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Abstract: We consider a one-dimensional, isentropic, hydrodynamical model for a unipolar semicon-
ductor, with the mobility depending on the electric field. The mobility is related to the momentum
relaxation time, and field-dependent mobility models are commonly used to describe the occurrence
of saturation velocity, that is, a limit value for the electron mean velocity as the electric field increases.
For the steady state system, we prove the existence of smooth solutions in the subsonic case, with
a suitable assumption on the mobility function. Furthermore, we prove uniqueness of subsonic
solutions for sufficiently small currents.

Keywords: subsonic solutions; unipolar semiconductor; saturation velocity; steady-state
hydrodynamical model

1. Introduction

The hydrodynamic model for semiconductors was first introduced by Bløtekjær in
1970 [1]. It describes the dynamics of charged fluid particles, such as electrons and holes in
semiconductor devices [2,3], and positively and negatively charged ions in plasmas [4]. The
ruling equations are the Euler–Poisson equations, which in their scaled one-dimensional
form, for a unipolar semiconductor, are:

nt + jx = 0,

jt +
(

j2

n
+ p(n)

)
x
= φxn− j

µ
,

φxx = n− N(x).

(1)

where n(x, t) is the electron number density, j(x, t) is the electron flux density, φ(x, t) is
the electric potential, p(n) is the pressure and µ is mobility. The mobility is related to the
momentum relaxation time, and in (1) they coincide because of the scaling. The device
domain is the x-interval (0, ν), where ν is the device length measured in terms of the Debye
length, and N = N(x) is the number density of the background ions (doping profile), with
N(x) > 0.

The steady-state version of this one-dimensional model has been extensively studied,
starting from the existence result, and uniqueness for small currents, in the subsonic
case [5]. The existence of transonic solutions, with subsonic constant doping profile, was
addressed in [6], with an approach based on the construction of the orbits of the system in
the electron density-electric field phase plane. The same approach was later used in [7] for
a more general case. A different approach was used in [8] for the construction on transonic
solutions with transonic shocks, by using the vanishing viscosity limit method. The same
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method was used in [9], with prescribed current and periodic boundary conditions. We
also refer to [10] for a non-isentropic case. More recently, the existence of supersonic
solutions was proven in [11], and the existence of solutions for sonic boundary conditions
was studied in a series of papers [12–14].

The hydrodynamic system for semiconductors has been studied also in higher di-
mension and in the time-dependent case. We can refer to [15] for potential flow in three
dimensions with a fully subsonic doping profile, and to [15–21] for more general analysis
of the subsonic case. For supersonic flows, the existence and uniqueness of supersonic
solutions in two and three dimensions was studied in [22,23]. The transonic solutions have
also been studied in relation to the formation of shock waves [24–28].

In all the above results, the mobility, or momentum relaxation time, is either assumed
constant or a function of n, j. In this paper, we consider the effect of an electric-field
dependent mobility, µ = µ(E), with E = φx. A preliminary discussion of this problem has
been given in [29], with a phase-plane approach. Here, we prove the existence of subsonic
solutions to the semiconductor hydrodynamic model with field-dependent mobility, for
sufficiently small currents. Moreover, we prove the uniqueness of solutions for small
currents. Both proofs are inspired by the classical results in [5], with some substantial
changes due to the particular nature of the source term considered in our case. In particular,
at variance with the standard case, it is not obvious how to relate the current with the
electric potential at the boundaries, so some additional introductory work is needed.

The plan of the paper is the following. After Section 2, where the steady-state semi-
conductor hydrodynamical model is introduced and the problem is stated, Section 3 is
devoted to proving the existence of subsonic solutions of the system. Section 4 shows a
uniqueness result for regular solutions of the problem, while Section 5 concludes the paper
with a short summary of the obtained findings.

2. Statement of the Problem

We consider the steady-state, one-dimensional semiconductor hydrodynamical model:
jx = 0,(

j2

n
+ p(n)

)
x
= φxn− j

µ
, with x ∈ (0, ν),

φxx = n− N(x),

(2)

with the following boundary conditions:

n(0) = n0, n(ν) = n1, φ(0) = 0, φ(ν) = φ1. (3)

The pressure depends on the electron density by the constitutive relation p = p(n),
which satisfies the condition

n2 p′(n) is strictly monotonically increasing from R+ onto R+. (4)

A common choice for the pressure relation is p(n) = knγ, with γ ≥ 1, k > 0.
The mobility is of the form

1
µ
= αq(φx), with q(E) ≥ q0 > 0, |q′(E)| < cq for all E ∈ R, (5)

with α, q0, cq positive constants. The above condition holds for the most used high-field
mobility models, like the Caughey–Thomas [30] or the Canali model [31], which can be
written as:

µ(E) =
µ0

(1 + (|E|/Ec)β)
1
β

,
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with µ0 low-field mobility, Ec critical field value, related to the saturation velocity, and
β ≥ 1 a real exponent. After scaling, for this specific model we get

q(E) = (1 + (cq|E|)β)
1
β , q′(E) =

q(E)(cq|E|)β

E(1 + (cq|E|)β)
, (6)

which satisfies (5).
The doping profile N(x) satisfies the condition:

N(·) ∈ L∞(0, ν), N(x) > 0 for all x ∈ (0, ν). (7)

The first equation in (2) gives j = constant. We are going to see whether we can
prescribe j instead of φ1, as in the case where the mobility—that is, the momentum relax-
ation time—is independent of the electric field. For regular solutions, we can expand the
derivative on the left-hand side of the second equation in (2), divide by n and obtain

F(n, j)x = φx − jα
q(φx)

n
, (8)

with

F(n, j) =
j2

2n2 + h(n), h′(n) =
1
n

p′(n).

Integrating (8) over (0, ν) and using the boundary conditions (3), we obtain

φ1 = F(n1, j)− F(n0, j) + jα
∫ ν

0

q(φx(x))
n(x)

dx. (9)

On the other hand, using the third equation in (2), we can represent φ and φx as
integral functionals of n− N, depending on the boundary data φ1. The result is

φ(x) =
1
ν

φ1x +
∫ x

0
In−N(y)dy, (10)

φx(x) =
1
ν

φ1 + In−N(x), (11)

where the functional ρ(x) 7→ Iρ(x) is defined by

Iρ(x) :=
∫ x

0
ρ(x1)dx1 −

1
ν

∫ ν

0

(∫ x2

0
ρ(x1)dx1

)
dx2. (12)

For a later use, it is simple to see that

|Iρ(x)| ≤ 2ν
1
2 ‖ρ‖ ≤ 2ν‖ρ‖∞, (13)

with ‖ · ‖ norm in L2(0, ν), ‖ · ‖∞ norm in L∞(0, ν). Using (12), the relation (9) can be
written in the form

G(j, φ1) := F(n1, j)− F(n0, j)− φ1 + jα
∫ ν

0

q( 1
ν φ1 + In−N(x))

n(x)
dx = 0. (14)

We can use the implicit function theorem to show that (14) defines implicitly φ1 as a
function of j. First of all, we observe that

G(0, φbi) = 0, with φbi := F(n1, 0)− F(n0, 0), (15)
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which represents the so-called “built-in potential”. Then, we can compute

∂G
∂φ1

(0, φbi) =

(
−1 +

jα
ν

∫ ν

0

q′( 1
ν φ1 + In−N(x))

n(x)
dx

)
j=0
φ1=φbi

= −1 6= 0. (16)

It follows that (14) defines implicitly a function g : I → J, with I ⊂ R neighborhood of
0 and J ⊂ R neighborhood of φbi, such that G(j, g(j)) = 0 for all j ∈ I. Moreover, we have

∂G
∂j

(0, φbi) =

(
j

n2
1
− j

n2
0
+ α

∫ ν

0

q( 1
ν φ1 + In−N(x))

n(x)
dx

)
j=0
φ1=φbi

= α
∫ ν

0

q( 1
ν φbi + In−N(x))

n(x)
dx,

which implies

g′(0) = −
∂G
∂j (0, φbi)

∂G
∂φ1

(0, φbi)
= α

∫ ν

0

q( 1
ν φbi + In−N(x))

n(x)
dx > 0, (17)

that is, the function φ1 = g(j) is locally increasing around j = 0.
If we know an a priori bound of the type 0 < n ≤ n(x) ≤ n for x ∈ (0, ν), using

assumption (5), for positive j we find

∂G
∂φ1

(j, φ1) = −1 +
jα
ν

∫ ν

0

q′( 1
ν φ1 + In−N(x))

n(x)
dx < −1 + jα

cq

n
,

which implies that the implicit function φ1 = g(j) can be extended to all positive values of
j such that

j
n
≤ 1

αcq
.

The constant 1
αcq

represents the saturation velocity, which is encoded in the field-
dependent mobility model.

The above discussion implies that (14) can be used to replace the boundary conditions
for φ with the assignment of the current j, when j is small enough. Then, we can differentiate
(8) and use the third equation in (2) (Poisson’s equation) to obtain

F(n, j)xx + jα
(

q(φx)

n

)
x
− n = −N(x), (18)

with φx given by (11), and φ1 related to j by (14). Equation (18) is supplemented with
boundary conditions

n(0) = n0, n(ν) = n1. (19)

In conclusion, the original problems (2) and (3) can be replaced by the integral-
differential Equation (18) with boundary conditions (19), where the current j is assigned.
The resulting solution will still depend on the boundary value φ1, which will be adjusted
so that (14) is satisfied.

3. Existence of Subsonic Solutions

In this section we prove an existence result for subsonic solutions of system (2). Before
stating the main theorem, we clarify the notion of subsonic solution. For regular solutions,
the higher order term in (18) is

F(n, j)xx =

(
∂F
∂n

(n, j)nx

)
,
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so the equation is uniformly elliptic if we can ensure that

∂F
∂n

(n, j) = − j2

n3 +
1
n

p′(n) > 0, (20)

that is, n2 p′(n) > j2. Condition (4) implies that there exists a unique minimal value nmin,
depending on j, such that condition (20) holds for all n > nmin. As a function of j, the
minimal value nmin is strictly decreasing, and for j = 0 we have nmin = 0. Thus, we can
conclude that Equation (18) is uniformly elliptic for n ≥ n∗ > nmin, for some constant n∗ to
be determined. This bound on the electron density can be interpreted by saying that the
solution is subsonic, since it amounts to the condition |j/n| < (p′(n))

1
2 , with j/n mean

electron velocity and (p′(n))
1
2 speed of sound.

As a last remark, we note that we can limit ourselves to study the case j > 0, because
the case j < 0 can be recovered from the same system (2) after a transformation x 7→ ν− x.

Theorem 1. Let us assume (4), (5) and (7), and let p′(n) and q′(E) be continuous functions of
their arguments. Let us denote

N = inf
x∈(0,ν)

N(x), N = sup
x∈(0,ν)

N(x),

n = min{n0, n1, N}, n = max{n0, n1, N}.

For j > 0, under the assumption

nmin < n, j <
n

αcq
, (21)

and for any φ1, problems (18) and (19) have a solution which satisfies

n ≤ n(x) ≤ N. (22)

Moreover, φ1 can be chosen so that (9) holds.

Proof. The proof is based on the construction of a fixed point map T which, to a function
n̂ with

n ≤ n̂(x) ≤ n for all x ∈ (0, ν), (23)

associates the solution n of the problem(
∂F
∂n

(n̂, j)nx

)
x
− jα

q(Ê)
n̂2 nx −

(
1− jα

q′(Ê)
n̂

)
n = −

(
1− jα

q′(Ê)
n̂

)
N(x), (24)

n(0) = n0, n(ν) = n1, (25)

with Ê(x) = 1
ν φ1 + In̂−N(x). We notice that (13) ensures that Ê is bounded, and so is q(Ê)

and q′(Ê). Thanks to the first assumption in (21), Equation (24) is a linear, uniformly elliptic
equation, which admits a unique solution n = T(n̂) in H1(0, ν). Moreover, thanks to the
second assumption in (21), we have

1− jα
q′(Ê)

n̂
> 1− jα

cq

n
> 0,

so the maximum principle implies that n satisfies the bounds (22). Recalling the definition
(12), and (23), it is not difficult to use (24) and obtain H1-bounds for n independent of n̂. By
the compact imbedding of H1(0, ν) into C0([0, ν]), and by a standard continuity argument
we can use Schauder’s theorem to conclude the existence of a fixed point of the map T.
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All the steps of this proof can be followed if, in the definition of the map T, we choose
φ1 as the minimum value greater than φbi such that

F(n1, j)− F(n0, j)− φ1 + jα
∫ ν

0

q( 1
ν φ1 + In̂−N(x))

n̂(x)
dx = 0. (26)

This concludes the proof.

4. Uniqueness of Solutions

Theorem 2. Under the same assumptions of Theorem 1, there exists a constant j0 > 0 such that
for any j < j0 there exists at most one regular solution n of problems (18), (19), (9) and (11), which
satisfies the bound n(x) ≥ n > nmin for all x ∈ (0, ν).

Proof. Let n1 and n2 be two solutions of problems (18), (19), (9) and (11), such that ni(x) ≥
n > nmin for all x ∈ (0, ν), i = 1, 2. Thus, we have

F(ni(x), j)xx + jα
(

q(Ei(x))
ni(x)

)
x
− ni(x) = −N(x), (27)

F(n1, j)− F(n0, j)− φ1,i + jα
∫ ν

0

q(Ei(x))
ni(x)

dx = 0, (28)

with
Ei(x) =

1
ν

φ1,i + Ini−N(x), i = 1, 2. (29)

Subtracting the Equation (27) and introducing the variable u(x) = n2(x) − n1(x),
we obtain

(a(x)u)xx + jα
(

q(E2(x))
n2(x)

− q(E1(x))
n1(x)

)
x
− u = 0, (30)

with

a(x) =
∫ 1

0

∂F
∂n

(n1(x) + θ(n2(x)− n1(x)), j)dθ. (31)

Moreover, from (28) we find

φ1,2 − φ1,1 = jα
∫ ν

0

(
q(E2(x))

n2(x)
− q(E1(x))

n1(x)

)
dx. (32)

Multiplying (30) by a(x)u and integrating over (0, ν), we find∫ ν

0
|(a(x)u)x|2 dx + jα

∫ ν

0
(a(x)u)x

(
q(E2)

n2
− q(E1)

n1

)
dx +

∫ ν

0
a(x)u2 dx = 0. (33)

We can estimate∣∣∣∣ q(E2)

n2
− q(E1)

n1

∣∣∣∣ ≤ 1
n2
|q(E2)− q(E1)|+

q(E1)

n2n1
|u|

=
1
n2

∣∣∣∣∫ 1

0
q′(E1 + θ(E2 − E1))dθ

∣∣∣∣|E2 − E1|+
q(E1)

n2n1
|u|

≤
cq

n
|E2 − E1|+

‖q(E1)‖∞

n2 |u|.

On the other hand, from (29) and (13), we find

|E2 − E1| ≤
1
ν
|φ1,2 − φ1,1|+ |Iu(x)| ≤ 1

ν
|φ1,2 − φ1,1|+ 2ν

1
2 ‖u‖, (34)
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and using (32) we obtain

|φ1,2 − φ1,1| ≤ jα
∫ ν

0

∣∣∣∣ q(E2(x))
n2(x)

− q(E1(x))
n1(x)

∣∣∣∣dx

≤ jα
cq

n

∫ ν

0
|E2 − E1|dx + jα

‖q(E1)‖∞

n2

∫ ν

0
|u|dx

≤ jα
cq

n
|φ1,2 − φ1,1|+ jα

cq

n

(
2 +
‖q(E1)‖∞

cqnν

)
ν

3
2 ‖u‖.

Recalling the second assumption in (21), we get

|φ1,2 − φ1,1| ≤
jα cq

n

1− jα cq
n

(
2 +
‖q(E1)‖∞

cqnν

)
ν

3
2 ‖u‖ =: cφ(j)ν

3
2 ‖u‖, (35)

which, together with (34) yields

|E2 − E1| ≤
(
2 + cφ(j)

)
ν

1
2 ‖u‖. (36)

The constant cφ(j) tends to 0 as j tends to zero. Finally, we can estimate∣∣∣∣∫ ν

0
(a(x)u)x

(
q(E2)

n2
− q(E1)

n1

)
dx
∣∣∣∣ ≤ ‖(a(x)u)x‖

∥∥∥∥ q(E2)

n2
− q(E1)

n1

∥∥∥∥
≤ ‖(a(x)u)x‖

(
cq

n

∥∥∥(2 + cφ(j)
)
ν

1
2 ‖u‖

∥∥∥+ ‖q(E1)‖∞

n2 ‖u‖
)

≤
cqν

n
c∗φ(j)‖(a(x)u)x‖‖u‖, (37)

with

c∗φ(j) := 2 + cφ(j) +
‖q(E1)‖∞

cqnν
≡ 1

1− jα cq
n

(
2 +
‖q(E1)‖∞

cqnν

)
.

The constant c∗φ(j) tends to a strictly positive value as j tends to zero. Moreover, we
can write

‖(a(x)u)x‖‖u‖ ≤
1
a
‖(a(x)u)x‖

∥∥∥a(x)
1
2 u
∥∥∥

≤ 1
2a

(
‖(a(x)u)x‖2 +

∥∥∥a(x)
1
2 u
∥∥∥2
)

, (38)

with a = minx∈(0,ν) a(x) > 0. Thus, using (37) and (38) in (33), we find(
1− jα

cqν

n

c∗φ(j)

2a

)(∫ ν

0
|(a(x)u)x|2 dx +

∫ ν

0
a(x)u2 dx

)
≤ 0. (39)

It is possible to find a constant j0 > 0 such that

1− jα
cqν

n

c∗φ(j)

2a
> 0 for all 0 ≤ j ≤ j0. (40)

For instance, if j ≤ n
2αcq

, we have c∗φ(j) ≤ 2c∗φ(0), so we can choose

j0 =
n

2αcq
min

{
1,

2a
c∗φ(0)ν

}
. (41)
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It follows that, for j ≤ j0, we have∫ ν

0
|(a(x)u)x|2 dx +

∫ ν

0
a(x)u2 dx = 0, (42)

which implies that u(x) ≡ 0 and thus the thesis.

5. Conclusions

The hydrodynamic model for semiconductors describing the dynamics of charged
fluid particles, such as electron and holes in semiconductor devices and ions in plasmas,
has attracted the attention of many scholars. In such studies the mobility, or momentum
relaxation time, is either assumed constant or a function of the electron number density and
the electron flux density. Here, we have considered the effect of an electric field dependent
mobility. This kind of mobility model was introduced in the literature after empirical
studies, to take into account the occurrence of a saturation velocity, that is, a maximum
electron mean velocity which is reached as the electric fields grows and tends to infinity in
modulus. The second condition in (21), which plays a key role in both the existence and the
uniqueness proof, expresses precisely the upper bound of the electron velocity given by the
saturation velocity. In our case, the saturation velocity vs can be recovered as the high-field
limit of the velocity j

n = µ(φx)φx, which follows by equating to zero the right-hand side of
(1)2. We obtain

vs = lim
E→∞

µ(E)E = lim
E→∞

E
αq(E)

= lim
E→∞

1
αq′(E)

=
1

αcq
.

This conclusion is accurate if we use the explicit form (6), while in general the condition
(5) only yields a lower bound 1

αcq
for vs, unless we add specific hypothesis on the behaviour

of q′(E) at infinity.
In this paper, we have examined a one-dimensional, isentropic, hydrodynamical

model for a unipolar semiconductor, with the relaxation time depending on the electric
field. In this framework, for the steady-state version of the problem, we have proved the
existence and uniqueness of smooth solutions in the subsonic case for sufficiently small
currents. This promising result can be considered as the basis for a further exploration of
the implication of a field-dependent mobility on the solutions of the hydrodynamic model
for semiconductors, not only in the subsonic case but also in the transonic and supersonic
case, addressing the stability of the steady-state solution and the asymptotic behaviour of
general solutions for long times. These will be the topics for subsequent papers.
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