Prices 1970–2018. Available online: https://www.kaggle.com/ehallmar/daily-historical-stock-

prices-1970-2018 (accessed on 10 March 2021).
30. Keras. Developer Guides. Available online: https://keras.io/guides/ (accessed on 11 May 2021).

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/197675/rrep827.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/197675/rrep827.pdf
https://www.europarl.europa.eu/RegData/etudes/STUD/2014/536281/IPOL_STU(2014)536281_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/STUD/2014/536281/IPOL_STU(2014)536281_EN.pdf
http://www.smf.co.uk/wp-content/uploads/2015/09/Social-Market-FoundationSMF-BSC-030915-Good-Pensions-Introducing-social-pension-funds-to-the-UK-FINAL.pdf
http://www.smf.co.uk/wp-content/uploads/2015/09/Social-Market-FoundationSMF-BSC-030915-Good-Pensions-Introducing-social-pension-funds-to-the-UK-FINAL.pdf
https://www.pensionseurope.eu
http://doi.org/10.2139/ssrn.2289099
https://www.vanguard.com/
https://brattlefiles.blob.core.windows.net/files/7164_target_date_funds_economic__regulatory__and_legal_trends.pdf
http://doi.org/10.1787/9789264077072-5-en
https://www.manapensija.lv/en/2nd-pension-pillar/statistics/
http://doi.org/10.1007/s10479-018-3100-z
https://www.fktk.lv/
http://doi.org/10.2991/icaat-16.2016.17
https://www.emerald.com/insight/content/doi/10.1108/BPMJ-10-2019-0411/full/html#loginreload
http://doi.org/10.1007/s00500-020-04939-z
http://doi.org/10.21629/JSEE.2017.01.18
http://www.scielo.org.za/pdf/arj/v111n3/02.pdf
http://www.scielo.org.za/pdf/arj/v111n3/02.pdf
http://doi.org/10.23919/SAIEE.2020.9142602
http://doi.org/10.1007/s40745-015-0040-1
https://www.ijcai.org/proceedings/2019/394
https://arxiv.org/pdf/2007.09911.pdf
https://www.gpif.go.jp/en/investment/research_2017_1_en.pdf
http://doi.org/10.1080/1331677X.2017.1383169
https://www.kaggle.com/ehallmar/daily-historical-stock-prices-1970-2018
https://www.kaggle.com/ehallmar/daily-historical-stock-prices-1970-2018
https://keras.io/guides/


Mathematics 2021, 9, 2086 45 of 45

31. Wandb. Fundamentals of Neural Networks. 2019. Available online: https://wandb.ai/site/articles/fundamentals-of-neural-
networks (accessed on 11 May 2021).

32. Kingma, D.P.; Lei, B.; Adam, J. A Method for Stochastic Optimization. 2015. Available online: https://arxiv.org/abs/1412.6980
(accessed on 10 May 2021).

33. Yoon, K. Convolutional Neural Networks for Sentence Classification. 2014. Available online: https://arxiv.org/pdf/1408.5882.pdf
(accessed on 11 May 2021).

34. Meysam, V.; Mohammad, G.; Masoumeh, R. Learning Algorithms for IoT Data Classification, Preprint 2020. Available on-
line: https://www.researchgate.net/publication/338853237_Performance_Analysis_and_Comparison_of_Machine_and_Deep_
Learning_Algorithms_for_IoT_Data_Classification (accessed on 11 May 2021).

35. Sklearn. Clustering. Available online: https://scikit-learn.org/stable/modules/clustering.html (accessed on 11 May 2021).
36. Mercioni, M.A.; Holban, S. A Survey of Distance Metrics in Clustering Data Mining Techniques. Conference: ICGSP ’19. 2019.

Available online: https://dl.acm.org/doi/10.1145/3338472.3338490 (accessed on 11 May 2021).
37. Alvarez-Gonzalez, P.; Forsberg, F. Unsupervised Machine Learning: An Investigation of Clustering Algorithms on a Small Dataset.

Blekinge Institute of Technology, Karlskrona Sweden. 2018. Available online: https://www.diva-portal.org/smash/get/diva2:
1213516/FULLTEXT01.pdf (accessed on 11 May 2021).

38. Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How Transferable are Features in Deep Neural Networks? 2014. Available online:
https://arxiv.org/abs/1411.1792 (accessed on 10 August 2021).

https://wandb.ai/site/articles/fundamentals-of-neural-networks
https://wandb.ai/site/articles/fundamentals-of-neural-networks
https://arxiv.org/abs/1412.6980
https://arxiv.org/pdf/1408.5882.pdf
https://www.researchgate.net/publication/338853237_Performance_Analysis_and_Comparison_of_Machine_and_Deep_Learning_Algorithms_for_IoT_Data_Classification
https://www.researchgate.net/publication/338853237_Performance_Analysis_and_Comparison_of_Machine_and_Deep_Learning_Algorithms_for_IoT_Data_Classification
https://scikit-learn.org/stable/modules/clustering.html
https://dl.acm.org/doi/10.1145/3338472.3338490
https://www.diva-portal.org/smash/get/diva2:1213516/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1213516/FULLTEXT01.pdf
https://arxiv.org/abs/1411.1792

	Introduction 
	Literature Review 
	Pension Funds 
	Machine Learning Models and Their Application to the Real-World Tasks 
	The Application of Machine Learning in Pension Funds 

	Materials and Methods 
	Datasets and Preprocessing 
	Training the Neural Networks 
	Artificial Neural Networks 
	Convolutional Neural Networks 
	Classifier Performance Evaluation 

	Clustering 
	Initial Clustering and Feature Extractor Performance 
	Pension Fund Clustering 

	Post Hoc Testing 
	Summary of Research Methods 

	Results 
	Pension Fund Analysis 
	Convolutional Neural Network Training 
	Cluster Analysis 
	Initial Clustering Methods 
	Clustering Methods of Pension Funds 

	The Interpretation of Results and Discussions 

	Conclusions 
	Trained Model Architectures, Clustering Algorithms, and Parameters 
	Clustering Results 
	Best Parameters and Models for Each Clustering Algorithm 
	References

