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Abstract: (1) Background: Arrhythmia, which is an umbrella term for various types of abnormal
rhythms of heartbeat, has a high prevalence in both the general population and patients with
coronary artery disease. So far, it remains unclear how different types of arrhythmia would affect
myocardial perfusion and the risk/severity of myocardial ischemia. (2) Methods: A computational
model of the coronary circulation coupled to the global cardiovascular system was employed to
quantify the impacts of arrhythmia and its combination with coronary artery disease on myocardial
perfusion. Furthermore, a myocardial supply–demand balance index (MSDBx) was proposed to
quantitatively evaluate the severity of myocardial ischemia under various arrhythmic conditions.
(3) Results: Tachycardia and severe irregularity of heart rates (HRs) depressed myocardial perfusion
and increased the risk of subendocardial ischemia (evaluated by MSDBx), whereas lowering HR
improved myocardial perfusion. The presence of a moderate to severe coronary artery stenosis
considerably augmented the sensitivity of MSDBx to arrhythmia. Further data analyses revealed that
arrhythmia induced myocardial ischemia mainly via reducing the amount of coronary artery blood
flow in each individual cardiac cycle rather than increasing the metabolic demand of the myocardium
(measured by the left ventricular pressure-volume area). (4) Conclusions: Both tachycardia and
irregular heartbeat tend to increase the risk of myocardial ischemia, especially in the subendocardium,
and the effects can be further enhanced by concomitant existence of coronary artery disease. In
contrast, properly lowering HR using drugs like β-blockers may improve myocardial perfusion,
thereby preventing or relieving myocardial ischemia in patients with coronary artery disease.

Keywords: arrhythmia; myocardial perfusion; coronary artery disease; computational model

1. Introduction

Arrhythmia is a common cardiovascular disease featured by abnormally low/high
or irregular heartbeat. The prevalence of arrhythmia is high, especially in patients with
basic cardiovascular disease [1–3]. Arrhythmia may cause various symptoms, such as
palpitations, dyspnea, heart failure, and confusion, or even lead to sudden death [4–6].
Clinical studies have demonstrated that a physiologically low heart rate is associated with
lower cardiovascular mortality [7–9], and that in patients with stable ischemic heart disease
and left ventricular systolic dysfunction, reducing heart rate helps to improve prognosis [8].
On the other hand, tachycardia has been found to be an independent risk factor for poor
outcome after coronary revascularization [9]. A theoretical study has demonstrated that
reducing heart rate is beneficial to the distribution of blood toward the subendocardium,
which is more susceptible than the subepicardium to ischemia in the presence of coronary
artery disease [10]; this may partly explain the aforementioned clinical findings. However,
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it remains unclear how different types of arrhythmia combined with coronary artery disease
would affect myocardial perfusion, especially the severity of myocardial ischemia.

Quantitative measurement of myocardial perfusion parameters for assessing the sever-
ity of ischemia during the onset of arrhythmia is usually hard to implement in clinical set-
tings, which is often replaced by diagnosing the absence or presence of myocardial ischemia
through analyzing the characteristics of electrocardiograms [11]. Relatively, computational
modeling provides a more convenient means of quantifying the impact of arrhythmia on
myocardial perfusion and uncovering underlying mechanisms. Computational models of
the coronary circulation have been widely applied to study the characteristics of coronary
blood flow in the context of arrhythmia or coronary artery disease [10,12,13]. However,
few studies have been dedicated to addressing the impact of arrhythmia on myocardial
perfusion. In the present study, a computational model of the coronary circulation coupled
to the global cardiovascular system was employed to address the issue. In addition, we
proposed an index for assessing the severity of transient myocardial ischemia based on
the relationship between the amount of coronary blood supply and the oxygen demand
of myocardium.

2. Materials and Methods
2.1. Computational Model of the Coronary Circulation

The computational model was adapted from the models developed in our previous
studies where the modeling methods and corresponding numerical schemes have been
described in detail [10,14]. In brief, a zero-one-dimensional (0-1-D) multi-scale modeling
method was employed to represent the coronary circulation coupled to the global car-
diovascular system. The 1-D modeling method was used to represent large epicardial
coronary arteries and main systemic arteries, while the 0-D (i.e., lumped parameter) model-
ing method was applied to represent other portions of the cardiovascular system, including
intramyocardial vessels, systemic microvasculature, veins, the pulmonary circulation, and
the heart (see Figure 1). Coupling the 0-D and 1-D models yielded a closed-loop model
capable of describing both coronary and systemic hemodynamics. In particular, the model
allowed for incorporation of varying heart rate and coronary artery disease, thereby pro-
viding a flexible platform for investigating the characteristics of coronary hemodynamics
and myocardial perfusion under various arrhythmic conditions combined with various
severities of coronary artery disease. Hereafter, we will give some details on mathemat-
ical modeling of hemodynamics in the coronary circulation. The governing equations
for hemodynamics in each coronary artery were expressed in the form of 1-D mass and
moment conservation equations that describe the time-dependent changes in vascular
cross-sectional area (A) and volumetric blood flow rate (Q) along the axis of the artery [10].

∂A
∂t

+
∂Q
∂x

= 0, (1)

∂Q
∂t

+
∂

∂x

(
α

Q2

A

)
+

A
ρ

∂P
∂x

+ Fr
Q
A

= 0. (2)

Here, t, x, and ρ denote the time, axial coordinate and density of blood (which herein was
set to be 1060 kg/m3), respectively; and A, Q and P represent the cross-sectional area of the
artery, volumetric flow rate and blood pressure, respectively. α and Fr refer respectively to
the momentum flux correction coefficient and friction force per unit length, which were
herein set to 4/3 and −8πυ (υ is the kinematic viscosity of blood) based on the assumption
that the cross-sectional velocity profile is parabolic [15].
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Figure 1. Schematic description of computational modeling of the coronary circulation coupled to the global cardiovascular
system. Abbreviations: LM, main trunk of the left coronary artery; LAD, left anterior descending artery; LCx, left circumflex
coronary artery; RCA, right coronary artery.

Given the existence of three unknowns (i.e., A, Q and P) in the system of Equations (1) and (2),
an equation describing the relationship between P and A was further introduced so that
the equation system could be closed [10,15]:

P + τσ
∂P
∂t

= φ
∂φ(A)

∂t
+ τε

∂φ(A)

∂t
, with φ(A) =

Eh
r0(1− σ2)

(√
A
A0
− 1

)
+ P0. (3)

where A0 and r0 represent the cross-sectional area and radius of artery at the reference
pressure (P0 = 80 mmHg), respectively. E is the elastic modulus of arterial wall, which
together with wall thickness (h) and Poisson’s ratio (σ) of wall materials determines the
stiffness of arterial wall. τσ and τε are viscoelastic parameters representing the relaxation
times for constant stress and strain of arterial wall, respectively.

At the junctions of coronary arteries, the conditions of mass conservation and total
pressure continuity were imposed so that hemodynamic variables in the entire coronary
arterial tree could be solved as a whole, and such conditions were also adopted to link
hemodynamic variables at the distal ends of coronary arteries to those in the 0-D model of
downstream intramyocardial vessels.

To simplify the modeling work, intramyocardial vessels downstream from each distal
coronary artery were allocated to three myocardial layers, namely the subepicardium,
midwall and subendocardium. Applying the 0-D modeling method to the intramyocardial
vessels yielded a network of parameters that represented the lumped properties (i.e.,
compliance (C), resistance (R) and inertance (L)) of various types of vessels in different
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myocardial layers (see the left upper panel of Figure 1). Accordingly, the governing
equations for hemodynamics were defined at the C and L elements following the principle
of mass and momentum conservation [16]:

dPj

dt
=

Qj −Qj+1

Cj
, (4)

dQj

dt
=

Pj−1 −QjRj − Pj

Lj
. (5)

where Pj and Pj−1 denote the blood pressures at the Cj and Cj−1 elements, respectively,
which are calculated as Pj = Vj/Cj + Pim and Pj−1 = Vj−1/Cj−1 + Pim, where Vj and Vj−1 are
the volumes of blood contained by the Cj and Cj−1 elements, and Pim the intramyocardial
tissue pressure which changes with cardiac contraction/relaxation and differs among
myocardial layers [10]. Qj and Qj+1 represent, respectively, the inflow to and outflow from
the Cj element; Rj and Lj are the resistance and inertance that link the Cj and Cj−1 elements.
It is noted that the values of C and R were not kept constant but varied with V to represent
the effects of the large deformation of intramyocardial vessels induced by the changes in
Pim during each cardiac cycle (please see reference [10] for more details).

The system of the 1-D partial differential equations governing hemodynamics in
the coronary and systemic arteries and the system of 0-D ordinary differential equations
describing hemodynamics in the intramyocardial vessels and other portions of the cardio-
vascular system were solved with the two-step Lax–Wendroff method and the fourth-order
Runge–Kutta method, respectively. The solutions of the two equation systems were com-
municated at the interfaces between the 1-D and 0-D models where an iterative numerical
scheme was implemented to enforce conservation of mass flux and momentum across the
interfaces. More details on the numerical algorithms have been described elsewhere [17].

The parameters of the model were initially assigned based on relevant data reported in
the literature so that the model-predicted values of major coronary/systemic hemodynamic
variables fell in the population-averaged ranges of in vivo data acquired from subjects free
of arrhythmia or coronary artery disease (please refer to [10] for more details), thereby
obtaining a baseline model to which various types of arrhythmia or coronary artery disease
were later introduced. It is noted that when simulating arrhythmia by varying heart rate
(HR), other model parameters were held at their default values so that the model-simulated
results could reflect the pure effects of short-term HR variations; whereas, as coronary
artery disease, which generally develops in a chronic manner, was introduced to the model,
the automatic regulatory mechanism of coronary blood flow was incorporated by means of
tuning the resistances of coronary arterioles (i.e., R1 in the left upper panel of Figure 1) via
a proportional–integral–derivative (PID) feedback control loop to preserve coronary blood
flow against the decrease in perfusion pressure caused by coronary artery disease [10].
Incorporating the regulatory mechanism enabled the model to represent the long-term
influence of coronary artery disease on coronary hemodynamics and myocardial perfusion.

2.2. Modeling of Arrhythmias

Under resting conditions, healthy subjects usually have a heart rate (HR) of 50~90 bpm
(beats per minute). Bradycardia and tachycardia are two common types of arrhythmia,
which are defined as resting HRs of less than 50~60 bpm [4] and HRs of over 100 bpm [5],
respectively. There is another common type of arrhythmia characterized by irregular
patterns of electrical activation, i.e., R-R intervals do not follow a repetitive pattern [18].
Based on the ranges of HRs reported in the literature [19,20], we set the baseline resting HR
at 80 bpm, and the lower and upper limits of HR to be 36 bpm and 184 bpm, respectively.
In this study, we assumed that resting HRs below 50 bpm represent bradycardia, while
HRs above 100 bpm represent tachycardia.

The third type of arrhythmia was represented by imposing irregular cardiac R-R
intervals (herein a R-R interval = 60/HR) during a period of successive cardiac cycles. In
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the present study, we constructed a probability density function to control the distribution
of random R-R intervals.

ρ =
1√
2πσ

exp

(
− (x− µ)2

2σ2

)
. (6)

Here, x denotes random cardiac R-R intervals with a mean value of µ (herein set to 750 ms,
which corresponds to the baseline HR of 80 bpm), and standard deviation of σ. By changing
the value of σ, one can adjust the range of x distribution so as to control the severity of
R-R interval irregularity. In this study, the value of σ was varied from 100 ms to 500 ms
at an interval of 100 ms to represent the increasing severity of R-R interval irregularity.
In addition, in consideration of the fact that all R-R intervals should be physiologically
reasonable (e.g., negative R-R intervals are physiologically nonexistent), we only applied
Equation (6) to calculate the probabilities of R-R intervals falling in the range of µ − σ and
µ + σ. With the constriction, the largest range of R-R intervals was from 250 ms to 1250 ms
when σ = 500 ms, which was roughly in line with the range of HRs measured in clinical
settings [19]. Panels (A) to (E) of Figure 2 show the probabilities of R-R intervals between
µ − σ and µ + σ. In order to generate a sequence of random R-R intervals for 100 cardiac
cycles, we first generated 100 R-R intervals based on the probabilities of R-R intervals,
and then randomly sequenced them using a random operator embedded in MATLAB.
Figure 2F shows the obtained random R-R intervals for 100 cardiac cycles given different
values of σ.
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Figure 2. Probability densities and distribution histograms of cardiac R-R intervals with µ = 750 ms and σ being set to
100 ms (A), 200 ms (B), 300 ms (C), 400 ms (D) and 500 ms (E), respectively, and randomly sampled R-R intervals for
100 cardiac cycles (F). It is noted that the histograms only show the probabilities of R-R intervals falling in the range from
µ − σ to µ + σ.

2.3. Indices for Evaulating Myocardial Perfusion

In this study, the subendocardial-to-subepicardial flow ratio (Qendo/Qepi) was used
to evaluate the transmural distribution of blood flow in the myocardium [10]. A low
value of Qendo/Qepi indicates the redistribution of coronary blood flow from the suben-
docardium toward the subepicardium, which may increase the risk of ischemia in the
subendocardium. To more clearly evaluate the severity of myocardial ischemia, we further
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defined a new index, namely the myocardial supply–demand balance index (MSDBx),
based on the pressure-volume area of the left ventricle and coronary blood flow rate under
resting conditions.

MSDBx = 1−
(

Qrs · T
PVArs

)(
Qrs,0 · T0

PVArs,0

)−1
. (7)

Here, Qrs,0, T0 and PVArs,0 represent, respectively, the reference values of the mean blood
flow rate in a specific coronary artery during a cardiac cycle, the time period of a cardiac
cycle and the left ventricular pressure-volume area (PVA) under normal resting conditions,
with their counterparts under other physiological or pathological conditions being denoted
by Qrs, T and PVArs, respectively. Left ventricular PVA is the total area circumscribed by the
end-systolic pressure-volume (P-V) line, end-diastolic P-V curve and systolic P-V trajectory,
which is often taken as a measure of the total workload of the left ventricle, and has been
found to correlate linearly with myocardial oxygen consumption [21–23]. Since oxygen
supply to the myocardium in a cardiac cycle is proportional to the amount of coronary
blood supply (i.e., Qrs·T), the ratio of Qrs·T to PVArs can be taken as a measure of the
balance between coronary blood supply and myocardial perfusion demand. If we assume
that Qrs,0·T0/PVAre,0 represents the optimal state, when Qrs·T/PVArs = Qrs,0·T0/PVArs,0,
the value of MSDBx is zero according to Equation (7), which represents the optimal (or
baseline) state of myocardial perfusion; accordingly, a decrease in Qrs·T/PVArs relative
to Qrs,0·T0/PVAre,0 will lead MSDBx to increase above zero, indicating that myocardium
is in an ischemic state. By definition, the larger the value of MSDBx is, the more severe
myocardial ischemia is.

3. Results

In our numerical experiments, apart from varying HR, we also considered coronary
artery disease by introducing a stenosis to a branch of the LAD (see Figure 1 where the
artery is named as LADb1). The severity of the stenosis, herein quantified by diameter
stenosis rate (SR), was varied from 20% to 70%. Accordingly, the values of Qendo/Qepi and
MSDBx used for evaluating the condition of myocardial perfusion were calculated based
on the model-simulated hemodynamic data in LADb1 and intramyocardial vessels distal
to it. The aforementioned data treatments are applicable to all the relevant results to be
presented later, unless stated otherwise.

3.1. Hemodynamic Effects of Variations in HR

The panels A and C of Figure 3 show the model-simulated blood flow waveforms
in LADb1 and left ventricular P-V loops under different HR conditions. The correspond-
ing amount of coronary blood flow (QT, which is obtained by integrating the transient
blood flow rate over a cardiac cycle) and left ventricular PVA are shown in Figure 3B,D,
respectively. Variations in HR induced significant changes in both the coronary blood flow
waveform and P-V loop. Quantitatively, although QT decreased monotonously following
the increase in HR, PVA showed more complex responses, for instance, PVA increased
with HR when HR was lower than 60 bpm, but decreased with HR when HR was higher
than 60 bpm. In addition, the range of changes in QT was overall larger than that of PVA,
indicating that QT is more sensitive to variations in HR.
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3.2. Effects of Variations in HR on Myocardial Perfusion

Myocardial perfusion was firstly evaluated with respect to the sensitivity of Qendo/Qepi
to variations in HR. From the results presented in Figure 4A, Qendo/Qepi decreased evi-
dently with the increase in HR when HR was higher than 60 bpm; relatively, Qendo/Qepi
was insensitive to variations in HR when HR was low (e.g., <60 bpm). In addition, the
presence of a coronary artery stenosis of moderate to high severity (i.e., SR = 50~70%)
considerably reduced Qendo/Qepi and augmented its sensitivity to variations in HR. These
results indicate that tachycardia and coronary artery disease play additive roles in depress-
ing the supply of blood to the subendocardium, thereby increasing the risk of subendocar-
dial ischemia. Figure 4B shows the relationships between MSDBx and HR under various
coronary artery stenotic conditions. MSDBx exhibited an overall trend of rising with the
increase in HR, with the trend being most remarkable when HR was lower than 100 bpm.
Recalling the results presented in Figure 3 and the definition of MSDBx (i.e., Equation (7)),
the increase of MSDBx with HR is caused mainly by the reduction in the amount of coro-
nary artery blood flow supplied to the myocardium in each cardiac cycle following the
increase in HR. Relatively, varying the severity (i.e., SR) of coronary artery stenosis had
little influence on MSDBx when the stenosis severity was at the mild to moderate level,
because under such conditions the stenosis-caused reduction in coronary artery flow could
be well compensated for by the coronary automatic regulatory mechanism [24]. When SR
reached up to 70%, there was a marked increase in MSDBx under all HR conditions since
the automatic regulatory mechanism is no longer sufficient to preserve coronary blood
flow. With respect to myocardial ischemia, increasing HR to a high level could lead to
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myocardial ischemia (i.e., MSDBx > 0) even in the absence of coronary artery stenosis; on
the other hand, reducing HR could convert the myocardial ischemic state (i.e., MSDBx > 0)
into a non-ischemic state (i.e., MSDBx < 0), even in the presence of severe coronary artery
stenosis. Figure 5 further shows the relationships between MSDBx and HR in the subendo-
cardium and subepicardium, respectively. While MSDBxes in the subendocardium and
subepicardium both showed a trend of increasing with HR, the sensitivity of MSDBx to
HR was much higher in the subendocardium than in the subepicardium. In addition, the
effects of coronary artery disease on MSDBx were more evident in the subendocardium
than in the subepicardium when the severity of stenosis was at a moderate to high level
(SR ≥ 50%), especially under the conditions of high HR (>100 bpm). These results imply
that the perfusion state of the subendocardium is much more sensitive than that of the
subepicardium to variations in HR, and that tachycardia is more likely to induce ischemia
in the subendocardium even in the absence of coronary artery disease or in the presence of
moderate coronary artery disease.
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3.3. Effects of Irregular HRs on Coronary Artery Flow and Myocardial Perfusion

Each set of 100 irregular R-R intervals generated by assigning different values to σ
in Equation (6) (shown in panel F of Figure 2) was imposed to the model to simulate the
changes in coronary hemodynamics and myocardial perfusion. For the coronary artery
(i.e., LADb1), in addition to the normal state (i.e., no stenosis), moderate (SR = 50%) and
severe (SR = 70%) stenotic diseases were considered. The cardiac cycle-specific mean
coronary blood flow rates and MSDBxes are presented in the form of scatter plots in
panels (A)–(F) of Figure 6 and in the form of statistical box plots in panels (G) and (H) of
Figure 6. From the scatter plots, it is evident that the stochastic distributions of both mean
coronary blood flow rate and MSDBx were enhanced following the increase in σ, which
corresponds to the enlargement of the error bars in the box plots. Increasing the severity of
coronary artery stenosis led to an overall decrease in blood flow rate, while at the same
time an increase in MSDBx. In the meantime, the ranges of stochastic distributions of mean
coronary blood flow rate and MSDBx were significantly narrowed when the severity of
coronary artery stenosis was high (i.e., SR = 70%). The cardiac cycle-specific mean coronary
blood flow rates and MSDBxes were further analyzed over each set of 100 consecutive
cardiac cycles to calculate the total amount of blood flow (QT100) and the mean value
of MSDBxes larger than zero, with the results being presented in Figure 7 in the form
of histograms. It was observed that QT100, as expected, decreased significantly with the
increase in the severity of coronary artery stenosis, but only slightly decreased following
the increase in σ. In contrast, the mean value of MSDBxes > 0 increased considerably with
the increase in σ, with the degree of increase being largest in the absence of coronary artery
stenosis, while smallest in the presence of severe coronary artery stenosis. We further
performed a stratified data analysis by dividing positive MSDBxes into three groups, i.e.,
0 < MSDBx ≤ 0.25, 0.25 < MSDBx ≤ 0.5, and MSDBx > 0.5, which were herein defined to
represent mild myocardial ischemia, moderate myocardial ischemia and severe myocardial
ischemia, respectively. The grouping of MSDBx allowed us to evaluate the overall risk
of myocardial ischemia of certain severity by calculating the percentage of cardiac cycles,
with the values of MSDBxes falling in each group among the 100 cardiac cycles. From the
results shown in Figure 8, when the coronary artery was free of stenosis, although the total
proportion of cardiac cycles with MSDBx > 0 was almost not affected by σ, the proportions
of cardiac cycles with 0.25 < MSDBx ≤ 0.5 and MSDBx > 0.5 increased considerably with
the increase in σ, indicating that severe irregularity of HRs may result in the occurrence of
moderate to severe transient myocardial ischemia even in the absence of coronary artery
disease. When there was a moderate or severe coronary artery stenosis (SR = 50% or 70%),
the proportion of cardiac cycles with MSDBx > 0.5 increased significantly, although the
total proportion of cardiac cycles with MSDBx > 0 and the proportion of cardiac cycles
with 0.25 < MSDBx ≤ 0.5 both decreased.

In order to uncover the mechanisms underlying the changes in MSDBx, we further
statistically analyzed the cardiac cycle-specific values of QT (i.e., total amount of coronary
artery blood flow in each individual cardiac cycle) and PVA in the groups of cardiac
cycles with mild myocardial ischemia (0 < MSDBx ≤ 0.25), moderate myocardial ischemia
(0.25 < MSDBx ≤ 0.5) and severe myocardial ischemia (MSDBx > 0.5), respectively. From
the results presented in Figure 9, under all conditions characterized by different values of
σ or severities of coronary artery stenosis, the mean value of QT exhibited more evident
inter-group differences than that of PVA, with the group of cardiac cycles with severe
myocardial ischemia having the smallest value, while the group with mild myocardial
ischemia had the largest value. In addition, the inter-group differences in QT augmented
considerably following the increase in σ. From the definition of MSDBx and the results
presented in Figure 9, it is easy to conclude that the changes in QT, rather than the changes
in PVA, upon irregular variations in R-R interval (or HR) dominate the changes in MSDBx;
in other words, the marked decreases in QT are a major cause of the increased values of
MSDBx in the groups with severe myocardial ischemia.
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Figure 6. Scatter plots of cardiac cycle-specific mean coronary artery blood flow rates (A,C,E) and
MSDBxes (B,D,F) during 100 cardiac cycles with various severities (controlled by the value of σ)
of R-R interval irregularity when the coronary artery is normal (no stenosis) or has a 50% or 70%
stenosis. The statistical box plots of mean flow rates and MSDBxes computed for each set of 100
cardiac cycles are presented in panels (G,H), respectively.
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Figure 7. Total amount of blood flow (A) and the mean value of positive MSDBxes (B) during 100 consecutive cardiac cycles
with various severities (controlled by the value of σ) of R-R interval irregularity. Herein, the coronary artery is set to be
normal (no stenosis), or have a moderate (SR = 50%) or severe (SR = 70%) stenosis.
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Figure 8. Proportions of cardiac cycles with mild myocardial ischemia (0 < MSDBx ≤ 0.25), moderate
myocardial ischemia (0.25 < MSDBx ≤ 0.5) and severe myocardial ischemia (MSDBx > 0.5) within
100 consecutive cardiac cycles with various severities of R-R interval irregularity. The coronary artery
is set to be normal (no stenosis), or have a moderate (SR = 50%) or severe (SR = 70%) stenosis.
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Figure 9. Statistical box plots of cardiac cycle-specific amounts of coronary artery blood flow (QT)
(A,C,E) and left ventricular PVAs (B,D,F) in the groups of cardiac cycles with mild myocardial
ischemia (0 < MSDBx ≤ 0.25), moderate myocardial ischemia (0.25 < MSDBx ≤ 0.5) and severe
myocardial ischemia (MSDBx > 0.5) within 100 consecutive cardiac cycles with various severities of
R-R interval irregularity combined with various severities of coronary artery disease (i.e., no stenosis,
SR = 50%, and SR = 70%).

4. Discussion

In the present study, computational model-based numerical experiments were carried
out to investigate the influences on myocardial perfusion of various types of arrhythmia
combined with coronary artery disease. In particular, we introduced two indices (i.e.,
Qendo/Qepi and MSDBx) in addition to generally considered coronary hemodynamic pa-
rameters for the purpose of quantitatively evaluating myocardial perfusion and exploring
the mechanisms underlying the occurrence of myocardial ischemia. The main findings are
as follows: (1) there was an overall decrease in Qendo/Qepi, while an increase in MSDBx,
following the increase in HR; (2) MSDBx in the subendocardium was more sensitive than
that in the subepicardium to variations in HR; (3) the presence of coronary artery disease of
moderate severity could considerably augment the sensitivities of Qendo/Qepi and MSDBx
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to variations in HR, especially under tachycardic conditions (HR > 100 bpm); (4) severe
irregularity of HRs (or R-R intervals) alone could induce the occurrence of transient myocar-
dial ischemia, and could increase the risk of severe myocardial ischemia when combined
with coronary artery disease; and (5) the amount of coronary blood flow in each cardiac
cycle was a major determinant factor for the condition of myocardial perfusion under
various conditions of arrhythmia.

The first and second findings indicate that ischemia is more likely to occur in the
subendocardium under tachycardic conditions due to the redistribution of coronary blood
flow from the subendocardium toward the subepicardium. Such a trend will be further
enhanced in the presence of moderate coronary artery disease according to the third
finding. Although moderate coronary artery disease is generally considered to have a
relatively low risk of inducing severe myocardial ischemia [25], our findings suggest that
the combination of moderate coronary artery disease with tachycardia can significantly
increase the risk and severity of ischemia in the subendocardium. Therefore, for patients
with moderate coronary artery disease, the level of resting HR should be taken as an
important physiological parameter when assessing the condition of myocardial perfusion,
especially for the subendocardium. The fourth finding suggests that severe irregularity of
HRs can either be an independent risk factor or be an additive factor to coronary artery
disease for myocardial ischemia. With regard to the mechanisms underlying the influences
of arrhythmia on myocardial perfusion, our numerical results reveal that the sharp decrease
in the amount of coronary artery blood flow in each cardiac cycle with the increase in HR
is a main cause of myocardial ischemia, although both coronary artery blood flow and PVA
of the left ventricle decrease following the increase in HR.

In the treatment of arrhythmia, β-blockers, which have a role of reducing HR and blood
pressure through blocking the access of catecholamines to their receptors, are commonly
used [26]. However, whether lowering HR with β-blockers can effectively improve the
prognosis of myocardial ischemia remains unclear. In the guidelines of the ACC/AHA,
the use of β-blockers is recommended in the management of patients with stable ischemic
heart disease or patients with normal left ventricular function after myocardial infarction
or acute coronary syndrome [27]; however, this is not recommended in the ESC guidelines
due to the lack of randomized trials on the use of β-blockers in patients with stable
coronary artery disease [28]. At this point, the use of β-blockers may be supported by the
findings of our study regarding the beneficial role of lowering HR in improving myocardial
perfusion (especially in the subendocardium) in the presence of moderate to severe coronary
artery disease. In addition, clinical studies have shown that arrhythmia is significantly
associated with the severity and progression of coronary artery disease [29,30]. Our study
demonstrates that tachycardia or severe HR irregularity can considerably increase the risk
of severe myocardial ischemia in the presence of moderate coronary artery stenosis, which
implies that arrhythmia might be involved in the pathological changes of myocardium
through its influence on myocardial perfusion. Given the fact that coexistence of coronary
artery disease and arrhythmia is not uncommon in the population [31], arrhythmia should
be well considered in order to identify patients with clinically insignificant coronary artery
stenoses while severe myocardial ischemia.

Although the findings of our study provide theoretical insights for understanding the
characteristics of myocardial perfusion under various arrhythmic conditions combined
with coronary artery disease, they must be considered in the context of certain limitations.
A major limitation arises from the disregard of the regulatory responses of systemic hemo-
dynamics to HR variations. For example, lowering HR can not only alter hemodynamic
conditions in the coronary circulation, but can also induce decreases in arterial blood
pressure [10] and cerebral blood flow [4]. Under in vivo conditions, a decrease in arterial
blood pressure will alter the reflex responses of the baroreceptors located at the carotid
sinus and aortic arch, which will further trigger the regulatory responses of the autonomic
nervous system aimed to recover blood pressure via modulating cardiac contractility and
the tones of small resistance arteries, and such systemic regulatory responses will act along
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with the local regulatory responses (e.g., vasodilation or remodeling) of cerebral vessels to
preserve cerebral blood flow [32]. These regulatory mechanisms play an important role in
maintaining the homeostasis of hemodynamics, but were not incorporated in our model.
In particular, arterial blood pressure has been demonstrated in previous studies [10,33] to
have moderate influence on the distribution of blood flow in the myocardium; therefore,
the regulation of arterial blood pressure may be a factor worthy of consideration when HR
varies slowly or is stabilized at a certain level for long time. In this sense, our study only
revealed the transient influences of HR variations on myocardial perfusion. In addition, the
model parameters have been assigned based on population-averaged clinical data, which
renders the model generic and unable to represent the characteristics of coronary hemody-
namics and myocardial perfusion in a specific patient. Accordingly, the presented findings
would contribute as a theoretical reference for interpreting population-averaged rather
than patient-specific clinical observations. In future studies, the model may be calibrated to
the clinical data of individual patients [34,35] to predict the risk or severity of myocardial
ischemia upon the onset of arrhythmia, or be utilized as a mathematical tool to generate
in-silico data representing a large number of virtual patients so that statistical methods
or machine learning techniques could be applied to identify specific pathophysiological
conditions under which the arrhythmia-induced risk of myocardial ischemia is high.

5. Conclusions

Model-based numerical experiments have been performed to systematically study
the influences of different types of arrhythmia combined with coronary artery disease on
coronary hemodynamics and myocardial perfusion. The obtained results showed that
tachycardia and severe irregularity of HRs could induce myocardial ischemia even in the
absence of coronary artery disease. In contrast, reducing HR was found to have a beneficial
role in improving myocardial perfusion, especially in the subendocardium. In addition,
the influences of arrhythmia on myocardial perfusion were augmented in the presence of
coronary artery disease. These findings suggest that arrhythmia is a factor worthy of note
in the diagnosis and management of patients with coronary artery disease.
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