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Abstract: Rigid shapes should be naturally compared up to rigid motion or isometry, which preserves
all inter-point distances. The same rigid shape can be often represented by noisy point clouds of
different sizes. Hence, the isometry shape recognition problem requires methods that are independent
of a cloud size. This paper studies stable-under-noise isometry invariants for the recognition problem
stated in the harder form when given clouds can be related by affine or projective transformations.
The first contribution is the stability proof for the invariant mergegram, which completely determines
a single-linkage dendrogram in general position. The second contribution is the experimental
demonstration that the mergegram outperforms other invariants in recognizing isometry classes of
point clouds extracted from perturbed shapes in images.

Keywords: shape recognition; Topological Data Analysis; machine learning; computer vision

1. Introduction: Motivations, Shape Recognition Problem, and Overview of Results

Real-life objects are often represented by unstructured point clouds obtained by laser
range scanning or by selecting salient or feature points in images [1]. Point clouds are easy
to store and can be used as primitives for visualization [2]. The above advantages strongly
motivate the problem of comparing and classifying unstructured point clouds.

Rigid objects are naturally studied up to rigid motion or isometry (including reflec-
tions), which is any map that preserves inter-point distances. The recognition of point
clouds of the same number of points is practically solved by the histogram of all pairwise
distances, which is a complete isometry invariant in general position [3].

Real shapes are often given in a distorted form because of noisy measurements, when
points are perturbed, missed or accidentally added. One of the first approaches to recognize
nearly identical point clouds A, B of different sizes in the same metric space, for example,
in Rm, is to use the Hausdorff distance [4] HD(A, B) = min ε ≥ 0 such that the first cloud
A is covered by ε-balls centered at all points of B, and vice versa.

However, we also need to take into account infinitely many potential isometries
of the ambient space Rm. The exact computation of inf f HD( f (A), B) minimized over
isometries f of Rm has a high polynomial complexity already for dimension m = 2 [5]. An
approximate algorithm is cubic in the number of points for m = 3 [6].

This paper extends the 12-page conference version [7], which introduced the new
invariant mergegram but did not prove its continuity under perturbations. In addition to
the proof of continuity, another contribution is Theorem 2 showing how to reconstruct a
dendrogram of single-linkage clustering from a mergegram in general position.

The practical novelty is the harder recognition problem including perturbations of
isometries within wider classes of affine and projective maps motivated by computer vision
applications. Indeed, different positions of cameras produce projectively equivalent images
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of the same rigid shape. The new experiments in Section 6 extensively compared several
approaches on 15,000 clouds obtained from real images; see examples in Figure 1.

Figure 1. Images from the dataset of mythical creatures at http://tosca.cs.technion.ac.il (accessed on
25 August 2021) [8,9].

Problem 1 (isometry shape recognition under noise). Find an isometry invariant of point
clouds in Rm that is (a) independent of a cloud size, (b) provably continuous under perturbations
of a cloud, (c) computable in a near linear time in the size of a cloud, and (d) more efficient for
recognizing isometry classes of clouds than past invariants.

The key contributions are Theorems 2 and 3 and the experiments in Section 6 show-
ing that the mergegram achieves a state-of-the-art recognition on substantially distorted
images.

2. Related Work on Isometry Shape Recognition and Topological Data Analysis

For the isometry classification of clouds consisting of the same number of points,
the easiest invariant is the distribution of all pairwise distances, whose completeness (or
injectivity) was proved for all point clouds in general (non-singular) position in Rm [3].

Fixed point clouds A, B ⊂ Rm of different sizes can be pairwisely compared by the
Hausdorff distance [4] HD(A, B) = max{sup

p∈A
dB(p), sup

q∈B
dA(q)}, where dB(p) = inf

q∈B
d(p, q)

is the (Euclidean or another) distance from a point p ∈ A to the cloud B.
The rigid shape recognition problem for non-fixed clouds A, B is harder because of

infinitely many potential isometries that can match A, B exactly or approximately. Partial
cases of this problem were studied for clouds representing surfaces [10] and when two
clouds have a given isometric matching of one pair of points [11]. Shape Google by
Ovsjanikov et al. practically extends these ideas to non-rigid shape recognition [12].

The most general framework for the isometry shape recognition of point cloud data
was proposed by Mémoi and Sapiro [13]. They studied the Gromov-Hausdorff distance
dGH(A, B) = inf

f ,g,M
HD( f (A), g(B)) minimized over all isometric embeddings f : A→ M

and g : B → M of given point clouds into a metric space M. Since the above definitions
involve even more minimizations over infinitely many maps and spaces, GH can be only
approximated. The Farthest Point Sampling (FPS) has a quadratic complexity in the number
of points (Reference [13], Section 3.6) and was successfully tested on small clouds.

The proposed invariant mergegram extends the 0-dimensional persistence in the area
of Topological Data Analysis (TDA), which grew from the theory of size functions [14].
TDA views a point cloud A ⊂ Rm not by fixing any distance threshold but across all scales
s, for example, by blurring given points of A to balls of a variable radius s. The evolution
of this growing union of balls is summarized by a persistence diagram, which is invariant
under isometries of Rm. TDA can be combined with machine learning and statistical tools
due to stability under noise, which was first proved by Cohen-Steiner et al. [15] and then
extended to a very general form by Chazal et al. [16].

In dimension 0 the persistence diagram PD(A) for distance-based filtrations of a point
cloud A consists of the pairs (0, s) ∈ R2, where values of s are distance scales at which
subsets of A merge by the single-linkage clustering. These scales equal half-lengths of
edges in a Minimum Spanning Tree MST(A). If distances between all points of A are known,
MST(A) is a connected graph with the vertex set A and a minimal total length.

Representing a point cloud A by PD(A) loses a lot of geometry of A, but gains
stability under perturbations, which can be expressed in the case of point clouds as
BD(PD(A), PD(B)) ≤ HD(A, B). Here, the bottleneck distance BD between diagrams is
defined as a minimum ε ≥ 0 such that all pairs of PD(A) can be bijectively matched to

http://tosca.cs.technion.ac.il
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ε-close points of PD(B) or to diagonal pairs (s, s), and vice versa. Here, ε-closeness of pairs
(a, c) and (b, d) in R2 is measured in the distance L∞ = max{|a− b|, |c− d|}.

The mergegram extends PD(A) to a stronger invariant, whose stability under perturba-
tions in the above sense is proved in Section 5 for the first time. The idea of a mergegram
is related to the Reeb graph [17] or the merge tree [18] for the sublevel set filtration of a
scalar function. The mergegram MG is defined at a more abstract level for any clustering
dendrogram, which opens a possibility to extend a Homologically Persistent Skeleton
(HoPeS) visualizing most persistent cycles in point clouds [19].

Since any persistence diagram and a mergegram are unordered collections of pairs,
the experiments in Section 6 use the neural network PersLay [20], whose output is invari-
ant under permutations of input points by design. PersLay extends the neural network
DeepSet [21] and introduces new layers to accept as an input any diagram of unordered
points. In other related work, deep learning was recently applied to outputs of hierarchical
clustering [22–24] and to 0-dimensional persistence [25,26].

3. Single-Linkage Clustering and the Invariant Mergegram of a Dendrogram

Example 1. Figure 2 illustrates the key concepts before formal Definitions 1, 3 and 4 for the point
cloud A = {0, 1, 3, 7, 10} in the real line R. Imagine that we gradually blur original data points by
growing disks of the same radius s around the given points.
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Figure 2. Top: the 5-point cloud A = {0, 1, 3, 7, 10} ⊂ R. Bottom from left to right: single-linkage
dendrogram ∆SL(A) from Definition 3.2, the 0D persistence diagram PD from Definition 4.4 and
the new mergegram MG from Definition 3.6, where double circles show pairs of multiplicity 2.
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Figure 2. Top: the 5-point cloud A = {0, 1, 3, 7, 10} ⊂ R. Bottom: from left to right: single-linkage
dendrogram ∆SL(A) from Definition 1, the 0D persistence diagram PD in Definition 6, the novel
mergegram MG from Definition 4, where double circles show pairs of multiplicity 2.

The disks of the closest points 0, 1 start overlapping at the scale s = 0.5 when these
points merge into one cluster {0, 1}. This merger is shown by blue arcs joined at the node
at s = 0.5 in the single-linkage dendrogram; see the left picture at the bottom of Figure 2.
The persistence diagram PD in the middle picture at the bottom of Figure 2 represents this
merger by the pair (0, 0.5), meaning that a singleton cluster of (say) point 1 was born at the
scale s = 0 and then died later at s = 0.5 by merging into another cluster of point 0.

When clusters {0, 1, 3} and {7, 10} merge at s = 2, this merger was earlier encoded in
the persistence diagram by the single pair (0, 2), meaning that one cluster inherited from
(say) point 7 was born at s = 0 and died at s = 2. The new mergegram in the bottom right
picture of Figure 2 represents the above merger by the following two pairs. The pair (1, 2)
means that the cluster {0, 1, 3} is merging at the current scale s = 2 and was previously
formed at the smaller scale s = 1. The pair (1.5, 2) means that another cluster {7, 10} is
merging at the scale s = 2 and was previously formed at s = 1.5.

The 0D persistence diagram represents the cluster of the whole cloud A by the pair
(0,+∞) because A was inherited from a singleton cluster starting from s = 0. The merge-
gram represents the same cluster A by the pair (2,+∞) because A was formed during the
last merger of {0, 1, 3} and {7, 10} at s = 2 and continues to live as s→ +∞.

In the above dendrogram, every vertical arc going up from a scale b to d contributes
one pair (b, d) to the mergegram. So, both singleton clusters {7}, {10}merging at s = 1.5
contribute one pair (0, 1.5) of multiplicity two, shown by two red circles in Figure 2.
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Definition 1 (single-linkage clustering). Let A be a finite set in a metric space X with a distance
d : X× X → [0,+∞). For a distance threshold, which can be called a scale s, any points a, b ∈ A
should belong to one SL cluster if and only if there is a finite sequence a = a1, . . . , am = b ∈ A such
that any two successive points have a distance at most s, so d(ai, ai+1) ≤ s for i = 1, . . . , m− 1.
Let ∆SL(A; s) be the set of all single-linkage clusters at the scale s. For s = 0, any point a ∈ A
forms a singleton cluster {a}. Representing each cluster from ∆SL(A; s) over all s ≥ 0 by one point
gives the single-linkage dendrogram ∆SL(A) visualizing how clusters merge; see the first picture
at the bottom of Figure 2.

For any s > 0, all SL clusters ∆SL(A; s) can be obtained as connected components of a
Minimum Spanning Tree MST(A) by removing all edges longer than s.

Definition 2 (partition set P(A)). For any set A, a partition of A is a finite set of disjoint
non-empty subsets A1, . . . , Ak ⊂ A, whose union is A. The single set A forms the single-block
partition of A. The partition set P(A) consists of all partitions of A.

The partition set P(A) of the abstract set A = {0, 1, 2} consists of the five partitions

({0}, {1}, {2}), ({0, 1}, {2}), ({0, 2}, {1}), ({1, 2}, {0}), ({0, 1, 2}).

For example, the collections ({0}, {1}) and ({0, 1}, {0, 2}) are not partitions of A.
Definition 3 below extends a dendrogram from (Reference [27], Section 3.1) to arbitrary

(possibly, infinite) sets A. Every partition of A is finite by Definition 2. So, there is no need
to add that an initial partition of A is finite. Hence, non-singleton sets are now allowed.

Definition 3 (dendrogram ∆ of merge sets). A dendrogram ∆ over any set A is a function
∆ : [0,+∞)→ P(A) of a scale s ≥ 0 satisfying the following conditions.

(a) There exists a scale r ≥ 0 such that ∆(A; s) is the single block partition for s ≥ r.

(b) If s ≤ t, then ∆(A; s) refines ∆(A; t), so any set from ∆(t) is a subset of some set from ∆(A; t).
These inclusions of subsets of X induce the natural map ∆t

s : ∆(s)→ ∆(t).

(c) There are finitely many merge scales si such that

s0 = 0 and si+1 = sup{s | the map ∆t
s is identity for s′ ∈ [si, s)}, i = 0, . . . , m− 1.

Since ∆(A; si) → ∆(A; si+1) is not an identity map, there is a subset B ∈ ∆(si+1), whose
preimage consists of at least two subsets from ∆(si). This subset B ⊂ X is a merge set with the
birth scale si. All sets of ∆(A; 0) are merge sets at the birth scale 0. The life(B) is the interval [si, t)
from its birth scale si to its death scale t = sup{s | ∆s

si
(B) = B}.

Dendrograms are often drawn as trees whose nodes represent all sets from the parti-
tions ∆(A; si) at merge scales. Edges of such a tree connect any set B ∈ ∆(A; si) with its
preimages under ∆(A; si)→ ∆(A; si+1). Figure 3 shows ∆ for A = {0, 1, 2}.
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In Figure 3, the partition ∆(A; 1) consists of {0, 1} and {2}. The maps ∆t
s induced by

inclusions respect the compositions in the sense that ∆t
s ◦ ∆s

r = ∆t
r for any r ≤ s ≤ t. For
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example, ∆1
0({0}) = {0, 1} = ∆1

0({1}) and ∆1
0({2}) = {2}, so ∆1

0 is a well-defined map
from the partition ∆(A; 0) of 3 singleton sets to ∆(A; 1) but is not an identity.

At the scale s0 = 0 the merge sets {0}, {1} have life = [0, 1), the merge set {2} has
life = [0, 2). At the scale s1 = 1 the single merge set {0, 1} has life = [1, 2). At the scale
s2 = 2 the single merge set {0, 1, 2} has life = [2,+∞). The first (Greek) letter in the word
‘dendrogram’ and a ∆-shape of a typical tree motivate the notation ∆.

Condition (Definition 3 (a)) says that a partition of a set X is trivial for all large scales.
Condition (Definition 3 (b)) means that, if the scale s is increasing, any sets from a partition
∆(s) can merge but cannot split into smaller sets. Condition (Definition 3 (c)) implies that
there are only finitely many mergers, when two or more subsets of X merge into a larger
merge set.

Lemma 1 ([7], Lemma 3.3). Given a metric space (X, d) and a finite set A ⊂ X, the single-linkage
dendrogram ∆SL(X) from Definition 1 satisfies Definition 3.

A mergegram represents life spans of merge sets by pairs (birth, death) ∈ R2.

Definition 4 (mergegram MG(∆)). The mergegram of a dendrogram ∆ has the pair
(birth, death) ∈ R2 for each merge set B of ∆ with life(B) = [birth, death). If any life in-
terval appears k times, the pair (birth,death) has the multiplicity k in MG(∆).

If our input is a point cloud A in a metric space, then the mergegram MG(∆SL(A)) is
an isometry invariant of A because ∆SL(A) depends only on inter-point distances. Though
∆SL(A) as any dendrogram is unstable under perturbations of points, the key advantage
of MG(∆SL(A)) is its stability, which will be proved in Theorem 4.

Figure 4 shows the metric space X = {a, b, c, p, q} with distances defined by the
shortest path metric induced by the specified edge-lengths; see the distance matrix.
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The dendrogram ∆ in the first picture of Fig. 5 generates the mergegram as follows:171

• each of the singleton sets {b}, {c}, {p}, {q} has pair (0,1), so its multiplicity is 4;172

• each of the merge sets {b, c} and {p, q} has the pair (1,2), so its multiplicity is 2;173

• the singleton set {a} has the pair (0, 3); the merge set {b, c, p, q} has the pair (2,3);174

• the full set {a, b, c, p, q} continues to leave up to s = 3, hence has the pair (3,+∞).175

Figure 4. The set X = {a, b, c, p, q} has the distance matrix obtained by the shortest path metric.

The dendrogram ∆ in the first picture of Figure 5 leads to the mergegram as follows:

• each of the 1-point sets {b}, {c}, {p}, {q} has pair (0, 1), so its multiplicity is 4;
• each of the merge sets {b, c} and {p, q} has the pair (1,2), so its multiplicity is 2;
• the singleton set {a} has the pair (0, 3); the merge set {b, c, p, q} has the pair (2, 3);
• the full set {a, b, c, p, q} continues to leave up to s = 3, hence having the pair (3,+∞).
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4. Explicit Relations between 0-Dimensional Persistence and Mergegram

This section recalls the concept of persistence and then shows how any 0D persistence
and dendrogram in general position can be reconstructed from a mergegram.

Definition 5 (persistence module V). A persistence module V over the real numbers R is a
collection of vector spaces Vt, t ∈ R with linear maps vt

s : Vs → Vt, s ≤ t such that vt
t is the

identity on Vt, and the composition is respected: vt
s ◦ vs

r = vt
r for any r ≤ s ≤ t.

The set of real numbers can be considered as a category R in the following sense. The
objects of R are all real numbers. Any real numbers a ≤ b define a single morphism a→ b.
The composition of morphisms a→ b and b→ c is the morphism a ≤ c. In the language of
category theory, a persistence module is a functor from R to the category of vector spaces.
A basic example of a persistence module V is an interval module. An interval J between
points p < q in R can be one of the following types: closed [p, q], open (p, q), half-open or
half-closed [p, q) and (p, q], all encoded as follows:

[p−, q+] := [p, q], [p+, q−] := (p, q), [p+, q+] := (p, q], [p−, q−] := [p, q).

The endpoints p, q can have the infinite values ±∞, but without superscripts.

Example 2 (interval module I(J)). Let J ⊂ R be an interval. The interval module I(J) is the
persistence module defined by the following vector spaces Is and linear maps it

s : Is → It

Is =

{
Z2, for s ∈ J,
0, otherwise ;

it
s =

{
id, for s, t ∈ J,
0, otherwise

for any s ≤ t.

The direct sum W = U⊕V of persistence modules U,V is defined as the persistence
module with the vector spaces Ws = Us ⊕Vs and linear maps wt

s = ut
s ⊕ vt

s.
We illustrate the abstract concepts above by geometric constructions. Let f : X → R

be a continuous function on a topological space. The sublevel sets X f
s = f−1((−∞, s])

form nested subspaces X f
s ⊂ X f

t for any s ≤ t. The inclusions of the sublevel sets respect
compositions similarly to a dendrogram ∆ in Definition 3. On a metric space X with a
metric d : X× X → [0,+∞), a typical example of a function f : X → R is the distance dA
to a finite subset A ⊂ X. For any point p ∈ X, let dA(p) be the distance from p to a closest
point of A. For any r ≥ 0, the preimage XdA

r = d−1
A ((−∞, r]) = {p ∈ X | dA(p) ≤ r}

is the union of closed balls with radius r and centers at all points q ∈ A. For example,
XdA

0 = dA
−1((−∞, 0]) = A and XdA

+∞ = dA
−1(R) = X.

Any continuous function f : X → R induces the inclusion X f
s ⊂ X f

r for any parameters
s ≤ r. Then, all sublevel sets X f

s form a nested sequence of subspaces within X. The above
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construction of a filtration {X f
s } can be considered as a functor from R to the category of

topological spaces. Below, we discuss the simplest case of dimension 0.

Example 3 (persistent homology). For any topological space X, the 0-dimensional homology
H0(X) is the vector space (with coefficients Z2) generated by all connected components of X. Let
{Xs} be any filtration of nested spaces, e.g., sublevel sets X f

s based on a continuous function
f : X → R. The inclusions Xs ⊂ Xr for s ≤ r induce the linear maps between homology groups
H0(Xs)→ H0(Xr) and define the persistent homology {H0(Xs)}, which satisfies the conditions
of a persistence module from Definition 5.

If X is a finite set of m points, then H0(X) is the direct sum Zm
2 of m copies of Z2.

The persistence modules that are decomposable as direct sums of interval modules
can be described in a simple combinatorial way by persistence diagrams in R2.

Definition 6 (persistence diagram PD(V)). Let a persistence module V be decomposed as a
direct sum of interval modules : V ∼= ⊕

l∈L
I(p∗l , q∗l ), where ∗ is + or −. The persistence diagram

PD(V) is the multiset PD(V) = {(pl , ql) | l ∈ L} \ {p = q} ⊂ R2.

The 0-dimensional persistence diagram of a topological space X with a continuous
function f : X → R is denoted by PD{H0(X f

s )}. Lemma 2 will prove that the merge module
M(∆) of any dendrogram ∆ is decomposable into interval modules. The mergegram
MG(∆) will be interpreted as the persistence diagram of M(∆).

The following result describes how the persistence diagram PD of the distance-based
filtration of any point cloud A can be obtained from the mergegram MG(∆SL(S)).

Theorem 1 ([7], Theorem 5.3). For any finite set A in a metric space (X, d), let dA : X → R be
the distance to A. Let the mergegram MG(∆SL(A)) be a multiset {(bi, di)}k

i=1, where some pairs
can be repeated. Then, the persistence diagram PD{H0(XdA

s )} is the difference of the multisets
{(0, di)}k

i=1 − {(0, bi)}k
i=1 containing each pair (0, s) exactly #b − #d times, where #b is the

number of births bi = s, and #d is the number of deaths di = s. All trivial pairs (0, 0) are ignored,
and, alternatively, we take {(0, di)}k

i=1 only with di > 0.

Theorem 1 is illustrated by Example 1, where A = {0, 1, 3, 7, 10} has the diagram
PD(A) = {(0, 0.5), (0, 1), (0, 1.5), (0, 2), (0,+∞)} obtained from the mergegram

MG(∆SL(A)) = {(0, 0.5), (0, 0.5), (0, 1), (0, 1.5), (0, 1.5), (0.5, 1), (1, 2), (1.5, 2), (2,+∞)}

as follows: one pair (0, 0.5) ∈ PD(A) comes from two deaths and one birth s = 0.5 in
MG(∆SL(A)). Similarly, each of the pairs (0, 1), (0, 1.5), (0, 2) ∈ PD(A) comes from two
deaths and one birth equal to the same scale s. The cloud B = {0, 4, 6, 9, 10} ⊂ R in Refer-
ence [7] (Example 1.1) has exactly the same PD(B) = PD(A) but different MG(∆SL(B)) 6=
MG(∆SL(A)). This example jointly with Theorem 1 justify that the mergegram is strictly
stronger than 0D persistence as an isometry invariant of a point cloud.

The New Reconstruction Theorem 2 below can be contrasted with the weakness of 0D
persistence PD{H0(XdA

s )} consisting of only pairs (0, s) whose finite deaths are half-lengths
of edges in a Minimum Spanning Tree MST(A). In Example 1, these scales s = 0.5, 1, 1.5, 2
are insufficient to reconstruct the SL dendrogram in Figure 2. Such a unique reconstruction
is possible by using the richer invariant mergegram as follows.

Theorem 2 (from a mergegram to a dendrogram). Let A be a finite point cloud in general
position in the sense that all merge scales of A in a dendrogram ∆ from Definition 3 are different.
Then, the dendrogram ∆ can be reconstructed from its mergegram MG(∆), uniquely up to a
permutation of nodes in ∆ at scale s = 0.
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Proof. Consider all merge scales one by one in the increasing order starting from the
smallest. The general position implies that only two clusters merge at any merge scale. For
any current scale s, the mergegram contains exactly two pairs (b1, s) and (b2, s).

For a smallest merge scale s > 0, the births should be b1 = b2 = 0. We start drawing a
dendrogram ∆ by merging any two points of A at this smallest scale s. To realize a merger
at any larger s, we should select two clusters representing (b1, s) and (b2, s).

If bi = 0, then we take any of the unmerged points of A. If bi > 0, then the already
constructed dendrogram should contain a unique non-singleton cluster determined by the
scale bi ∈ (0, s). Hence, at any merge scale s, we know how to select two clusters to merge.
The only choice comes from choosing points of A or permuting notes of ∆.

Following the above proof of Theorem 2 for the cloud A = {0, 1, 3, 7, 10} in Example 1,
the first two pairs (0, 0.5) ∈ MG(∆SL(A)) indicate that we should merge two points of A
at s = 0.5. The scale s = 0.5 uniquely determines this 2-point cluster.

The next two pairs (0, 1), (0.5, 1) mean that the above cluster born at s = 0.5 should
merge at s = 1 with a singleton cluster (any free point of A). The resulting 3-point cluster
is uniquely determined by its merge scale s = 1. The further two pairs (0, 1.5), (0, 1.5) say
that a new 2-point cluster is formed at s = 1.5 by the two remaining points of A.

The final pairs (1, 2), (1.5, 2) tell us to merge at s = 2 the two clusters formed earlier at
s = 1 and s = 1.5. The resulting dendrogram ∆ has the expected combinatorial structure as
in Figure 2, though we can draw ∆ in another way by permuting points of A.

5. Stability of the Mergegram for Any Single-Linkage Dendrogram

This section fully proves the stability of a mergegram, which was stated in Reference [7]
(Theorem 7.4), without proving key Lemmas 2 and 3. For simplicity, we consider vector
spaces with coefficients only in Z2 = {0, 1}, which can be replaced by any field.

Definition 7 introduces homomorphisms between persistence modules, which are
needed to state the stability of persistence diagrams PD{H0(X f

s )} under perturbations of a
function f : X → R. This result will imply a stability for the mergegram MG(∆SL(A)) for
the dendrogram ∆SL(A) of the single-linkage clustering of a set A ⊂ X.

Definition 7 (a homomorphism between persistence modules). Let U and V be persistent
modules over R. A homomorphism U → V of a degree δ ∈ R consists of linear maps φt : Ut →
Vt+δ, t ∈ R, such that the diagram below commutes for all s ≤ t.
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structure as in Fig. 2, though we can draw ∆ in another way by permuting points of A.256

5. Stability of the mergegram for any single-linkage dendrogram257

This section fully proves the stability of a mergegram, which was stated in [7,258

Theorem 7.4] without proving key Lemmas 5.6 and 5.7. For simplicity, we consider259

vector spaces with coefficients only in Z2 = {0, 1}, which can be replaced by any field.260

Definition 5.1 introduces homomorphisms between persistence modules, which are261

needed to state the stability of persistence diagrams PD{H0(X f
s )} under perturbations of262

a function f : X → R. This result will imply a stability for the mergegram MG(∆SL(A))263

for the dendrogram ∆SL(A) of the single-linkage clustering of a set A ⊂ X.264

Definition 5.1 (a homomorphism of a degree δ between persistence modules). Let U and265

V be persistent modules over R. A homomorphism U→ V of degree δ ∈ R is a collection266

of linear maps φt : Ut → Vt+δ, t ∈ R, such that the diagram commutes for all s ≤ t.267

Us Ut

Vs+δ Vt+δ

φs

ut
s

vt+δ
s+δ

φt

Let Homδ(U,V) be all homomorphisms U→ V of degree δ. Persistence modules268

U,V are isomorphic if they have inverse homomorphisms U→ V→ U of degree 0. �269

For a persistence module V with maps vt
s : Vs → Vt, the simplest example of a270

homomorphism of a degree δ ≥ 0 is 1δ
V : V→ V defined by the maps vs+δ

s , t ∈ R. So vt
s271

defining the structure of V shift all vector spaces Vs by the difference δ = t− s.272

The concept of interleaved modules below is an algebraic generalization of a geo-273

metric perturbation of a set X in terms of (the homology of) its sublevel sets Xs.274

Definition 5.2 (interleaving distance ID). Persistence modules U and V are called δ-275

interleaved if there are homomorphisms φ ∈ Homδ(U,V) and ψ ∈ Homδ(V,U) such276

that φ ◦ ψ = 12δ
V and ψ ◦ φ = 12δ

U . The interleaving distance between the persistence277

modules U and V is ID(U,V) = inf{δ ≥ 0 | U and V are δ-interleaved}. �278

If f , g : X → R are continuous functions such that || f − g||∞ ≤ δ in the L∞-distance,279

the modules Hk{ f−1(−∞, s]}, Hk{g−1(−∞, s]} are δ-interleaved for any k [14]. The last280

conclusion extends to persistence diagrams for the bottleneck distance below.281

Definition 5.3 (bottleneck distance BD). Let multisets C, D contain finitely many points282

(p, q) ∈ R2, p < q, of finite multiplicity and all diagonal points (p, p) ∈ R2 of infinite283

multiplicity. For δ ≥ 0, a δ-matching is a bijection h : C → D such that |h(a)− a|∞ ≤ δ284

in the L∞-distance for any point a ∈ C. The bottleneck distance between persistence285

modules U,V is BD(U,V) = inf{δ | there is a δ-matching between PD(U), PD(V)}. �286

The original stability of persistence for sequences of sublevel sets was extended as287

Theorem 5.4 to q-tame persistence modules. A persistence module V is q-tame if any288

non-diagonal square in the persistence diagram PD(V) contains only finitely many of289

points, see [15, section 2.8]. Any finitely decomposable persistence module is q-tame.290

Let Homδ(U,V) be all homomorphisms U → V of degree δ. Persistence modules U,V are
isomorphic if there are inverse homomorphisms U→ V→ U of degree 0.

For a persistence module V with maps vt
s : Vs → Vt, the simplest example of a

homomorphism of a degree δ ≥ 0 is 1δ
V : V→ V defined by the maps vs+δ

s , t ∈ R. So, vt
s

defining the structure of V shift all vector spaces Vs by the difference δ = t− s.
Interleaved modules defined below algebraically generalize a geometric perturbation

of a set X in terms of (the homology of) its sublevel sets Xs.

Definition 8 (interleaving distance ID). Persistence modules U and V are called δ-interleaved if
there are homomorphisms φ ∈ Homδ(U,V) and ψ ∈ Homδ(V,U) such that φ ◦ ψ = 12δ

V and ψ ◦
φ = 12δ

U . The interleaving distance between the persistence modules U and V is ID(U,V) =
inf{δ ≥ 0 | U and V are δ-interleaved}.



Mathematics 2021, 9, 2121 9 of 17

If f , g : X → R are continuous functions such that || f − g||∞ ≤ δ in the L∞-distance,
the modules Hk{ f−1(−∞, s]}, Hk{g−1(−∞, s]} are δ-interleaved for any k [15]. The last
conclusion extends to persistence diagrams for the bottleneck distance below.

Definition 9 (bottleneck distance BD). Let C, D be multisets of finitely many points (p, q) ∈ R2,
p < q, of finite multiplicity and all diagonal points (p, p) ∈ R2 of infinite multiplicity. For δ ≥ 0,
a δ-matching is a bijection h : C → D such that |h(a) − a|∞ ≤ δ in the L∞-distance for any
point a ∈ C. The bottleneck distance between modules U,V is defined as BD(U,V) = inf{δ |
there is a δ-matching between PD(U), PD(V)}.

Historically, stability of persistence for sequences of sublevel sets was extended as
Theorem 3 to q-tame persistence modules. A persistence module V is q-tame if any non-
diagonal square in the persistence diagram PD(V) contains only finitely many of points;
see Reference [16] (Section 2.8). Any finitely decomposable persistence module is q-tame.

Theorem 3 (stability of persistence modules [16], isometry Theorem 4.11). Let U and V be
q-tame persistence modules. Then, ID(U,V) = BD(PD(U), PD(V)), where ID is the interleaving
distance, and BD is the bottleneck distance between persistence modules.

Definition 10 (merge module M(∆)). For any dendrogam ∆ on a finite set X, the merge module
M(∆) consists of the vector spaces Ms(∆), s ∈ R, and linear maps mt

s : Ms(∆)→ Mt(∆), s ≤ t.
For any s ∈ R and A ∈ ∆(s), the space Ms(∆) has the generator or a basis vector [A] ∈ Ms(∆).
For s < t and any set A ∈ ∆(s), if the image of A under ∆t

s coincides with A ⊂ X, so ∆t
s(A) = A,

then mt
s([A]) = [A], else mt

s([A]) = 0, see Figure 6.
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coincides with A ⊂ X, so ∆t
s(A) = A, then mt

s([A]) = [A], else mt
s([A]) = 0. �298

scale s3 = +∞ 0 0
map m+∞

2 ↑ ↑
scale s2 = 2 Z2 0 0 [{0,1,2}]
map m2

1 ↑ ↑ ↑
scale s1 = 1 Z2 ⊕Z2 0 0 [{2}] [{0,1}]
map m1

0 ↑ ↑ ↑ ↑
scale s0 = 0 Z2 ⊕Z2 ⊕Z2 [{0}] [{1}] [{2}]

Figure 6. The merge module M(∆) of the dendrogram ∆ on the set X = {0, 1, 2} in Fig. 3.

In a dendrogram ∆ from Definition 3.4, any merge set A of ∆ has life(A) = [b, d)299

from its birth scale b to its death scale d. Lemmas 5.6 and 5.7 are proved for the first time.300
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A
I(life(A)) decomposes over all merge sets A. �302

Proof of Lemma 5.6. The goal is to prove that M(4) ∼= ⊕
A I(life(A)). Recall that the

interval module I(life(A)) consists of only vector spaces 0 and Z2. For a scale r, let
Ir(life(A)) be its vector space, whose generator is denoted by [Ir(life(A))]. Define

ψr : Mr(4)→
⊕

A
Ir(life(A)) such that [A]→ [Ir(life(A))] for all A ∈ 4(r),

φr :
⊕

A
Ir(life(A))→ Mr(∆) such that [Ir(life(A))]→ [A] for all life(A) containing r.

We will first prove that φr is well-defined. If r ∈ life(A) then A ∈ Mr(4). We know that303

Mr(4) is generated by elements A ∈ 4(r) for which r ∈ life(A). Thus the compositions304
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we will prove it only for ψ. The goal is to prove that the following diagram commutes:307
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s
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s
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Here it
s is the direct sum of the corresponding maps of interval modules

⊕
A(it

s)
A .

Let [A] be an arbitrary generator of Mr(4). There are two possibilities how mt
s can map

[A]. If t ∈ life(A), then mt
s([A]) = [A] ∈ Mt(4) and by definition

φt ◦mt
s([A]) = [It(life(A))].

Since both s, t ∈ life(A), we also have that

mt
s ◦ φt([A]) = [It(life(A))] = φt ◦mt

s([A]).

Figure 6. The merge module M(∆) of the dendrogram ∆ on the set X = {0, 1, 2} in Figure 3.

In a dendrogram ∆ from Definition 3, any merge set A of ∆ has life(A) = [b, d) from
its birth scale b to its death scale d. Lemmas 2 and 3 are proved for the first time.

Lemma 2 (merge module decomposition). For any dendrogram ∆ from Definition 3, the merge
module M(∆) ∼= ⊕

A
I(life(A)) decomposes over all merge sets A.

Proof of Lemma 2. The goal is to prove that M(4) ∼= ⊕
A I(life(A)). Recall that the

interval module I(life(A)) consists of only vector spaces 0 and Z2. For a scale r, let
Ir(life(A)) be its vector space, whose generator is denoted by [Ir(life(A))]. Define

ψr : Mr(4)→
⊕

A
Ir(life(A)) such that [A]→ [Ir(life(A))] for all A ∈ 4(r),

φr :
⊕

A
Ir(life(A))→ Mr(∆) such that [Ir(life(A))]→ [A] for all life(A) containing r.

We will first prove that φr is well-defined. If r ∈ life(A) then A ∈ Mr(4). We
know that Mr(4) is generated by elements A ∈ 4(r) for which r ∈ life(A). Thus, the
compositions satisfy φr ◦ ψr = idr and ψr ◦ φr = idr. It remains to prove that morphisms
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correctly behave under the functors ψ, φ. The proofs for both cases are essentially the same;
thus, we will prove it only for ψ. The goal is to prove that the following diagram commutes:
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Theorem 5.4 (stability of persistence modules). [15, isometry theorem 4.11] Let U and V291

be q-tame persistence modules. Then ID(U,V) = BD(PD(U), PD(V)), where ID is the292

interleaving distance, BD is the bottleneck distance between persistence modules. �293

Definition 5.5 (merge module M(∆)). For any dendrogam ∆ on a finite set X, the merge294

module M(∆) consists of the vector spaces Ms(∆), s ∈ R, and linear maps mt
s : Ms(∆)→295

Mt(∆), s ≤ t. For any s ∈ R and A ∈ ∆(s), the space Ms(∆) has the generator or a296

basis vector [A] ∈ Ms(∆). For s < t and any set A ∈ ∆(s), if the image of A under ∆t
s297

coincides with A ⊂ X, so ∆t
s(A) = A, then mt

s([A]) = [A], else mt
s([A]) = 0. �298

scale s3 = +∞ 0 0
map m+∞

2 ↑ ↑
scale s2 = 2 Z2 0 0 [{0,1,2}]
map m2

1 ↑ ↑ ↑
scale s1 = 1 Z2 ⊕Z2 0 0 [{2}] [{0,1}]
map m1

0 ↑ ↑ ↑ ↑
scale s0 = 0 Z2 ⊕Z2 ⊕Z2 [{0}] [{1}] [{2}]

Figure 6. The merge module M(∆) of the dendrogram ∆ on the set X = {0, 1, 2} in Fig. 3.
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⊕

A
Ir(life(A)) such that [A]→ [Ir(life(A))] for all A ∈ 4(r),

φr :
⊕

A
Ir(life(A))→ Mr(∆) such that [Ir(life(A))]→ [A] for all life(A) containing r.

We will first prove that φr is well-defined. If r ∈ life(A) then A ∈ Mr(4). We know that303

Mr(4) is generated by elements A ∈ 4(r) for which r ∈ life(A). Thus the compositions304

satisfy φr ◦ ψr = idr and ψr ◦ φr = idr. It remains to prove that morphisms correctly305

behave under the functors ψ, φ. The proofs for both cases are essentially the same, thus306

we will prove it only for ψ. The goal is to prove that the following diagram commutes:307

Ms(4) Mt(4)

⊕
A Is(life(A))

⊕
A It(life(A))

ψs

mt
s

it
s

ψt

Here it
s is the direct sum of the corresponding maps of interval modules

⊕
A(it

s)
A .

Let [A] be an arbitrary generator of Mr(4). There are two possibilities how mt
s can map

[A]. If t ∈ life(A), then mt
s([A]) = [A] ∈ Mt(4) and by definition

φt ◦mt
s([A]) = [It(life(A))].

Since both s, t ∈ life(A), we also have that

mt
s ◦ φt([A]) = [It(life(A))] = φt ◦mt

s([A]).

Here, it
s is the direct sum of the corresponding maps of interval modules

⊕
A(it

s)
A .

Let [A] be an arbitrary generator of Mr(4). There are two possibilities how mt
s can map

[A]. If t ∈ life(A), then mt
s([A]) = [A] ∈ Mt(4) and by definition

φt ◦mt
s([A]) = [It(life(A))].

Since both s, t ∈ life(A), we also have that

mt
s ◦ φt([A]) = [It(life(A))] = φt ◦mt

s([A]).

Assume now that t /∈ life(A). Then, mt
s([A]) = 0; thus, φt(mt

s([A])) = 0. On the other
hand, it

s ◦ φs([A]) = [It(life(A))] = Z2. Since t /∈ life(A), we get it
s ◦ φs([A]) = 0.

Lemma 3 (interleaving of merge modules). If subsets A, B of a metric space (X, d) have
HD(A, B) = δ, then the merge modules M(∆SL(A)), M(∆SL(B)) are δ-interleaved.

Proof of Lemma 3. The equality HD(A, B) = δ means that A is covered by the union
of closed balls that have the radius δ and centers at all points b ∈ B. This union is the
preimage is d−1

B ([0, δ]), i.e., A ⊂ d−1
B ([0, δ]). Extending the distance values by s ≥ 0, we get

d−1
A ([0, s]) ⊂ d−1

B ([0, s + δ]) and similarly d−1
B ([0, s]) ⊂ d−1

A ([0, s + δ]).
Let U be an arbitrary set in ∆SL(A). Define map φr : M(A; r)→ M(B; r + δ)

φr([U]) =

{
[U], if r + δ ∈ life(∆SL(B), U),
0, otherwise .

Symmetrically, for any V ∈ ∆SL(B), we define ψr : M(B; r)→ M(A; r + δ)

ψr([V]) =

{
[V], if r + δ ∈ life(∆SL(A), V),
0, otherwise .

In the notation above, life(∆SL(B), U) is the life(U) in the dendrogram ∆SL(B). If
U /∈ ∆SL(B)(t) for all values t, then life(U) = ∅. By symmetry, it is enough to prove that
the following diagrams commute:

Version July 6, 2021 submitted to Mathematics 10 of 16

Assume now that t /∈ life(A). Then mt
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hand it
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Lemma 5.7 (merge modules interleaved). If subsets A, B of a metric space (X, d) have310
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B ([0, s + δ]) and similarly d−1
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A ([0, s + δ]).315

Let U be an arbitrary set in ∆SL(A). Define map φr : M(A; r)→ M(B; r + δ)

φr([U]) =

{
[U], if r + δ ∈ life(∆SL(B), U),
0, otherwise .

Symmetrically for any V ∈ ∆SL(B) we define ψr : M(B; r)→ M(A; r + δ)316

ψr([V]) =

{
[V], if r + δ ∈ life(∆SL(A), V),
0, otherwise .

In the notation above, life(∆SL(B), U) is the life(U) in the dendrogram ∆SL(B). If U /∈317

∆SL(B)(t) for all values t, then life(U) = ∅. By symmetry it is enough to prove that the318

following diagrams commute:319

Ms(∆SL(A)) Mt(∆SL(A))

Ms+δ(∆SL(B)) Mt+δ(∆SL(B))

φs

mt
s

mt+δ
s+δ

φt

Ms(∆SL(B))

Ms−δ(∆SL(A)) Ms+δ(∆SL(A))

ψsφs−δ

ms+δ
s−δ

We note first that if [a, b) = (life(∆SL(A), U), then (life(∆SL(B), U) ⊆ [a− ε, b + ε)320

We begin by proving commutativity of the first diagram. Let U be arbitrary element321

of ∆SL(A)(s). If t /∈ life(∆SL(A), U) then φt ◦ mt
s = 0. If s + δ /∈ life(∆SL(B), U) or322

t + δ /∈ life(∆SL(B), U) then we are done. Since t /∈ life(∆SL(A), U), it follows that323

t + δ /∈ life(∆SL(B), U). And thus with given assumptions the diagram commutes.324

Assume now that t+ δ /∈ life(∆SL(A), U). Then both φt(mt
s(U)) = 0 = mt+δ

s+δ(φs(U)).325

In the last case we assume that t ∈ life(∆SL(A), U) and t + δ ∈ life(∆SL(B), U). In this326

case obviously s + δ ∈ life(∆SL(B), U) and thus φt(mt
s([U])) = [U] = mt+δ

s+δ(φs([U])).327

For the second diagram assume now that U ∈ M(∆SL(A))(s− δ). Assume first that328

s /∈ life(∆SL(B), U), then s + δ /∈ life(∆SL(B), U) and ms+δ
s−δ([U]) = 0 = ψs(φs−δ[U]).329

Assume then that s ∈ life(∆SL(B), U). Now outcome of both maps ψs and ms+δ
s−δ330

depend on if s + δ ∈ life(∆SL(A), U) and thus ms+δ
s−δ([U]) = ψs(φs−δ[U]). Since all the331

diagrams commute, the required conclusion follows.332

Theorem 5.8 (stability of a mergegram). The mergegrams of any finite point clouds333

A, B in a metric space (X, d) satisfy BD(MG(∆SL(A)), MG(∆SL(B)) ≤ HD(A, B). Hence334

any small perturbation of a cloud A in the Hausdorff distance yields a similarly small335

perturbation in the bottleneck distance for its mergegram MG(∆SL(A)). �336

We note first that, if [a, b) = life(∆SL(A), U), then life(∆SL(B), U) ⊆ [a− ε, b + ε).
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We begin by proving commutativity of the first diagram. Let U be arbitrary element
of ∆SL(A)(s). If t /∈ life(∆SL(A), U) then φt ◦ mt

s = 0. If s + δ /∈ life(∆SL(B), U) or
t + δ /∈ life(∆SL(B), U) then we are done. Since t /∈ life(∆SL(A), U), it follows that t + δ /∈
life(∆SL(B), U). Thus, , with given assumptions, the diagram commutes.

Assume now that t + δ /∈ life(∆SL(A), U). Then, both φt(mt
s(U)) = 0 = mt+δ

s+δ(φs(U)).
In the last case, we assume that t ∈ life(∆SL(A), U) and t + δ ∈ life(∆SL(B), U). In this
case, obviously, s + δ ∈ life(∆SL(B), U); thus, φt(mt

s([U])) = [U] = mt+δ
s+δ(φs([U])).

For the second diagram, assume now that U ∈ M(∆SL(A))(s− δ). Assume first that
s /∈ life(∆SL(B), U), then s + δ /∈ life(∆SL(B), U) and ms+δ

s−δ([U]) = 0 = ψs(φs−δ[U]).
Assume then that s ∈ life(∆SL(B), U). Now, the outcome of both maps ψs and ms+δ

s−δ

depends on whether s + δ ∈ life(∆SL(A), U); thus, ms+δ
s−δ([U]) = ψs(φs−δ[U]). Since all the

diagrams commute, the required conclusion follows.

Theorem 4 (stability of a mergegram). The mergegrams of any finite point clouds A, B in a
metric space (X, d) satisfy BD(MG(∆SL(A)), MG(∆SL(B)) ≤ HD(A, B). Hence, any small
perturbation of a cloud A in the Hausdorff distance leads to a similarly small perturbation in the
bottleneck distance for its mergegram MG(∆SL(A)).

Proof. The given clouds A, B ⊂ X with HD(A, B) = δ have δ-interleaved merge modules
by Lemma 3, so ID(MG(∆SL(A)), MG(∆SL(B)) ≤ δ. Since any merge module M(∆) is
finitely decomposable, hence, it is q-tame by Lemma 2. The corresponding mergegram
MG(M(∆)) satisfies Theorem 3, so BD(MG(∆SL(A)), MG(∆SL(B)) ≤ δ.

Figure 7 illustrates Theorem 4 on a cloud and its perturbation by showing their close
mergegrams. The more extensive experiment on 100 clouds in Reference [7] (Figure 8)
similarly confirms that the mergegram is perturbed within expected bounds. The compu-
tational complexity of the mergegram MG(∆SL(A)) was proved to be near linear in the
number n of points in a cloud A ⊂ Rm; see Reference [7] (Theorem 8.2). The results above
justify that the invariant mergegram satisfies conditions (a,b,c) of Isometry Recognition
Problem 1.

Figure 7. Left: the cloud C of 5 blue points is close to the cloud C′ of 10 red points in the Hausdorff
distance. Right: the mergegrams are close in the bottleneck distance as predicted by Theorem 4.

6. New Experiments on Isometry Recognition of Substantially Distorted Real Shapes

This section fulfills final condition (d) of Problem 1 by experimentally comparing the
mergegram with 0D persistence and distributions of distances to neighbors on 15,000 clouds.
The earlier paper by Reference [7] did experiments only on randomly generated clouds.

We considered 15 classes of shapes represented by black and white images of mythical
creatures [9]; see Figure 1. These shapes were chosen to make the shape recognition
problem really challenging. Indeed, similar creatures from this dataset are represented by
slightly different shapes, which can be hard to isometrically distinguish from each other.
For example, several images of a horse include only minor differentiating features, such as
a saddle or a different tails, which makes horses nearly identical.
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Shape generation. For each image, we generated 1000 perturbed images by affine
and projective transformations to get 15,000 distorted shapes split into 15 classes.

First, we rotated each image around its central point by an angle generated uniformly
in the interval [0, 2π) using the function cv::rotate from the OpenCV library. If needed, we
extended the resulting image to fit all black pixels of the rotated shape into a bounding
box. Then, both affine and projective transformations distort each image by using a noise
parameter δ such that the value δ = 0 represents the identity transformation.

Figure 8 illustrates how an original image is randomly rotated, and then randomly
distorted by affine or projective transformations, depending on the noise parameter δ.

Affine transformations are implemented as compositions of the already applied
rotations above and the function cv::resize() from the OpenCV library. This function scales
an image of size w× h by horizontal and vertical factors a, b sampled as follows.

• Uniform noise: a ∈ [1− δw, 1 + δw], b ∈ [1− δh, 1 + δh] have uniform distributions.
• Gaussian noise: a ∈ N (1, δh) ∩R+ and b ∈ N (1, δw) ∩R+ have Gaussian distribu-

tions with mean 1 and standard variance δh, δv, truncated to positive numbers.

Projective transformation are implemented as compositions of the already applied
rotations above and the OpenCV function cv::getPerspectiveTransform() function, which
is parametrized by 4-dimensional array v = (a0, a1, a2, a3) consisting of points ai ∈ Z2,
i = 0, 1, 2, 3. This function maps the corners of the image as follows:

(0, 0) 7→ a0, (0, h) 7→ a1, (w, 0) 7→ a2 and (w, h) 7→ a3.

The projective transformation of the rectangle w× h is uniquely determined by the
above corners. The above points ai are randomly sampled by using a noise parameter δ.

• Uniform noise: each coordinate has a uniform distribution with a noise parameter δ

a0 ∈ [0, δw]× [0, δh], a1 ∈ [0, δw]× [h− δh, h],

a2 ∈ [w− δw, w]× [0, δh], a3 ∈ [w− δw, w]× [h− δh, h].

• Gaussian noise: each coordinate has a Gaussian distribution truncated to the image

a0 ∈ (N (0, δw) ∩ [0, w])× (N (0, δh) ∩ [0, h]),

a1 ∈ (N (0, δw) ∩ [0, w])× (N (h, δh) ∩ [0, h]),

a2 ∈ (N (w, δw) ∩ [0, w])× (N (0, δh) ∩ [0, h]),

a3 ∈ (N (w, δw) ∩ [0, w])× (N (h, δh) ∩ [0, h]).

Point cloud extraction. For each distorted image, we extract classical Harris point
corners [28] due to their simplicity; see the red points in Figure 8. For detecting corner
points, the OpenCV function cv::cornerHarris was used with the parameters blockSize = 3,
apertureSize = 5, k = 0.04, thresh = 120. However, one can use any reliable algorithms, such
as FAST [29] or scale-invariant feature transform (SIFT) [30].

After describing the available point cloud data above, we specify condition (d) of
Isometry Recognition Problem 1 in the context of supervised machine learning.

Problem 2 (experimental recognition). Given a labeled dataset split into classes of similar but
projectively distorted shapes, develop a learning tool to recognize a class of distorted shapes with a
high recognition rate (percentage of correctly recognized classes).

Since all isometry invariants are independent of point ordering, the most suitable
neural network is PersLay [20], whose output is invariant under permutations by design.
Each layer is a combination of a coefficient layer ω(p) : Rm → R, a transformation
φ(p) : Rm → Rq and a permutation invariant layer op combined as follows
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PersLay(D) = op({w(p)φ(p)}p∈D), where D is a diagram or multiset of points in Rm.
Version July 6, 2021 submitted to Mathematics 12 of 16

(1) Original centaur (2) Rotated centaur

(3a) Affine transformation

(3b) Projective transformation

(1) Original man (2) Rotated man

(3a) Affine transformation

(3b) Projective transformation

(1) Original horse (2) Rotated horse

(3a) Affine transformation

(3b) Projective transformation

Figure 8. Generating distorted shapes by applying random rotations, affine and projective trans-
formations, which substantially affect the extracted clouds of Harris corner points [26] in red.

Figure 8. Generating distorted shapes by applying random rotations, affine and projective transfor-
mations, which substantially affect the extracted clouds of Harris corner points [28] in red.
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Coordinates of all input points are linearly normalized to [0, 1]. We have used the
following parameters of the PersLay network for all experiments below.

The max layer MAX(q) consists of the following functions.

• The coefficient layer w : Rm → R is the weight w(x1, . . . , xm) = k|x1 − x2|, where k is
a trainable scalar, and the dimension is typically m = 2.

• The transformation layer φ : {diagrams of points in Rm} → Rq is the function φ(D) =

∑p∈D λp + γmaxpool(D) + β, where λ,γ are Rm×q trainable matrices, β is a Rq train-
able vector, and maxpool returns a maximum value for every i = 1, . . . , m.

• The operational layer op : Rq → Rt puts all coordinates in increasing order and
composes the result with standard densely connected layer [31] Dense : Rq → Rt.

An output is a vector in Rt for t = 15 of image classes. A final prediction is obtained
by choosing a class with a largest coordinate in the output vector.

The image layer Im[x, y] for integer parameters x, y and a multiset of points in the
unit square [0, 1]2 consists of the following functions.

• The coefficient layer w : R2 → R is a piecewise constant function trained on x · y
parameters, defined on the unit square partition

P(x, y) =
{[

i
x

,
i + 1

x

]
×
[

j
y

,
j + 1

y

]
| i = 0, . . . , x− 1 and j = 0, . . . , y− 1

}
.

• Let φp : R2 → R be the Gaussian distribution centered at p ∈ D with a trainable
standard deviation σ. The transformation layer φ : R→ Rxy consists of xy functions
φp, where p runs over all centroids of the partition P(x, y).

• The operation layer op takes the sum over the given point cloud. A final prediction is
made by composing the operation layer with the Dense layer.

Finally, the PersLay network used the optimizer tf.keras.adam with the standard
learning rate 0.01 and 150 epochs, the loss function SparseCategoricalCrossEntropy, the
80:20 of training and testing, a 5-fold Monte Carlo cross validation for each run.

Figures 9–11 show that the mergegram MG consistently outperforms two other isome-
try invariants: 0D persistence and the multiset NN(4) consisting of 4-tuple distances to
neighbors per given point. The simpler multiset NN(2) performed worse. A given cloud
C ⊂ R2 was considered as a baseline input. The noise factors δ reached 25%, which means
that original images were distorted up to a quarter of image sizes.
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Figure 9. Recognition rates are obtained by training the max layer MAX(75) of PersLay on three
isometry invariants and a cloud of corner points extracted from 15000 affinely distorted images.

Figure 9. Recognition rates are obtained by training the max layer MAX(75) of PersLay on three
isometry invariants and a cloud of corner points extracted from 15,000 affinely distorted images.
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Figure 10. Recognition rates are obtained by training the max layer MAX(75) of PersLay on
isometry invariants and corner points extracted from 15000 projectively distorted images.
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Figure 11. Recognition rates are obtained by training the image layer IM[20,20] of PersLay on
isometry invariants and a cloud of corner points extracted from 15000 affinely distorted images.

Example 3.1 and the discussion following Theorem 4.5 justify that the invariant425

mergegram is strictly stronger than the 0D persistence. This theoretical fact is now426

confirmed by the new experiments on 15000 point clouds extracted from substantially427

distorted real shapes. In Fig. 9, 10, 11 the mergegram outperformed other isometry428

invariants. Since the distribution NN(2) of distances to two closest neighbors per point429

performed badly, we have strengthened this invariant to NN(4) of distances to four430

nearest neighbors. However, even NN(4) performed always always worse than the431

original point cloud, which can not be considered as an isometry invariant.432

For very high levels of 20% and 25% distortions in projective transformations, the433

PersLay network trained on a point cloud achieved high recognition rates, because we434

have extensively tried many parameters in the layers MAX(75) and Im[20,20] for a best435

trade-off between accuracy and speed. The C++ code for the mergegram is at [7].436
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Figure 10. Recognition rates are obtained by training the max layer MAX(75) of PersLay on isometry
invariants and corner points extracted from 15,000 projectively distorted images.
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Figure 10. Recognition rates are obtained by training the max layer MAX(75) of PersLay on
isometry invariants and corner points extracted from 15000 projectively distorted images.
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Figure 11. Recognition rates are obtained by training the image layer IM[20,20] of PersLay on
isometry invariants and a cloud of corner points extracted from 15000 affinely distorted images.

Example 3.1 and the discussion following Theorem 4.5 justify that the invariant425
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Figure 11. Recognition rates are obtained by training the image layer IM[20,20] of PersLay on
isometry invariants and a cloud of corner points extracted from 15,000 affinely distorted images.

7. A Discussion of Novel Contributions and Further Open Problems

This paper has further demonstrated that the provably stable-under-noise invariant
mergegram of a dendrogram is a fast and efficient tool in the challenging problem of
isometry shape recognition, especially for substantially distorted images.

In comparison with the conference version [7], Section 4 proved new Theorem 2
describing how to reconstruct a single-linkage dendrogram in general position from its
much simpler mergegram. It is hard to define a continuous metric between dendrograms,
especially because they can be unstable under perturbations. Theorem 2 allows us to
measure a continuous similarity between dendrograms in general position as the bottle-
neck distance between their unique mergegrams. This distance can be computed in time
O(n1.5 log n) [32] for diagrams consisting of at most n points.

Section 5 provided a full proof of stability of the mergegram under perturbations of
points, while the earlier paper by Reference [7] only announced this result without proving
highly non-trivial Lemmas 2 and 3, which required a heavy algebraic machinery.

In addition to Example 1 and Theorem 1 showing that the mergegram is stronger than
0D persistence, its strength is confirmed by the new experiments on 15,000 point samples
from substantially distorted real shapes. In Figures 9–11, the mergegram outperformed
other isometry invariants. Since the distribution NN(2) of distances to two closest neigh-
bors per point performed badly, we have tried distances to four nearest neighbors, but this
NN(4) performed worse than the original cloud because of noise.

For very high levels of 20% and 25% distortions in projective transformations, the
PersLay network trained on a point cloud achieved high recognition rates because we have
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extensively tried many parameters in the layers MAX(75) and Im[20,20] for a best trade-off
between accuracy and speed. The C++ code for the mergegram is at Reference [7].

The recent stronger invariants are Pointwise Distance Distributions [33]. Their generic
completeness under isometry holds in a more challenging setting of periodic point
sets [34–38].
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