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Abstract: This article deals with the unsteady flow in rotating circular plates located at a finite
distance filled with Reiner-Rivlin nanofluid. The Reiner-Rivlin nanofluid is electrically conducting
and incompressible. Furthermore, the nanofluid also accommodates motile gyrotactic microorgan-
isms under the effect of activation energy and thermal radiation. The mathematical formulation
is performed by employing the transformation variables. The finalized formulated equations are
solved using a semi-numerical technique entitled Differential Transformation Method (DTM). Padé
approximation is also used with DTM to present the solution of nonlinear coupled ordinary dif-
ferential equations. Padé approximation helps to improve the accuracy and convergence of the
obtained results. The impact of several physical parameters is discussed and gives analysis on
velocity (axial and tangential), magnetic, temperature, concentration field, and motile gyrotactic
microorganism functions. The impact of torque on the lower and upper plates are deliberated and
presented through the tabular method. Furthermore, numerical values of Nusselt number, motile
density number, and Sherwood number are given through tabular forms. It is worth mentioning here
that the DTM-Padé is found to be a stable and accurate method. From a practical point of view, these
flows can model cases arising in geophysics, oceanography, and in many industrial applications like
turbomachinery.

Keywords: Reiner-Rivlin nanofluid; circular plates; induced magnetic effects; activation energy;
bioconvection nanofluid

1. Introduction

Nanofluids were first explained by Choi [1] in 1995. Nanofluids are a composition of
nanoparticles and a base fluid including oil, water, ethylene-glycol, kerosene, polymeric
solutions, bio-fluids, lubricants, oil, etc. The material of the nanoparticles [2] involves chem-
ically stable metals, carbon in multiple forms, oxide ceramics, metal oxides, metal carbides,
etc. The magnitude of the nanoparticles is substantially smaller (approx. less than 100 nm).
Nanofluids have multitudinous applications in engineering and industry [3,4], such as
smart fluids, nuclear reactors, industrial cooling, geothermal power extract, and distant
energy resources, nanofluid coolant, nanofluid detergents, cooling of microchips, brake
and distant vehicular nanofluids, and nano-drug delivery. In the light of these applications,
numerical researchers discussed the nanofluids in different geometrical configurations. For
instance, Gourarzi et al. [5] scrutinized the impact of thermophoretic force and Brownian
motion on hybrid nanofluid. They concluded with the excellent point that nanoparticle
formation on cold walls is more essential due to thermophoresis migration. Ghalandari
et al. [6] used CFD to model silver/water nanofluid flow towards a root canal. The effects
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of injection height, nanofluid concentration, and the rate of volumetric flow were explored
and addressed. Sheikholeslami and Vajravelu [7] studied the control volume-based finite
element approach to determine magnetite nanofluid flow into the same heat flux in the
whole cavity. The impact of Rayleigh number, Hartmann number, and volume friction
of nanofluid flow magnetite (an iron oxide) and heat transfer features were discussed.
Sheikholeslami and Ganji [8] addressed hydrothermal nanofluid in the existence of mag-
netohydrodynamics by using DTM. They discussed the impact of squeezing number and
nanofluid volume fraction on heat transfer and fluid flow. Biswal et al. [9] deliberated fluid
flow in a semi-permeable channel with the influence of a transverse magnetic field. Zhang
et al. [10] considered the outcome of thermal diffusivity and conductivity of numerous
nanofluids utilizing the transient short-hot-wire technique. Fakour et al. [11] inquired the
laminar nanofluid flow in the channel using the least square approach with porous walls.
This study shows that by enhancing Hartman and Reynolds number, the velocity of the
nanofluid flow in the channel declines and an extreme amount of temperature is enhanced.
More, enhancing the Prandtl number along with the Eckert number also increases the
temperature distribution. Zhu et al. [12] inquired the second-order slip and migration of
nanoparticles from a magnetically influenced annulus. They applied a well-known HAM
technique for solving the equations, and a h-curve was drawn to validate the exactness of
the obtained solution. Ellahi et al. [13] revealed the impact of Poiseuille nanofluid flow with
Stefan blowing and second-order slip. The accuracy of the analytical solution is obtained
by the HAM and verified by h-curve and residual error norm for each case. They claim
that the ratio of buoyancy forces in the existence of a magnetic field played a vital role in
velocity distribution.

Magnetohydrodynamic (MHD) has grabbed different researchers’ attention because
of its multitudinous applications in the agricultural, physics, medicine, engineering, and
petroleum industries, etc. For instance, applications of MHD involve bearing sand bound-
ary layer control, MHD generators, rotating machines, viscometry, electronic storing com-
ponents, turbomachines, lubrications, oceanographically processes, reactor chemical vapor
deposition, and pumps. The magnetic field plays an essential role in controlling the bound-
ary layer of momentum and heat transfer. The presence of magnetics is beneficial to control
fluid movement. It is worthwhile to mention that the magnetic essential modified the
outcomes of heat transfer in the flow by maneuvering the suspended nanoparticles and
reorganized the fluid concentration. Khan et al. [14] studied the magnetohydrodynamic
nanofluid flow between the pair of rotating plates. Zangooee et al. [15] analyzed the
hydrothermal magnetized nanofluid flow between a pair of radiative rotating disks. From
their studies, it is perceived that concentration decreases while increasing in Reynolds
number, but on the other hand, the temperature is increasing for Reynolds number. By
enhancing the value of the stretching parameter, the Reynolds number increases at the
upper disc and decreases at the lower plates. Hatami et al. [16] analytically inquired
the magnetized nanofluid flow in the porous medium. These results showed that the
magnetic field opposes fluid flow in all directions. In addition, they claimed that the
action of thermophoresis increases temperature and reduces the flow of heat from the disc.
Nanoparticles shape effect on magnetized nanofluid flow over a rotating disc embedded in
porous medium investigated by Rashid and Liang [17]. Abbas et al. [18] studied a fully
developed flow of nanofluid with activation energy and MHD. The study’s main findings
demonstrate that flow field and entropy rate are highly affected by a magnetic field. The
results indicate that both the flow and entropy rates of the magnetic field are significantly
affected. Rashidi et al. [19] inquired steady MHD nanofluid flow with entropy generation
and due to permeable rotating plates. Alsaedi et al. [20] inquired the flow of copper-water
nanofluid with MHD and partial slip due to a rotating disc. They contemplated water as
a base fluid and copper nanoparticles. They concluded with the remark that for greater
values of a nanoparticle volume fraction, the magnitude of skin friction coefficient had
been increased both for radial and azimuthal profiles. Asma et al. [21] numerically dis-
cussed the MHD nanofluid flow over a rotating disk under the impact of activation energy.
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They observed that the concentration and temperature both show a growing tendency by
increasing Hartman numbers. Aziz et al. [22] inquired the three-dimensional motion of
viscous nanoparticles over rotating plates with slip effects. They showed that concentration
profile and temperature distribution show enhancing behaviors for increasing values of
Hartmann number. Hayat et al. [23] numerically inquired the nanofluid flow because
of rotating disks with slip effects and magnetic field. These studies showed that more
significant levels of the magnetic parameter indicate reduced velocity distribution behavior,
whereas temperature and concentration distribution show opposite behavior. The hydro-
magnetic fluid flow of nanofluid due to stretchable/shrinkable disk with non-uniform heat
generation/absorption is inquired by Naqvi et al. [24]. The graphical results of the studies
showed that the higher values of the Prandtl number give an improved temperature, but
when thermophoresis and Brownian motion parameters are reduced, the temperature
distribution reduces.

Svante Arrhenius, a Swedish physicist, used the phrase energy for the first time in 1889.
Activation energy is measured in KJ/mol and denoted by Ea, which means the minimum
energy achieved by molecules/atoms to initiate the chemical process. For various chemical
processes, the amount of energy activation is varying, even sometimes zero. The activation
energy in heat transfer and mass transfer has its usages in chemical engineering, emulsions
of different suspensions, food processing, geothermal reservoirs, etc. Bestman [25] pub-
lished the first paper on activation energy with a binary chemical process. Discussion on
the inclusion of chemical reaction into nanofluids flow and Arrhenius activation energy
was determined by Khan et al. [26]. Zeeshan et al. [27] studied the Couette-Poiseuille
flow with activation energy and analyzed convective boundary conditions. Bhatti and
Michaelides [28] discussed the influence of activation energy on a Riga plate with gyrotactic
microorganisms. Khan et al. [29] reveal that the impact of activation energy on the flow of
nanofluid against stagnation point flow by considering it nonlinear with activation energy.
Their investigation revealed that activation energy decline for the mass transfer phenom-
ena. Hamid et al. [30] inquired about the effects of activation energy inflow of Williamson
nanofluid with the influence of chemical reactions. The study concluded that the heat trans-
fer rate in cylindrical surfaces declines when increasing the reaction rate parameter. Azam
et al. [31] inquired about the impact of activation energy in the axisymmetric nanofluid
flow. Waqas et al. [32] inquired the flow of Oldroyd-B bioconvection nanofluid numerically
with nonlinear radiation through a rotating disc with activation energy.

Bioconvection characterizes the hydrodynamic instabilities and the forms of sus-
pended biased swimming microorganisms. The hydrodynamics instabilities occur due to
the coupling between the cell’s swimming performance and physical features of the cell, i.e.,
fluid flows and density. For example, a combination of gravitational and viscous torques
tend to swim the cells in the direction of down welling fluid. A gyrotactic instability ensues
if the fluid is less dense than the cells. Bioconvection portrays a classical structure where a
macroscopic mechanism occurs due to the microscopic cellular ensuing in relatively dilute
structures. There is also the ecological impact for bioconvection and its mechanisms, which
is promising for industrial development. In the recent era, many scientists have discussed
the mechanism of bioconvection using nanofluid models. For instance, Makinde et al. [33]
examined the nanofluid flow due to rotating disk and thermal radiation with titanium and
aluminum nanoparticles. They showed that the base liquid thermal efficiency is remarkable
when the nanoparticles of titanium alloy are introduced in contrast to the nanoparticles of
aluminum alloy. Reddy et al. [34] studied the Maxwell thermally radiative nanofluid flow
on a double rotating disk. Waqas et al. [35] examined the effect of thermally bioconvection
Sutterby nanofluid flow between two rotating disks along with microorganisms. The
fluid speed with mixed convection parameters grew quicker but delayed the magnetic
field parameter and the Rayleigh number bioconvection. Some important studies on the
bioconvection mechanism can be found from the list of references [36–39].

For many industrial applications such as the production of glass, furnaces, space
technologies, comic aircraft, space vehicles, propulsion systems, plasma physics, and reen-
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try aerodynamics in the field of aero-structure flows, combustion processes, and other
spacecraft applications, the role of thermal radiation is significant. Raju et al. [40] examined
the flow of convective magnesium oxide nanoparticles with nonlinear thermal convective
over a rotating disk. Sheikholeslami et al. [41] presented the analysis of thermally radiative
MHD nanofluid through the porous cavity. Muhammad et al. [42] analyzed the charac-
teristics of thermal radiation for Powell-Eyring nanofluid flow with additional effects of
activation energy. Aziz et al. [43] numerically analyzed hybrid nanofluid with entropy
analysis, thermal radiation, and viscous dissipation. Mahanthesh et al. [44] investigated the
significance of radiation effects of the two-phase flow of nanoparticles over a vertical plate.
Jawad et al. [45] investigated the bio-convection nanofluid flow of Darcy law through a
channel (Horizontal) with magnetic field effects and thermal radiation. Majeed et al. [46]
thermally analyzed magnetized bioconvection flow with additional effects of activation
energy. Numerous fresh developments on this topic can be envisaged through [47–52].

After studying the preexistent literature, it is noticed that there is no addition to the
research of Reiner-Rivlin fluid flow between rotating circular plates filled with microor-
ganisms and nanoparticles. In the present study, we assume that the flow in the tangential
and axial direction. The Reiner-Rivlin nanofluid with motile gyrotactic microorganisms
is filled between the pair of rotating plates. The thermally radiative Reiner-Rivlin fluid is
electrically conducted under the existence of activation energy. The famous Differential
Transform scheme is used to obtain the solution of the ordinary differential equations. Padé
approximation is also applied to enhance the convergence rate of the solution obtained
by the Differential Transform Method. The impact of various parameters in nanoparti-
cle concentration, velocity, temperature, and motile microorganism function is analyzed
thoroughly using graphs and tabular forms.

2. Physical and Mathematical Structure of Three-Dimensional Flow

Let us anticipate incompressible three-dimensional, unsteady, axisymmetric squeezed
film flow of Reiner-Rivlin nanofluid between a circular rotating parallel plate. The height

of both plates is taken as
_
Γ (t)

[
= D(−βt + 1)1/2

]
at time t. Let (r, θ, z) be the cylindrical

polar coordinates with velocity field V = [vr, vθ , vz]. The lower circular plate is fixed while
the upper circular plate is considered as moving towards the lower plate. The moving

plate velocity is represented by
_
Γ
′
(t). Both plates are rotating at a symmetric axis, which is

characterized by Z-axis. The components of the magnetic field applied H on the moving
plate in axial and azimuthal direction are:

_
Hθ =

rN0

µ2

√
D

_
Γ (t)

,
_
Hz = −

βM0D

µ1
_
Γ (t)

, (1)

Here N0, M0 in Equation (1) denotes the dimensionless quantities, which results
_
Hθ ,

_
Hz in dimensionless, and the magnetized permeability of medium inside and outside

of both plates are characterized by µ2 and µ1, respectively. In the case of liquid metals,
µ2 = µ` where µ` indicates the free space permeability. Hθ , Hz on a fixed plate is expected
to be zero. The extrinsic applied magnetic field H tends to generate an induced magnetic

field
_
B(r, θ, z) having components

_
B r,

_
Bθ ,

_
Bz between the two plates (see Figure 1). The

temperature and the concentration at the lower plate is denoted as (T0, C0) while at the
upper plate is taken as (T1, C1).
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Figure 1. A physical structure for nanofluid flow between parallel circular plates in the existence of
motile gyrotactic microorganisms and induced MHD.

2.1. Mathematical Modeling of Reiner-Rivlin Fluid

The constitutive equation of Reiner-Rivlin fluid flow is defined as [53]:

τij = −pδij + µeij + µceikekj, ejj = 0, (2)

where τij represents stress tensor, p denotes pressure, µ denotes the viscosity coefficient,
µc denotes cross-viscosity coefficient, δij denotes Kronecker symbol, and deformation rate
tensor is represented by eij =

(
∂ui/∂xj

)
+
(
∂uj/∂xi

)
. Components of deformation rate

tensor are:

err = 2D2vr, eθθ = 2 vr
r , ezz = 2D4vz, erθ = eθr = rD2

( vθ
r
)
= D2vθ − vθ

r ,
ezθ = eθz = D4vθ , erz = ezr = D4vr + D2vz

(3)

with the help of Equation (2), components of stress tensor are attained as

τrr = −p + µerr + µc

(
err

2 + erθ
2 + erz

2
)

, (4)

τrr = −p + 2µD2vr + µc

[
4(D2vr)

2 +
(

D2vθ −
vθ

r

)2
+ (D4vr + D2vz)

2
]

, (5)

τrθ = τθr = 0 + µerθ + µc(errerθ + erθeθθ + erzezθ), (6)

τrθ = µ
(

D2vθ − vθ
r
)
+ µc

[
2(D2vr)

(
D2vθ − vθ

r
)

+
(

D2vθ − vθ
r
)(

2 vr
r
)
+ (D4vθ)(D4vr + D2vz)

] (7)

τrz = µerz + µc(errerz + erθeθz + erzezz), (8)
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τrz = µ(D4vr + D2vz)+ µc[2(D2vr)(D4vr + D2vz)
+
(

D2vθ − vθ
r
)
(D4vθ) + 2(D4vz)(D4vr + D2vz)

] , (9)

τθθ = −p + µeθθ + µc

(
erθ

2 + eθθ
2 + ezθ

2
)

, (10)

τθθ = −p + µ
(

2
vr

r

)
+ µc

[(
D2vθ −

vθ

r

)2
+ 4
(vr

r

)2
+ (D4vθ)

2
]

, (11)

τθz = µeθz + µc(eθrerz + eθθeθz + eθzezz), (12)

τθz = τzθ = µ(D4vθ) + µc

[(
D2vθ −

vθ

r

)
(D4vr + D2vz) + 2(D4vθ)

(vr

r
+ D4vz

)]
, (13)

where D1 = ∂
∂t , D2 = ∂

∂r , D3 = ∂
∂θ , D4 = ∂

∂z .

2.2. Proposed Governing Equations

Assuming the above-mentioned Reiner-Rivlin fluid model, the proposed governing
equations for continuity and momentum in the direction of r, θ, z read as

1
r

D2(rvr) +
1
r

D3(vθ) + D4(vz) = 0, (14)

ρ
(

D1(vr) + vrD2(vr) +
vθ
r D3(vr) + vzD4(vr)− vθ

r
)
= −D2 p

+µ
[

1
r D2(vr) +

1
r2 D3

2(vr) + D4
2(vr)− 2

r D3(vθ)− vr
r2

]
+ 1

r
∂
∂r (rτrr) +

1
r D3(τrθ)− τθθ

r + D4(τrz)− D4(Br)Bz − D4(Bθ)Bθ

, (15)

ρ
(

D1(vθ) + vrD2(vθ) +
vθ
r D3(vθ) + vzD4(vθ)− vrvθ

r
)
= − 1

r D3 p
+µ
[

1
r D2(rD2(vθ)) +

1
r2 D3

2(vθ) + D4
2(vθ) +

2
r2 D3(vr)− vθ

r2

]
+ 1

r D3(τθθ) +
1
r2 D2(r2τrθ) + D4(τθz)− D4(Bθ)Bz − D2(Bθ)Br

, (16)

ρ
(

D1(vz) + vrD2(vz) +
vθ
r D3(vz) + vzD4(vz)

)
= −D4 p

+µ
[

1
r D2(rD2(vz)) +

1
r2 D3

2(vz) + D4
2(vz)

]
+D4(τzz) +

1
r D2(rτrz) +

1
r D3(τθz)− D4(Bθ)Bθ + D4(Br)Br

, (17)

where p represents pressure, ρ represents fluid density, stress tensor is denoted by τ, and µ
represents fluid viscosity. The equation of the magnetic field is

1
r

D2rBr +
1
r

D3Bθ + D4Bz = 0, (18)

D1Br + vrD2Br + vθ D3Br + vzD4Br = −D4(vrBz − vzBr) +
1

δµ2

(
D4

2Br

)
, (19)

D1Bθ + vrD2Bθ + vθ D3Bθ + vzD4Bθ = D2(vrBθ − vθ Br)

−D4(vθ Bz − Bθvz) +
1

δµ2

(
D4

2Bθ

) , (20)

D1Bz + vrD2Bz + vθ D3Bz + vzD4Bz = D2(vrBz − vzBr) +
1

δµ2

(
D4

2Bz

)
, (21)

where δ is the electrical conductivity.
The energy equation reads as:

D1
^
T + vrD2

^
T + vzD4

^
T = k

(ρc) f
D4

2
^
T − 1

(ρc) f

(
∂qr
∂r

)
+

(ρc)p
(ρc) f

[
DB

(
D2

^
T · D2

^
C + D4

^
T · D4

^
C
)
+ DT

^
T u

[(
D2

^
T
)2

+

(
D4

^
T
)2
]]

, (22)

where
^
T represents temperature, k the thermal conductivity,

^
C represents concentration,

mean fluid temperature is represented by
^
T m, the specific heat capacity of nanofluid (ρc)p,
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(ρc) f the specific heat capacity of the base fluid, Brownian diffusivity is represented by DB,
thermophoretic diffusion coefficient is represented by DT . In accordance with Rosseland
approximation radiation heat flux, which is uni-directional (acting axially) takes the form,

qr = − 4σe
3βr

∂
^
T

4

∂r , in which σe represents the Stefan–Boltzmann constant and βr represents
the mean absorption coefficient, respectively. Rosseland’s model applies for optically
thick nanofluids and yields a reasonable estimate for radiative transfer effects, although it
neglects non-gray effects.

The equation of nanoparticle concentration reads as [54]

D1
^
C + vrD2

^
C + vzD4

^
C = DBD2

4

^
C +

DT
^
T u

D2
4

^
T − kr

2
(
^
C −

^
Cu

) ^
T
^
T u

n

e
− Ea

κ
^
T , (23)

where k2
r is the reaction rate, n is the rate constant, κ is the Boltzmann constant, and Ea is

the activation energy.
The microorganism conservation equation reads as

D1n + vrD2n + vθ D3n + vzD4n +
bWmo

^
C l −

^
Cu

[
D4

(
nD4

^
C
)]

= Dmo

(
D4

2n
)

. (24)

Here bWmo is considered constant, where b are chemotaxis constant, cell swimming
maximal speed is denoted by Wmo, and Dmo denotes diffusivity of microorganism. The
corresponding boundary conditions are [54].

vr = 0, vθ = Ω1r
D2

_
Γ

2
(t)

, vz = 0, Bz = Bθ = 0, n = nl ,
^
T =

^
T l ,

^
C =

^
C l , at z = 0, (25)

vr = 0, vθ = Ω2r D2

_
Γ

2
(t)

, Bθ = N0r D2

_
Γ

2
(t)

, Bz = − βDM0
_
Γ (t)

,

^
C =

^
Cu,

^
T =

^
T u, n = nu, vz = − βD2

2
_
Γ (t)

,

 at z =
_
Γ (t), (26)

3. Similarity Transformations

Introducing the subsequent similarity variables satisfying the continuity equation, for
instance: 

vr = r ∂F
∂z = βr

2
D2

_
Γ

2
(t)

f ′(λ), vθ = G(z, t)r = rΩ1
D2

_
Γ

2
(t)

g(λ),

vz = −2F(z, t) = − βD2 f (λ)
_
Γ (t)

,

Br = r ∂M
∂z = βrDM0

2
_
Γ

2
(t)

m′(λ), Bθ = rN(z, t) = rN0
D2

_
Γ

2
(t)

n(λ),

Bz = −2M(z, t) = − βDM0m(λ)
_
Γ (t)

,

φ(λ) =
^
C−

^
Cu

^
C l−

^
Cu

, χ(λ) = n−nu
nl−nu

, θ =
^
T−

^
T u

^
T l−

^
T u

, λ = z
_
Γ (t)

.

(27)

where similarity variable is λ and f (λ), g(λ), m(λ), n(λ),
^
θ (λ), φ(λ) and χ(λ) are non-

dimensional velocity in axial and tangential direction, the magnetic field in axial and
tangential direction, temperature, concentration, and motile density function, respectively.

Now substituting the above-mentioned similarity transformation in Equations (6)–(16),
following coupled, nonlinear ODE’s with independent variable (λ) obtained as,

f (iv)(η) = 4RQ

[
3 f ′′ − 2

(
RΩ
SQ

)2
gg′ + 2F2

T(mm′′′ + m′m′′ )− (2 f − λ) f ′′′ + 2F2
A

(
RΩ
SQ

)2
nn′
]

−4K
[

2RΩ
RQ

g′g′′ + RQ
RΩ

[
2 f ′′ f ′′′ + 2

(
f ′′ f ′′′ + f ′ f iv)]] , (28)
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g′′ (η) = 2SQ
2[2g + λg′ + 2g f ′ − f g′ + 2FAFT

(
mn′ + nm′

)]
− 2K

[
g′(η) f ′′ (η)− f ′(η)g′′ (η)

]
, (29)

m′′ = ReM
[
m + λm′ + 2m f ′ − 2 f m′

]
, (30)

n′′ = ReM

[
2n− f n′ + λn′ + 2

(
FA
FT

)
mg′

]
, (31)

(
1 +

4
3

Rd(1 + (Tr − 1)
^
θ )

3)^
θ′′ + 4Rd(Tr − 1)(1 + (Tr − 1)

^
θ )

2^
θ
′2
+ SQPt f

^

θ′ + Tt

^

θ′
2
+ Tb

^

θ′φ′ = 0, (32)

φ′′ +
Tt

Tb

^
θ′′ + SQSM f φ′ − SMσ(1 + δ̃

^
θ )

n
exp

(
− E

1 + δ̃
^
θ

)
φ = 0, (33)

χ′′ − SQBs

(
λ

2

)
χ′ + BsSQ f χ′ − Pl

[
χ′φ′ + (χ + Φ)φ′′

]
= 0. (34)

where SQ represents the squeezed Reynolds number, RΩ the rotational Reynolds num-
ber, FA, FT , denote the strength of the magnetic field in axial and azimuthal direction,
ReM the magnetic Reynolds number, K the material parameter of Reiner-Rivlin fluid, Tb
the Brownian motion, Pt the Prandtl number, Tt the Thermophoresis parameter, E the
non-dimensional form of Arrhenius activation energy, SM the Schmidt number, Bs the
bioconvection Schmidt number, σ the rate of chemical reaction, Pl the Peclet number, δ̃
represents the temperature ratio, Tr the temperature ratio parameter, Rd the radiation
parameter, and Φ the constant number, respectively. They can be written as

SQ = βD2

2υ , RΩ = Ω1D2

υ , FT = M0
D
√

µ2ρ , FA = N0
Ω1
√

µ2ρ , K = µcΩ
µ ,

Tb =
τDB

(
^
C l−

^
Cu

)
α̃ , Tt =

τDT

(
^
T l−

^
T u

)
α̃
^
T u

, Pt =
υ
α̃ , α̃ = k

(ρc)p
SM = υ

DB
,

Bs =
υ

Dn
, Pl =

bWmo
Dmo

, Φ = nu
nl−nu

, Bt = δµ2υ, ReM = RQBt, Rd = 4
^
T

3

uσe
βrk ,

E = Ea

κ
^
T u

, σ = kr
2_Γ (t)2

υ , δ̃ =
^
T l−

^
T u

^
T u

, τ =
(ρc)p
(ρc) f

, Tr =
Tl
Tu

(35)

where Bt represents Batchelor number.
The boundary conditions said in Equations (25) and (26) reduced as f ′(0) = 0, f (0) = 0, m(0) = 0, g(0) = 1, n(0) = 1,

^
θ (0) = 1, χ(0) = 1, φ(0) = 1,

f (1) = 1
2 , m(1) = 1, g(1) =

.
ξ, n(1) = 1,

^
θ (1) = 0, φ(1) = 0, χ(1) = 0

(36)

where f , g, n, m, θ, φ, χ denotes axial velocity and tangential velocity, magnetic field
components in the tangential and axial direction, temperature distribution, nanoparti-
cles concentration, motile gyrotactic microorganism profile,

.
ξ(= Ω2/Ω1) represents the

angular velocity, and its range is in between the rotating plates −1 ≤
.
ξ ≤ 1. It is bene-

ficial to investigate various revolving flow attributes of rotating plates in the reverse or
same direction.

On the upper (moving) plate, the dimensionless torque can be calculated as

T̂up = 2πρ

b∫
0

(
∂v
∂z

)
z=

_
Γ (t)

dr, (37)

where the plate radius is signified by b.
Using Equation (27) in Equation (37), it becomes

T̂up =
dg(1)

dλ
, (38)



Mathematics 2021, 9, 2139 9 of 24

where the upper plate torque is designated by T̂up, and the tangential velocity gradient on
the upper (moving) plate is dg(1)/dλ.

In the same fashion, the lower plate torque in dimensionless form is achieved by
similar calculation and it becomes for λ = 0 as

T̂lp =
dg(0)

dλ
. (39)

4. Solution of the Problem by DTM-Padé

DTM was first introduced by Zhou [55] in an engineering analysis for electric circuit
theory for linear and nonlinear problems. It is an extremely powerful method for finding the
solutions of magnetohydrodynamics and complex material flow problem. The Differential
Transform Method (DTM) is distinct from the conventional higher-order Taylor series
scheme. It was also used in combination with Padé approximants very successfully. The
purpose of applying Padé-approximation is to improve the convergence rate of series
solutions. The reason behind this is that sometimes the DTM fails to converge. That is why
most of the researchers’ merge DTM and Padé approximation to deal with the high order
nonlinear differential equations. The Padé approximation is a rational function that can
be thought of as a generalization of a Taylor polynomial. A rational function is the ratio
of polynomials. Because these functions only use the elementary arithmetic operations,
they are very easy to evaluate numerically. The polynomial in the denominator allows
one to approximate functions that have rational singularities All the codes are developed
on Mathematica software. The dimensionless Equations (28)–(36) are attained with the
help of similar transformations stated in Equation (27), which are solved by virtue of the
Differential Transform Method. To proceed further with the DTM technique, let us define
qth derivative as:

F(λ) =
1
q!

[
dq f
dλq

]
λ=λ0

, (40)

where f (λ) are original and F(λ) represent transformed functions. Now the differential
inverse transform F(λ) can be defined as

f (λ) =
∞

∑
q=0

F(λ)(λ− λ0)
q, (41)

The objective of differential transformation has been achieved by the Taylor extension
series, and in terms of the finite series, the function f (λ) can be defined as

f (λ) ∼=
k

∑
q=0

F(λ)(λ− λ0)
q, (42)

The rate of convergence depends upon the value of k. Each BVP can be converted to
IVP with the replacement of unknown initial conditions. Taking differential transformation
of the separate term by term of Equations (28)–(36), the following transformations are
attained:

f ′′ → (1 + ň)(2 + ň) f (ň + 2),

f ′′ 3 →

 ň
∑

υ̃=0

 ω

∑
r=0

(ω + 1)(ω + 2)(−ω + υ̃ + 1)(−υ̃ + ň + 1)(−υ̃ + ň + 2)

f (−υ̃ + ň + 2) f (2 + ω) f (−ω + 2 + ň)

,

f ′ f ′′ f ′′′ →

 ň
∑

υ̃=0

 ň−ω

∑
υ̃=0

(ω + 1)(1 + ω)(2 + ω)(−ω + ň− υ̃ + 1)(−ω + 2 + ň− υ̃)

(−υ̃ + ň−ω + 3) f (1 + ω) f (2 + υ̃) f (−ω + ň− υ̃ + 3)

,

f ′′ f ′′′ 2 →

 ň
∑

υ̃=0

 ň−ω

∑
υ̃=0

(1 + ω)(ω + 2)(3 + ω)(υ̃ + 1)(2 + υ̃)(−υ̃ + ň + 1−ω)

(−υ̃ + ň + 2−ω)(−υ̃ + ň−ω + 3) f (3 + ω) f (2 + υ̃) f (−υ̃ + ň−ω + 3)

,



(43)
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g→ g(l),

λg′ →
ň
∑

ω=0
((−ω + 1 + ň)ε(ω)g(−ω + 1 + ň)),

 (44)

f g′ →
ň
∑

ω=0
(−ω + 1 + ň) f (ω)g(−ω + 1 + ň), g f ′ →

ň
∑

ω=0
(−ω + 1 + ň)g(ω) f (−ω + 1 + ň),

g′ f ′g′′ →
ň
∑

ω=0
(ω + 1)(−ω + 1 + ň)(−ω + 2 + ň) f (1 + ω)g(1 + ω)g(−ω + 2 + ň),

g′′ g′ f ′′′ →
ň
∑

ω=0
(1 + ω)(ω + 2)(−ω + 1 + ň)(−ω + 2 + ň)(−ω + ň + 3)g(1 + ω)g(2 + ω)

g(−ω + ň + 3),

g′ f ′ f ′′ →
ň
∑

m=0
(1 + ω)(−ω + ň + 1)(−ω + 2 + ň) f (1 + ω)g(1 + ω) f (−ω + 2 + ň),

f ′′′ g′ f ′′ →
ň
∑

ω=0
(1 + ω)(2 + ω)(−ω + 1 + ň)(−ω + 2 + ň)(−ω + ň + 3)g(ω + 1) f (2 + ω)

f (−ω + 3 + ň),

f ′′ g′2 →
ň
∑

ω=0

 ň
∑

υ̃=0
(1 + ω)(2 + ω)(1−ω + υ̃)(−υ̃ + 1 + ň)g(−υ̃ + 1 + ň) f (2 + ω)

g(−ω + 1 + ň)

,

g′′ 2 f ′′ →
ň
∑

ω=0

 ň−ω

∑
υ̃=0

(ω + 1)(2 + ω)(υ̃ + 1)(υ̃ + 2)(−υ̃ + 1−ω + ň)(−ω + 2 + ň− υ̃)

g(2 + ω) f (q + 2)g(−ω + 2 + ň− υ̃)

,

f ′2g′′ →
ň
∑

υ̃=0

 υ̃

∑
ω=0

(1 + ω)(2 + ω)(−ω + 1 + υ̃)(−υ̃ + 1 + ň) f (−υ̃ + 1 + ň)g(2 + ω)

f (−ω + ň + 1)

,



(45)

m′m′′ →
ň
∑

ω=0
(ω + 1)(2 + ω)(−ω + 1 + ň)(−ω + 2 + ň)m(ω + 1)m(−ω + 2 + ň),

λm′ →
ň
∑

ω=0
((−ω + 1 + ň)ε(ω)m(−ω + ň + 1)),

m f ′ →
ň
∑

ω=0
((−ω + 1 + ň)m(ω) f (−ω + 1 + ň)),

f m′ →
ň
∑

ω=0
((−ω + 1 + ň) f (ω)m(−ω + 1 + ň)),

mg′ →
ň
∑

ω=0
((−ω + 1 + ň)m(ω)g(−ω + 1 + ň)),



(46)

nn′ →
ň
∑

m=0
((−ω + 1 + ň)n(ω)n(−ω + 1 + ň)),

f n′ →
ň
∑

ω=0
((−ω + 1 + ň) f (ω)n(−ω + 1 + ň)),

λn′ →
ň
∑

ω=0
((−ω + 1 + ň)ε(ω)n(−ω + 1 + ň)),


(47)

f
^

θ′ →
ň
∑

ω=0

(
(−ω + 1 + ň) f (ω)

^
θ (−ω + 1 + ň)

)
,

^

θ′
2
→

ň
∑

ω=0

(
(1 + ω)(−ω + 1 + ň)

^
θ (1 + ω)

^
θ (1−ω + ň)

)
,

 (48)

^

θ′φ′ →
ň
∑

ω=0

(
(1 + ω)(−ω + 1 + ň)

^
θ (1 + ω)φ(−ω + 1 + ň)

)
,

f φ′ →
ň
∑

ω=0
((−ω + 1 + ň) f (ω)φ(−ω + 1 + ň)),

 (49)
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λχ′ →
ň
∑

ω=0
((−ω + 1 + ň)ε(ω)χ(−ω + 1 + ň)),

f χ′ →
ň
∑

ω=0
((−ω + 1 + ň) f (ω)χ(−ω + 1 + ň)),

χ′φ′ →
ň
∑

ω=0
((1 + ω)(−ω + 1 + ň)χ(ω + 1)φ(−ω + 1 + ň)),

χφ′′ →
ň
∑

ω=0
((−ω + 1 + ň)(−ω + 2 + ň)χ(ω)φ(−ω + 2 + ň)),


(50)

where f (l), g(l), m(l), n(l),
^
θ (l), φ(l) and χ(l) are the transformed function of f (λ), g(λ),

m(λ), n(λ), θ(λ), φ(λ) and χ(λ), respectively, and are expressed as

f (λ) =
∞

∑
l=0

f (l)λl , (51)

g(λ) =
∞

∑
l=0

g(l)λl , (52)

m(λ) =
∞

∑
l=0

m(l)λl , (53)

n(λ) =
∞

∑
l=0

n(l)λl , (54)

^
θ (λ) =

∞

∑
l=0

^
θ (l)λl , (55)

φ(λ) =
∞

∑
l=0

φ(l)λl , (56)

χ(λ) =
∞

∑
l=0

χ(l)λl . (57)

By applying differential transform on corresponding boundary conditions, we obtained

f (0) = 0, f (1) = 1
2 , g(0) = 1, m(0) = 0, n(0) = 0,

^
θ (0) = 1, φ(0) = 0, χ(0) = 0, f (2) = Π1, f (3) = Π2,

g(1) = Π3, m(1) = Π4, n(1) = Π5,
^
θ (1) = Π6, φ(1) = Π6,

χ(1) = Π8

, (58)

where Πe (e = 1, . . . , 8) are the constants. Substituting transformations given in Equa-
tions (43)–(50) into Equations (30)–(36), and solved with support of associated boundary
conditions shown in Equation (58), the resulting solutions in the form of the series are:

f (λ) =
.
f 1λ2 +

.
f 2λ3 +

.
f 3λ4 +

.
f 4λ5 + . . . , (59)

g(λ) = 1− .
g1λ +

.
g2λ2 +

.
g3λ3 +

.
g4λ4 + . . . , (60)

m(λ) =
.

m1λ +
.

m2λ3 +
.

m3λ4 +
.

m4λ5 + . . . , (61)

n(λ) =
.
n1λ +

.
n2λ3 +

.
n3λ4 +

.
n4λ5 + . . . , (62)

^
θ (λ) = 1 +

.
θ1λ +

.
θ2λ2 +

.
θ3λ3 +

.
θ4λ4 + . . . , (63)

φ(λ) = 1 +
.
φ1λ +

.
φ2λ2 +

.
φ3λ3 +

.
φ4λ4 + . . . , (64)

χ(λ) = 1 +
.
χ1λ +

.
χ2λ2 +

.
χ3λ3 +

.
χ4λ4 + . . . , (65)



Mathematics 2021, 9, 2139 12 of 24

where
.
f i,

.
gi,

.
mi,

.
ni,

.
θi,

.
φi

.
χi; where i = (1, 2, 3, . . .) are constants. It is not easy to express

them here because of their complex and long numerical values. With the assistance of
Mathematica computational software, the equation as mentioned above is solved with 30
iterations. However, it failed to obtain a reasonable rate of convergence. The convergence
rate of certain sequences can be improved with certain techniques. Many researchers
used the Padé technique, which was used in the form of a rational fraction, i.e., ratio
of two polynomials. The results obtained by DTM, owing to the non-linearity on the
governing equations, do not satisfy the boundary conditions at infinity without applying
the Padé approximation. The obtained solution by DTM must then be merged with Padé-
approximation, which gives a substantial rate of convergence at infinity. According to
one’s desired exactness, a higher order of approximation is required. Here, [5× 5] order
approximation is applied to Equations (59)–(65), the Padé approximants are as follows.

f (λ) =
1.744240λ2 − 6.384709λ3 + 7.800949λ4 − 2.873131λ5 + . . .

1− 2.775474λ + 1.798969λ2 + 0.612641λ3 − 0.047549λ4 − 0.001808λ5 + . . .
, (66)

g(λ) =
1− 0.461931λ− 0.480814λ2 − 0.030027λ3 − 0.036507λ4 − 0.008722λ5 + . . .
1 + 0.580516λ + 0.110708λ2 + 0.014909λ3 + 0.003980λ4 + 0.003613λ5 + . . .

, (67)

m(λ) =
0.706586λ− 0.052291λ2 − 0.0453936λ3 + 0.272736λ4 − 0.322963λ5 + . . .

1− 0.074006λ− 0.397576λ2 + 0.119954λ3 − 0.060980λ4 − 0.027780λ5 + . . .
, (68)

n(λ) =
0.767837λ + 1.046017λ2 + 0.365143λ3 + 0.429179λ4 + 0.171075λ5 + . . .

1 + 1.362290λ + 0.039499λ2 + 0.254792λ3 + 0.340033λ4 − 0.212403λ5 + . . .
, (69)

^
θ (λ) =

1− 0.794545λ− 0.240481λ2 + 0.053229λ3 − 0.032680λ4 + 0.014409λ5 + . . .
1.0 + 0.038878λ− 0.035237λ2 + 0.050992λ3 − 0.033598λ4 + 0.00129λ5 + . . .

, (70)

φ(λ) =
1− 1.715367λ + 0.560355λ2 + 0.391456λ3 − 0.354482λ4 + 0.119370λ5 + . . .
1 + 0.217143λ− 0.068712λ2 + 0.047085λ3 − 0.043507λ4 − 0.008306λ5 + . . .

, (71)

χ(λ) =
1− 0.776897λ + 0.662042λ2 − 0.785269λ3 + 0.099751λ4 − 0.193734λ5 + . . .

1 + 2.4876949λ + 2.462925λ2 + 1.100656λ3 + 0.134289λ4 − 0.0376572λ5 + . . .
, (72)

5. Graphical and Numerical Analysis

In this segment, graphical and numerical analysis is made on the solutions of resulting
nonlinear ordinary differential equations mentioned in Equations (28)–(36). The differential
transformation scheme is applied to present the solutions of the foregoing equations. Our
principal focus is to inspect the physical characteristics of numerous physical parameters
in the momentum equation, induced MHD equations, temperature distribution, motile
microorganism density function, and mass transfer equation. For instance, the influence
of squeezing and Rotational Reynolds number SQ, RΩ, Reiner-Rivlin fluid parameter K,
Brownian motion Tb, magnetic Reynolds number ReM, Prandtl number Pt, thermophoresis
parameter Tt, Schmidt number SM, Bioconvection number Bs, and Peclet number Pl are
examined.

Table 1 shows the numerical comparison with previous results [56] against the torque
values at the upper and the lower plate by taking K = 0, Rd = 0, σ = 0 in the present
results. It is found that the results obtained in the present study are not only correct but
also converge rapidly. Furthermore, we can also say that the proposed methodology, i.e.,
DTM-Padé shows promising results against the coupled nonlinear different equations.

Tables 2–4 shows the different physical parameters developed against Sherwood
number, Nusselt number, and motile density function [φ′(0), θ′(0), χ′(0)]. Moreover, the
torque values at the lower plate dg(0)/dλ, and upper plate dg(1)/dλ are also calculated
numerically in Tables 5 and 6.
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Table 1. Comparison of the torque values at the lower and upper plate with previous results [56] when the fluid behaves as
a Newtonian model (K = 0) and the remaining values are RΩ = 0.3, FT = 0.5, Bt = 0.6, K = 0, Rd = 0, σ = 0 for various
values of SQ and RΩ.

SQ
dg(0)

dλ
dg(1)

dλ

Zhang et al. [56] Present Results Zhang et al. [56] Present Results

0.1 −1.0929372214309236 −1.0929372214309236 −0.948663684660318 −0.948663684660318

0.2 −1.180889912821983 −1.180889912821983 −0.9013607839508947 −0.9013607839508947

RΩ

0.1 −1.265492575299778 −1.265492575299778 −0.8533000683642988 −0.8533000683642988

0.2 −1.2652748717875888 −1.2652748717875888 −0.8549052425970227 −0.8549052425970227

Table 2. Analysis of Nusselt number θ′(0), for multiple values Tt, Tb, Pt, SQ by DTM-Padé [5× 5].

K = 0 K = 0.1

Tt Tb Pt SQ DTM-Padé

0.03 0.01 6.8 0.05 −0.8944762272711257 −0.8944824906474336

0.06 −0.8063777250952755 −0.806383306245722

0.09 −0.7253079370829076 −0.7253128728932438

0.05 0.2 −0.37080900827594065 −0.37081139690286175

0.3 −0.2316716738652042 −0.23167310222667004

0.4 −0.1411942252519443 −0.14119505897571566

0.01 4 −0.8998893435594736 −0.899893033465222

7 −0.8304624112857932 −0.8304683534204742

10 −0.7656313391774631 −0.7656391365026328

6.8 −0.01 −0.8068399501595973 −0.8068414709109244

0.05 −0.8334251602591399 −0.8334257278827505

0.10 −0.8553872157158188 −0.8553910187144096

Table 3. Analysis of Sherwood number φ′(0) for various values Tt, Tb, SQ, SM, E, σ by DTM-Padé [5× 5].

K = 0 K = 0.1

Tt Tb SQ SM E σ DTM-Padé DTM-Padé

0.03 0.01 0.05 1 1 1 −1.423723583572087 −1.4237062656685955

0.06 −2.242251830648612 −2.24222066465715

0.09 −3.52021034762737 −3.5201695528198456

0.05 0.01 −1.915474205493601 −1.9154471661812198

0.02 −1.5921974868312598 −1.5921851742637334

0.03 −1.4831389820481062 −1.4831315689992728

0.01 −0.01 −2.0517295527621053 −2.0517273504948057

0.05 −1.9367842616882913 −1.9268295351904132

0.10 −1.832060050336652 −1.8320099157048728

0.05 2 −2.0146398467429014 −2.0241644922138637

4 −2.2012470588694386 −2.2102937724970664

6 −2.3744735466373146 −2.3831035839166357

1 2 −1.8531063430623982 −1.8630765987997622
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Table 3. Cont.

K = 0 K = 0.1

Tt Tb SQ SM E σ DTM-Padé DTM-Padé

3 −1.829718893888726 −1.8397573168178392

4 −1.821048746320453 −1.8311125640363681

1 2 −2.01093920918129 −2.020462840246665

4 −2.19121593549506 −2.2002581288517207

6 −2.359245916149752 −2.367866612938209

Table 4. Analysis of χ′(0) for various values of SQ, Bs, Pl by DTM-Padé [5× 5].

K = 0 K = 0.1

SQ Bs Pl DTM-Padé DTM-Padé

−0.01 1 1 −2.5484740630681886 −2.5484721652641165

0.05 −2.4422867164206274 −2.442278141197654

0.10 −2.3326945059751685 −2.3545141881576237

0.05 5 −2.4315407355757515 −2.4315225967036653

10 −2.4300912988489185 −2.430083525231539

15 −2.4286396339889302 −2.4286422222719586

1 0.5 −1.6814808605966678 −1.6814680934795112

1.0 −2.432698678642556 −2.4326722455225793

1.5 −3.2408290233020116 −3.2407890961974375

Table 5. Numerical computations of Torque at a fix circular and upper circular plates by DTM-Padé [5× 5] for various
values of Squeezing Reynolds Number SQ.

dg(0)
dλ

dg(1)
dλ

SQ K = 0 K = 0.1 K = 0 K = 0.1

0.1 −1.0944523632334688 −1.0885716574469078 −0.9499690408077309 −0.9876461173721226

0.2 −1.1811908734455248 −1.1746346120145237 −0.9071760445081409 −0.9777866647632717

Table 6. Numerical computations of Torque at a fix circular and upper circular plates by DTM-Padé [5× 5] for multiple
values of Rotational Reynolds Number RΩ.

dg(0)
dλ

dg(1)
dλ

RΩ K = 0 K = 0.1 K = 0 K = 0.1

0.1 −1.0470698634685973 −1.0416647863739605 −0.9735621738611226 −0.9805868144292514

0.2 −1.047887492344034 −1.0424472521086106 −0.9736078836468506 −0.9885069828641508

Figure 2 illustrates the influence of the velocity profile in the axial direction f ′ because
of the squeezed Reynolds number SQ, rotational Reynolds number RΩ, and the material
parameter of Reiner-Rivlin fluid K. From Figure 2 one can perceive that increasing the
squeezed Reynolds number SQ axial velocity decreases, but increasing rotational Reynolds
number RΩ, the axial velocity profile increases. The physical reason behind this is that
when we increase the value of Squeezing Reynolds number SQ, the distance between the
plates increases, the fluid velocity decreases, and the fluid accelerates by rotation of the



Mathematics 2021, 9, 2139 15 of 24

plate when we increase the values of rotational Reynolds number RΩ. Figure 3 depicts
that increasing the values of the material parameter of the Reiner-Rivlin fluid increases the
velocity distribution against axial direction f ′.

Figure 2. Implications of SQ and RΩ on velocity distribution (axial) f ′(λ).

Figure 3. Implications of K on velocity distribution (axial) f ′(λ).

Figure 4 depicts the influence of squeezing Reynolds number SQ and Rotational
Reynolds Number RΩ against tangential velocity distribution g′. From Figure 4, it can
be ascertained that by enhancing the values of the squeezed Reynolds number SQ, the
tangential velocity distribution decreases. Similar phenomena are observed in Figure 5, i.e.,
by increasing the values of the rotational Reynolds number, the tangential velocity profile
declines.
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Figure 4. Implications of SQ on velocity distribution (tangential) g′(λ).

Figure 5. Implications of RΩ on velocity distribution (tangential) g′(λ).

From Figure 6, it can be seen that by increasing the values of magnetic Reynolds
number ReM, the tangential and axial magnetic field decreases, as the magnetic Reynolds
number is the ratio of fluid flux to the mass diffusivity. So, by increasing the magnetic
Reynolds number, a decrease in mass diffusivity and increase in fluid flux is seen. This
decline in mass diffusivity disrupts the diffusion of the magnetic field and resulting, a
decline in axial and tangential induced magnetic fields is observed.
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Figure 6. Implications of ReM on m(λ), n(λ) in axial and tangential direction.

Figure 7 elucidates the consequences of the Brownian motion parameter and ther-

mophoresis parameter Tb, Tt on the temperature field
^
θ . The graph shows that intensifying

the values of thermophoresis, Brownian motion parameter Tt, Tb increases the temperature
profile. The physical reason is that the fluid temperature increases due to strengthening
the kinetic energy of nanoparticles. The effects of squeezing Reynolds number SQ and

Prandtl number Pt on temperature profile
^
θ is displayed in Figure 8. One can notice

that by enhancing the Prandtl number Pt and the squeezing Reynolds number SQ, the

temperature profile
^
θ diminishes. When the thermal conductivity reduces by intensifying

the values of the Prandtl number Pt then the temperature profile
^
θ declines. The effects of

radiation parameter Rd on temperature profile
^
θ are shown in Figure 9. It is observed that

by enhancing the radiation parameter Rd the temperature profile
^
θ increases. The physical

reason behind this is that an increase in radiation releases the heat energy from flow; hence
there is an increase in temperature.

Figure 7. Implications of Tt and Tb on temperature function
^
θ (λ).
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Figure 8. Implications of SQ and Pt on temperature function
^
θ (λ).

Figure 9. Implications of Rd, on temperature function
^
θ (λ).

Figure 10 shows the consequences of thermophoresis parameter Tt and Brownian
motion Tb on nanoparticle concentration φ. It is perceived that nanoparticle concentration
declines by increasing the values of Brownian motion Tb, and concentration of nanoparticle
intensifies by increasing values of thermophoresis parameter Tt. In fact, gradual growth
in Tb increases the random motion and collision among nanoparticles of the fluid, which
produces more heat and eventually it results in a decrease in the concentration field. Due
to increasing values of Tt, more nanoparticles are pulled towards the cold surface from the
hot one, which ultimately results in increasing the concentration distributions. Figure 11
shows the consequences of Schmidt number SM and squeezed Reynolds number SQ on
nanoparticle concentration. By enlarging the values of squeezed Reynolds number SQ,
nanoparticle concentration φ increases, on the other hand, converse phenomena are noticed
by enhancing the values of Schmidt number SM. Figure 12 deliberates the influence of
reaction rate σ and activation energy E on the nanoparticle concentration φ. It may be
observed that nanoparticle concentration displays a substantial rise by increasing values of
E. Since high energy activation and low temperatures impart to a constant reaction rate, the
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resulting chemical reaction is therefore slowed down. Consequently, the concentration of
the solute rises. On the other side, by increasing values of σ, the nanoparticle concentration
decreases.

Figure 10. Implications of Tt and Tb on concentration function φ(λ).

Figure 11. Implications of SQ, SM on concentration function φ(λ).
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Figure 12. Implications of SQ, SM on concentration function φ(λ).

Figure 13 portrays the consequences of Peclet number Pl and squeezed Reynolds
number SQ on motile microorganism density function χ. One can experience that enhancing
values of squeezed Reynolds number SQ tends to boost the microorganism density function,
while increasing the values of Peclet number Pl , the motile microorganism density function
diminishes. The reason behind this is that the diffusivity of the microorganism reduces,
then the speed of the microorganism also decreases. This is the physical fact and resulting
in the microorganism density function decreasing while increasing the value of Peclet
number Pl . Figure 14 is plotted to see the physical performance of the Bioconvection
Schmidt number Bs. It is apparent that by enhancing values of bioconvection Schmidt
number Bs the motile microorganism density function rises, but the consequences are
negligible.

Figure 13. Implications of SQ, Pl on motile microorganism density function χ(λ).
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Figure 14. Implications of Bs on motile microorganism density function χ(λ).

6. Conclusions

In this study, we determined incompressible three-dimensional, unsteady, axisym-
metric squeezed film flow of Reiner-Rivlin nanofluid between parallel circular plates. The
impact of an induced magnetic field, the suspension of motile gyrotactic microorganisms,
activation energy, and thermal radiation are also contemplated. DTM-Padé is applied to
present the solutions of the ordinary differential equations after employing the similarity
transformations. Padé approximant is applied because it provides a good rate of conver-
gence and gives reliable results. Comparison is made for the values of toque on the lower
and upper plates. The main findings are accomplished below:

i. The opposite behavior is experienced for the rotational Reynolds number on tan-
gential and axial velocity distribution.

ii. Enhancing the value of squeezing Reynolds number, the tangential and axial veloc-
ity distribution decreases.

iii. By enlarging the value of the magnetic Reynolds number, the magnetic field (in-
duced) in tangential and axial directions decreases.

iv. The Reiner-Rivlin opposes the fluid motion; however, the impact is negligible.
v. By increasing the Brownian motion and thermophoresis parameter, the temperature

distribution rises.
vi. Temperature distribution decays due to the effects of the Prandtl number-like

phenomenon is observed for enlarging the values of squeezed Reynolds number.
vii. The thermal radiation parameter enhances the temperature distribution.
viii. Nanoparticle concentration and motile density increase by enhancing the in value

of squeezing Reynolds number.
ix. Nanoparticle concentration shows opposed phenomena for Brownian motion pa-

rameter compared with thermophoresis parameter.
x. Increasing values of activation energy tends to intensify the nanoparticle concentra-

tion profile.
xi. The microorganism profile declines by increasing the values of Peclet number, but

the microorganism profile rises by enlarging the bioconvection number.

Future Work: The present study shows perfect accuracy of the proposed methodol-
ogy; however, attention has been given to non-Newtonian fluid with induced magnetic.
Future studies may generalize the present study to consider applied magnetics effects,
porosity effects, slip effects, entropy generation, and other non-Newtonian fluid models,
etc., which are beneficial to bioreactor configurations and lubrication regimes and will be
presented soon.
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Nomenclature

Hθ Axial components
Hz Azimuthal components
µ1 Magnetic permeability inside the plate
µ2 Magnetic permeability outside the plate
µ` Free space permeability (NA−2)
_
B(r, θ, z) Induced magnetic field
T0 Lower plates constant temperature (K)
Tl Upper plates constant temperature (K)
Cl Concentration at lower plate
C Concentration at upper plate
p Pressure (Pa)
ρ Fluid density (Kg/m3)

µ Fluid viscosity (Ns/m2)

δ Electrical conductivity (S ·m−1)
^
T Temperature (K)
^
C Concentration
^
T m Mean fluid temperature (K)
cp Specific heat (Jkg−1K−1)

DB Brownian diffusivity
DT Thermophoretic diffusion coefficient
FA Magnetic force strength in the axial direction
FT Magnetic force in the tangential direction
ReM Magnetic Reynolds number
Tb Brownian motion parameter
Tt Thermophoresis parameter
Pt Prandtl number
SM Schmidt number
Bs bioconvection Schmidt number
f Axial velocity (m/s)
g Tangential velocity (m/s)
^
θ Temperature profile of nanofluids (K)
φ Concentration profile of nanofluids
χ Motile density microorganism
.
ξ Angular velocity (m/s)
b Radius of the disk
T̂up Dimensionless torque applied on the upper plate
T̂lp Dsimensionless torque applied on the lower plate
b Chemotaxis constant
Wmo Maximal speed
SQ Squeezed Reynold number
Dmo Diffusivity of micro-organisms
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