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Abstract: The Benjamini–Hochberg procedure is one of the most used scientific methods up to date.
It is widely used in the field of genetics and other areas where the problem of multiple comparison
arises frequently. In this paper we show that under fairly general assumptions for the distribution of
the test statistic under the alternative hypothesis, when increasing the number of tests, the power
of the Benjamini–Hochberg procedure has an exponential type of asymptotic convergence to a
previously shown limit of the power. We give a theoretical lower bound for the probability that for a
fixed number of tests the power is within a given interval around its limit together with a software
routine that calculates these values. This result is important when planning costly experiments and
estimating the achieved power after performing them.

Keywords: multiple hypothesis testing; Benjamini–Hochberg procedure; convergence rate

1. Introduction

In many modern studies scientists perform the same statistical test on many objects,
e.g., genes or single-nucleotide polymorphisms. The number of these objects could be very
large, say millions, resulting in a multiple comparison issue. This is due to the fact that
even under the null hypothesis we expect some of these tests to have p-values below a
predetermined significance level α. There are various techniques to overcome this problem
with the Benjamini–Hochberg method [1] being the most used. Given α, for a set of m
p-values, the method rejects the tests corresponding to the smallest k p-values, where k is
the largest index such that p(k) ≤ kα/m. The method controls the FDR (false discovery rate)
in a sense that the expected proportion of false discoveries out of all discoveries (rejected
hypotheses) is not more than α when the tests are independent as shown in the original
paper [1]. In some cases, rather than finding the cutoff index for rejecting tests, the so-called
Benjamini–Hochberg-adjusted p-values are used; these are the p-values transformed by
the formula on the right-hand side of the above inequality and truncated at 1.

In the field of genetics it is used in many software packages, for example, DESeq2 [2],
edgeR [3], cuffdiff [4], GenomeStudio (Illumina). It is also often used when studying
various types of images, e.g., PET or CT [5], fMRI [6], or astrophysical [7].

Despite the fact that there are improved methods either in terms of weaker assump-
tions, e.g., dependency or better statistical power, e.g., [8–10], the Benjamini–Hochberg
method is one of the most cited scientific articles, determined to be 59th most cited article
in [11]. We should underline that in this work we are not interested in improving the
Benjamini–Hochberg method, but rather than that in inferring about the statistical power
of the original method as it is the most used one in practice. Moreover, article [12] shows
that no correction of the standard methods is needed in certain cases even when there
is some degree of dependence among the tests. See Section 5 for more information and
related work.

Calculating the statistical power, that is the probability of correctly rejecting the null
when the alternative hypothesis is true, is an important task when designing scientific
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studies. For example it allows us to estimate the required sample size, and therefore the
budget needed to perform the experiment, in order to make sure that we have a reasonable
chance of detecting the objects for which there is indeed a difference between the two
groups. After performing the study, it allows us to determine whether we have found a
relatively large proportion of significant objects.

For practical applications we are interested not only in the limit of the statistical power
as shown in previous works (see Section 5), but also in the speed of convergence to that
limit. The speed of convergence would allow us to find the probability that the statistical
power is within a given range around its limit. Consequently this would allow us to
calculate the probability that the statistical power is above a pre-determined threshold,
typically 80%. In cases when this probability is relatively low, one would have to increase
the sample size in order to have more favorable parameters of the Beta distribution that
models the p-values under the alternative hypothesis.

In more detail, in this work we show that under natural condition, that we call (M),
the convergence is exponential and give explicit expression of the constants involved in
the asymptotics. That condition allows the usage of suitable Beta distributions amongst
others. The relationship between our condition and the non-criticality condition in [13]
will be discussed below. Condition (M) allows us to find a lower bound for the probability
that for fixed parameters of the model the power is within given interval around that
asymptotic limit. In this sense our work can be understood as a tool which can be used in
the planning of the experiment and which complements [14], another article by the authors
of [15], which deals with a variety of questions, such as estimation of the proportion of
significant tests, the effect of the sample size to the quality of results, etc.

2. Main Results and Their Proofs
2.1. Some Preliminary Notation

Let X1, X2, · · · , Xm, m ∈ N+, with N+ = {1, 2, · · ·}, be independent random variables
that are defined on a common probability space (Ω,F ,P). For some 1 ≤ m0 < m the ran-
dom variables

(
Xj
)

j≤m0
are assumed to have a common cumulative distribution function

(c.d.f.) F, whereas
(
Xj
)

m0<j≤m are assumed to have a common c.d.f. G. In this work we
set F to be the c.d.f. of the uniform random variable on (0, 1) and let for the time being
G be any continuous c.d.f. We note that even if G is discrete, one can always approxi-
mate it with a suitable continuous distribution. We also work with the condition that
m0
m = γ ∈ (0, 1) is fixed and set m1 := m−m0 ∈ (0, m), which is strictly non-binding since

we develop exponential bounds that are valid with different degree of accuracy for any
fixed m0, m and the respective ratio m0

m . It will be usually the case that γ is larger than 1/2

as the first m0 random variables represent the non-significant observations. If X(i)
m , i ≤ m,

is i-th order statistics of X1, X2, · · · , Xm then for a fixed level of rejection α ∈ (0, 1), the
Benjamini–Hochberg procedure declares significant the first Rm order statistics, where

Rm = max
{

i : X(i)
m ≤ α

i
m

}
. (1)

The truly non-significant tests have c.d.f F and the truly significant tests possess c.d.f.
G. It is well known from [15] (1.2) that for x ∈ (0, 1) we can express the event {Rm ≥ mx}
in the following fashion{

Rm

m
≥ x

}
=

{
max

t∈Aα(m,x)

Hm(t)− t
t

≥ 1
α
− 1
}

, (2)

where Hm(t) = 1
m ∑m

j=1 I{Xj≤t} is the empirical c.d.f. of X1, X2, · · · , Xm and

Aα(m, x) =
{

k
m

α : dmxe ≤ k ≤ m
}

, (3)
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where dye = min{m ∈ N+ : m ≥ y} is the ceiling function. We can express Hm as

Hm(t) =
γ

m0

m0

∑
j=1

I{Xj≤t} +
(1− γ)

m1

m

∑
j=m0+1

I{Xj≤t} = γFm0(t) + (1− γ)Gm1(t),

where Fm0 is the empirical c.d.f. of X1, X2, · · · , Xm0 and Gm1 is the empirical c.d.f. of
Xm0+1, · · · , Xm. Therefore a simple rearrangement yields that

Hm(t)− t
t

= γ
Fm0(t)− t

t
+ (1− γ)

Gm1(t)− G(t)
t

+ (1− γ)
G(t)− t

t
. (4)

2.2. General Inequalities and Information concerning the Distribution of Rm

We introduce the function c(ε) = (1+ ε) ln(1 + ε)− ε, for ε > 0, which is investigated
in Proposition A1 in Appendix A. Then the following inequalities hold true.

Proposition 1. For any distribution function T with T(αx) > 0 and empirical cumulative
distribution function Tn(·) = 1

n ∑n
j=1 I{Xj≤·}, where

(
Xj
)

j≥1 are i.i.d. random variables with c.d.f.

T, any k, m ∈ N+, any α, x, ρ ∈ (0, 1) and Aα(x, m) as in (3) above, we have, for every ε > 0, that

P
(

ρ max
t∈Aα(m,x)

∣∣∣∣Tk(t)− T(t)
t

∣∣∣∣ > ε

)
≤ 2 min

{
m(1− x)e−k inft∈Aα(m,x) T(t)c

(
ε
ρ

t
T(t)

)
, e
−2 k

ρ2 (εαx)2}
:= KT(x, m, k, ρ, ε, α).

(5)

Finally, if T(t)c
(

ε
ρ

t
T(t)

)
as a function of t is non-decreasing on [αx, α) we get that

P
(

ρ max
t∈Aα(m,x)

∣∣∣∣Tk(t)− T(t)
t

∣∣∣∣ > ε

)
≤ 2 min

{
m(1− x)e−kT(αx)c

(
ε
ρ

αx
T(αx)

)
, e
−2 k

ρ2 (εαx)2}
= KT(x, m, k, ρ, ε, α).

(6)

Remark 1. Let us compute KT when T(t) = F(t) = t for t ∈ (0, 1). Then T(t)c
(

ε
ρ

t
T(t)

)
=

tc
(

ε
ρ

)
is non-decreasing in t and substituting in the right-hand side of (6) we deduct that

KF(x, m, k, ρ, ε, α) = 2 min
{

m(1− x)e−kαxc
(

ε
ρ

)
, e
−2 k

ρ2 (εαx)2}
. (7)

Remark 2. Given that c(ε) ≥ min
(

1, ε2

2e

)
, see Proposition A1 we may eradicate the dependence

on the function c in KT , see (5) by providing an upper bound for it:

KT(x, m, k, ρ, ε, α) ≤

2 min

m(1− x)e
−k min

(
T(αx),inft∈Aα(m,x)

ε2

ρ2
t2

2eT(t)

)
, e
−2 k

ρ2 (εαx)2

.
(8)

Remark 3. Inspecting the proof below one easily discovers that for computational purposes it is
better to use the sharper estimate

P
(

ρ max
t∈Aα(m,x)

∣∣∣∣Tk(t)− T(t)
t

∣∣∣∣ > ε

)
≤ 2 min

 ∑
t∈Aα(m,x)

e−kT(t)c
(

ε
ρ

t
T(t)

)
, e
−2 k

ρ2 (εαx)2

. (9)
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For theoretical purposes the bounds stated in the theorem are more suitable.

Proof of Proposition 1. The second part of the minimum (5) follows from the Dvoretsky–
Kiefer–Wolfowitz inequality, see [16], which gives, for any x, ε > 0 that

P
(

ρ max
t∈Aα(m,x)

∣∣∣∣Tk(t)− T(t)
t

∣∣∣∣ > ε

)
≤ P

(
ρ sup

t∈(αx,α)

∣∣∣∣Tk(t)− T(t)
t

∣∣∣∣ > ε

)

≤ P
(

sup
t∈(αx,α)

|Tk(t)− T(t)| > εαx
ρ

)

≤ 2e
−2k (εαx)2

ρ2 .

(10)

In Proposition A1 we use the function c(ε) = (1 + ε) ln(1 + ε) − ε. The first part
of the minimum of (5) is immediate from Proposition A1 since kTk(t) = ∑k

j=1 I{Xj≤t} is

binomially distributed with parameters k and T(t) = P(X1 ≤ t), and thus

P
(

ρ max
t∈Aα(m,x)

∣∣∣∣Tk(t)− T(t)
t

∣∣∣∣ > ε

)
≤ ∑

t∈Aα(m,x)
P
(
|kTk(t)− kT(t)| > εt

ρT(t)
kT(t)

)

≤ 2 ∑
t∈Aα(m,x)

e−kT(t)c
(

ε
ρ

t
T(t)

)

≤ 2|Aα(m, x)|e−k inft∈Aα(m,x) T(t)c
(

ε
ρ

t
T(t)

)

≤ 2m(1− x)e−k inft∈Aα(m,x) T(t)c
(

ε
ρ

t
T(t)

)
,

where we have used the fact that the number of elements in Aα(m, x) is bounded from
above as follows |Aα(m, x)| ≤ m(1− x). Next, (6) is deduced from the assumption that
T(t)c

(
ε
ρ

t
T(t)

)
as a function of t is non-decreasing on [αx, α) and the simple fact Aα(m, x) ⊆

[αx, α).

Applying Proposition 1 with T = F and T = G and respectively m0 = mγ and
m1 = m(1− γ) and ρ = γ and ρ = 1− γ we can confirm from (4) the proof of Theorem 3.1
in [15] in the sense that we have the convergence in probability

lim
m→∞

max
t∈
{

α
dmxe

m ,··· , α m−1
m , α

} Hm(t)− t
t

P
= (1− γ) sup

[αx,α]

G(t)− t
t

=: uα,γ(x). (11)

Clearly, uα,γ : [0, 1] 7→ R, with uα,γ(1) = G(α)−α
α , is a non-increasing function on

(0, 1]. Denote

xβ
α,γ = inf{x ∈ (0, 1) : uα,γ(x) ≤ 1

β
− 1}, α, β ∈ (0, 1), (12)

and
xβ

α,γ = inf{x ∈ (0, 1) : uα,γ(x) <
1
β
− 1}, α, β ∈ (0, 1). (13)

Since uα,γ is non-increasing we have that xβ
α,γ ≥ xβ

α,γ. Therefore from relations (2)
and (4) we can easily get that

lim
m→∞

P
(

Rm

m
≥ x

)
= 1, for x < xα

α,γ

lim
m→∞

P
(

Rm

m
≥ x

)
= 0, for x > xα

α,γ.
(14)
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We can provide more precise information about probabilities of the type P
(

Rm
m < x

)
in the general case. In the sequel we use I{A} for the indicator function of the set A.

Proposition 2. We have for any ε > 0 and x ∈ (0, 1) that

P
(

Rm

m
< x

)
≥ 1− KF(x, m, m0, γ, ε, α)− KG(x, m, m1, 1− γ, ε, α)

− I{
(1−γ)maxt∈Aα(x,m)

G(t)−t
t ≥ 1

α−1−2ε
}.

(15)

Proof. Using successively (2), (4) and (10) with ρ = γ, k = m0 = γm for the probability
involving Fm0 and ρ = 1− γ, k = m1 = (1− γ)m for the expression concerning Gm1 , we
arrive at the inequalities

P
(

Rm

m
< x

)
= 1− P

(
Rm

m
≥ x

)
= 1− P

({
max

t∈Aα(x,m)

Hm(t)− t
t

≥ 1
α
− 1
})

≥ 1− P
(

γ max
t∈Aα(x,m)

∣∣∣∣ Fm0(t)− t
t

∣∣∣∣ > ε

)
− P

(
(1− γ) max

t∈Aα(x,m)

∣∣∣∣Gm1(t)− G(t)
t

∣∣∣∣ > ε

)
− I{

(1−γ)maxt∈Aα(x,m)
G(t)−t

t ≥ 1
α−1−2ε

}×
× P

(
max

t∈Aα(x,m)

(
γ

∣∣∣∣ Fm0(t)− t
t

∣∣∣∣, ∣∣∣∣(1− γ)
Gm1(t)− G(t)

t

∣∣∣∣) ≤ ε

)
≥ 1− KF(x, m, m0, γ, ε, α)− KG(x, m, m1, 1− γ, ε, α)

− I{
(1−γ)maxt∈Aα(x,m)

G(t)−t
t ≥ 1

α−1−2ε
}.

(16)

We only note that in the last expression of the first inequality above we have used that
once the dependence on Fm0 , Gm1 is estimated away, the remaining term is deterministic
and thus the indicator function appears.

2.3. Condition (M)

In view of the fact that Theorem 3.1 in [15] holds, the limit in probability, that is
lim

m→∞
Rm
m = xα,γ exists if and only if xα

α,γ = xα
α,γ = xα,γ. We shall therefore restrict our

attention only to the case when for fixed α we have that the function G(t)−t
t is decreasing

on (0, α]. In this case we have from (11) that

uα,γ(x) = (1− γ)
G(αx)− αx

αx
. (17)

If in addition lim
t→0

G(t)−t
t = ∞ then

xβ
α,γ := xβ

α,γ = xβ
α,γ, for any β < 1, (18)

and if β = α then we set xα,γ := xα
α,γ. From now on we work under this condition which

we call condition (M) and which is synthesized as follows.

Definition 1. We say that condition (M) holds for fixed α ∈ (0, 1) if and only if H(t) := G(t)−t
t

is decreasing on (0, α] with lim
t→0

H(t) = ∞.

Remark 4. As mentioned in [17], "[u]nder the alternative hypothesis, the p-values will have a
distribution that has high density for small p-values and the density will decrease as the p-values
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increase”. Therefore when modeling the p-values under the alternative hypothesis with a Beta
distribution, B(a, b), its parameters should be so that a < 1 and b ≥ 1. Note that condition (M)
also holds when b < 1 and a < (1− 2α)/(1− α), although that case should not happen for
well-behaved statistical procedures.

Remark 5. Note that in our context Equation (2.2) of [13] translates to α∗ = infu>0{u/G(u)}
and as it is mentioned there, the asymptotic of the Benjamini–Hochberg procedure exhibits a very
different behavior on the regions α ∈ (0, α∗) and α > α∗. In the same paper it is demonstrated
that when G(t)/t → 0 then the overwhelming proportion of discoveries will be amongst the
non-significant features. Under our assumptions it is always true that α∗ = 0 and therefore we
are always in the second regime, for which [13] provides a law of the iterated logarithm for Rn, see
Theorem 2.2 of [13]. In more detail it is shown that the precise estimate

lim sup
n→∞

±
Rn − xα,γ√

n log(log(n))
=

√
xα,γ(1− xα,γ)

1− αG′(xα,γ)

holds true.
A very interesting contribution is made in Theorems 3.1 and 3.2 in [18]. The author finds

a Donsker-type of convergence for the so-called threshold procedures, which are essentially func-
tionals on the empirical functions Hm(t) which recover, for example, the false discovery rate, see
Theorem 3.2 in [18]. This implies a convergence rate 1/

√
n in |Rn/n− xα,γ| and is applicable

in a variety of other examples. Moreover, their results go beyond the scope of the Benjamini–
Hochberg procedure and capture different procedures some of which are of higher power than
the Benjamini–Hochberg procedure. In the particular case of the Benjamini–Hochberg procedure,
however, we know from [15] that the probabilities of the events

{∣∣∣ Rn
n − xα,γ

∣∣∣ ≤ βxα,γ

}
and of{∣∣∣ Sn

n − xα,γ
1−αγ
1−γ

∣∣∣ ≤ βxα,γ
1−αγ
1−γ

}
, where Sn/n is the power of that procedure, converge to 1. Our

Theorems 1 and 3 strengthen this by showing that the speed of convergence is of an exponential
order. As discussed earlier, this allows a direct estimate on the probability that Sn/n is in a
prescribed interval.

Remark 6. We note that upon the validity of condition (M) it is impossible that G has atoms on
(0, α) as otherwise if a ∈ (0, α) is an atom then

lim
t↓a

H(t) = H(a) > lim
t↑a

H(t) = H(a−),

which leads to a contradiction with the assumption that H is decreasing. Thus, our initial require-
ment that G is continuous is included in condition (M). This also means that H is continuous on
(0, α) and thus xβ

α,γ = xβ
α,γ = xβ

α,γ.

We then have the following elementary lemma.

Lemma 1. Condition (M) is valid for fixed α ∈ (0, 1) if G has on (0, α) a density g = G′ satisfying
lim
x→0

g(x) = g(0) = ∞ and tg(t) − G(t) < 0 on (0, α). The latter is satisfied if, for example,

g′(t) < 0 on (0, α).

Proof. From the assumptions it is clear that on (0, α)

dH(t)
dt

=
(g(t)− 1)t−

∫ t
0 (g(s)− 1)ds

t2 < 0

⇐⇒ tg(t)− G(t) < 0.

Furthermore, since lim
t→0

G(t)
t = g(0) = ∞ we conclude that lim

t→0
H(t) = ∞. Thus the

first part of the proof is settled. Clearly, tg(t)− G(t) < 0 if g′(t) < 0 on (0, α) and the
overall proof is thus completed.
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The next lemma ensures an easier expression for KG, see (5) and (6), provided condition
(M) holds.

Lemma 2. Let condition (M) hold for G and m1 = m(1− γ). Then we have that

KM
G (x, m, 1− γ, ε, α) = KG(x, m, m1, 1− γ, ε, α)

= 2 min
{

m(1− x)e−m(1−γ)G(αx)c
(

ε
1−γ

αx
G(αx)

)
, e−2 m

(1−γ)
(εαx)2

}
.

(19)

The same holds for the c.d.f. of the uniform distribution F. In particular if γ > 1/2 then

KM
F (x, m, γ, ε, α) = KF(x, m, m0, γ, ε, α)

= 2 min
{

m(1− x)e−mγαxc
(

ε
γ

)
, e−2 m

γ (εαx)2
}

.
(20)

Remark 7. Under condition (M) we have that G(t)c
(

d t
G(t)

)
is non-decreasing on (0, α), for any

d > 0, since t
G(t) is non-decreasing on (0, α) and c is increasing on (0, ∞), see Proposition A1.

Hence the function KM
G (x, m, 1− γ, ε, α) is decreasing in x as long as the other parameters stay

fixed. The same is valid for KM
F .

Proof of Lemma 2. The proof is immediate from (6) since under condition (M) we have
that the function G(t)c

(
ε

1−γ
t

G(t)

)
is non-decreasing on (0, α), see Remark 7. We just note

that by definition m1 = m(1− γ) and we have employed this for k in (6) to derive (19).
Finally, (20) follows from (7).

2.4. Theoretical Bounds on the Distribution of Rm under Condition ( M)

If condition (M) holds we have the identity equivalent to (17)

max
t∈Aα(x,m)

H(t) =
G
(

α dmxe
m

)
− α dmxe

m

α dmxe
m

= H
(

α
dmxe

m

)
(21)

and with β = α relation (18) together with (12) and (13) gives that

1
α
− 1 = (1− γ)H(αxα,γ) = (1− γ)

(
G(αxα,γ)− αxα,γ

αxα,γ

)
. (22)

Let β > 0 and denote using (21)

mG(x, β, α, γ) : = inf{k ∈ N+ : max
m≥k

I{(1−γ)maxt∈Aα(x,m) H(t)≥β} = 0}

= inf{k ∈ N+ : max
m≥k

I{
(1−γ)H

(
α
dmxe

m

)
≥β
} = 0}.

(23)

We then have the following key result:

Theorem 1. Let condition (M) hold for given G and fixed α ∈ (0, 1) with G(α) < 1. Fix γ ∈
(0, 1). Recall from (18) that xα,γ = xα

α,γ = xα
α,γ. Then lim

m→∞
Rm
m = xα,γ ∈ (0, 1). Moreover, for any

x ∈ (xα,γ, 1), ∃ε(x) such that for any 0 ≤ ε ≤ ε(x) the inequality (1− γ)H(αx) < 1
α − 1− 2ε

holds and then for any m ≥ mG(x, 1
α − 1− 2ε, α, γ) we have that

P
(

Rm

m
≤ x

)
≥ 1− KM

F (x, m, γ, ε, α)− KM
G (x, m, 1− γ, ε, α). (24)
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Finally, for any x ∈ (0, xα,γ), ∃ε(x) such that for any 0 ≤ ε ≤ ε(x) the inequality
(1− γ)H(αx) > 1

α − 1 + 2ε holds and then for any m ≥ mG(x, 1
α − 1 + 2ε, α, γ)

P
(

Rm

m
< x

)
≤ KM

F (x, m, γ, ε, α) + KM
G (x, m, 1− γ, ε, α). (25)

Remark 8. It seems important to evaluate or approximate mG(x, 1
α − 1− 2ε, α, γ) with say m′ so

that (24) is valid beyond this estimate, that is for m ≥ m′. If Hd := inft∈(0,α) |H′(t)| > 0, since

αx < α dmxe
m , 1 > x > xα,γ and H is decreasing on (0, α) we get using 22 in the first relation

1
α
− 1 = (1− γ)H(αxα,γ) = (1− γ)(H(αxα,γ)− H(αx)) + (1− γ)H(αx)

≥ (1− γ)Hdα(x− xα,γ) + (1− γ)H(αx).

However, if (1− γ)Hdα(x− xα,γ) > 2ε we get from the last observation that

(1− γ)H
(

α
dmxe

m

)
≤ (1− γ)H(αx) ≤ 1

α
− 1− (1− γ)Hdα(x− xα,γ)

<
1
α
− 1− 2ε =

1
αε

for any m ≥ 1 and therefore if (1− γ)αHd(x− xα,γ) > 2ε then

mG(x,
1
α
− 1− 2ε, α, γ) = inf{k ∈ N : max

m≥k
I{

(1−γ)H
(

α
dmxe

m

)
≥ 1

α−1−2ε
} = 0} = 1.

and (24) is always valid. Of course various similar and more precise estimates can be achieved, but
these are beyond the scope of this work.

Remark 9. Considering Remark 3 the inequalities (24) and (25) can be improved for computational
purposes by using as an upper bound the expression

2 min

 ∑
t∈Aα(m,x)

e−kT(t)c
(

ε
ρ

t
T(t)

)
, e
−2 k

ρ2 (εαx)2


for KM

T , T = G, F with k = m1, m0; ρ = 1− γ, γ respectively.

Remark 10. We point out that in our setting lim
m→∞

Rm
m > 0 and there have been a number of works

that attempt to offer FDR even under weak dependence structure between the random variables
following the uniform distribution or

(
Xj
)

j≤m0
. We point out, for example, to [19]. There is

an interesting contribution, see [20], which discusses difficulties in controlling FDR under weak
dependence in the case when lim

m→∞
Rm
m = 0.

Proof of Theorem 1. Under condition (M) we have that xα
α,γ = xα

α,γ := xα,γ, see (18).

Clearly, xα,γ ∈ (0, 1) since uα,γ(0) = ∞ and uα,γ(1) = G(α)−α
α < 1

α − 1, see (17), and by
assumption G(α) < 1. The fact that lim

m→∞
Rm
m = xα,γ ∈ (0, 1) follows from Theorem 3.1

in [15]. Henceforth, it remains to show (24) and (25). The former thanks to (16) and (19)
follows for any m ≥ mG(x, 1

α − 1− 2ε, α, γ), if mG(x, 1
α − 1− 2ε, α, γ) < ∞, since then

I{
(1−γ)maxt∈Aα(x,m)

G(t)−t
t ≥ 1

α−1−2ε
} = I{

(1−γ)H
(

α
dmxe

m

)
≥ 1

α−1−2ε
} = 0.
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However, since lim
m→∞

α dmxe
m = αx, x > xα,γ and H decreasing on (0, α), then

lim
m→∞

(1− γ)H
(

α
dmxe

m

)
= (1− γ)H(αx) < (1− γ)H(αxα,γ) =

1
α
− 1.

Thus, for all ε small enough, we conclude that (1− γ)H(αx) < 1
α − 1− 2ε and thus

mG(x, 1
α − 1− 2ε, α, γ) < ∞, see (23). Hence, (24) follows.

To prove (25) for any x ∈ (0, xα,γ) we work with the complement event, that is{
Rm
m ≥ x

}
. Similarly as in (16) and utilizing (4) and (21) we get that on the event{

max
t∈Aα(x,m)

∣∣∣∣ Fm0(t)− t
t

∣∣∣∣ ≤ ε

γ
; max

t∈Aα(x,m)

∣∣∣∣Gm1(t)− G(t)
t

∣∣∣∣ ≤ ε

1− γ

}
we have that maxt∈Aα(x,m)

Hm(t)−t
t ≥ (1− γ)H

(
α dmxe

m

)
− 2ε and therefore

P
(

Rm

m
≥ x

)
≥

P
(

Rm

m
≥ x; max

t∈Aα(x,m)

∣∣∣∣ Fm0(t)− t
t

∣∣∣∣ ≤ ε

γ
; max

t∈Aα(x,m)

∣∣∣∣Gm1(t)− G(t)
t

∣∣∣∣ ≤ ε

1− γ

)
≥ P

(
max

t∈Aα(x,m)

∣∣∣∣ Fm0(t)− t
t

∣∣∣∣ ≤ ε

γ
; max

t∈Aα(x,m)

∣∣∣∣Gm1(t)− G(t)
t

∣∣∣∣ ≤ ε

1− γ

)
× I{

(1−γ)H
(

α
dmxe

m

)
≥ 1

α−1+2ε
}.

Again as dmxe
m → x < xα,γ and H(αx) > H(αxα,γ) we conclude that for all ε small

enough the inequality (1− γ)H(αx) ≥ 1
α − 1 + 2ε holds and we have that

lim
m→∞

I{
(1−γ)H

(
α
dmxe

m

)
≥ 1

α−1+2ε
} = 1. (26)

From Proposition 1, the expressions for KM
F , KM

G in Lemma 2 and the independence of(
Xj
)

j≤m0
and

(
Xj
)

m≥j>m0
we have that

P
(

max
t∈Aα(x,m)

∣∣∣∣ Fm0(t)− t
t

∣∣∣∣ ≤ ε

γ
; max

t∈Aα(x,m)

∣∣∣∣Gm1(t)− G(t)
t

∣∣∣∣ ≤ ε

1− γ

)
= P

(
max

t∈Aα(x,m)

∣∣∣∣ Fm0(t)− t
t

∣∣∣∣ ≤ ε

γ

)
P
(

max
t∈Aα(x,m)

∣∣∣∣Gm1(t)− G(t)
t

∣∣∣∣ ≤ ε

1− γ

)
≥
(

1− KM
F (x, m, γ, ε, α)

)(
1− KM

G (x, m, 1− γ, ε, α)
)

.

and we conclude the proof of the theorem via the now trivial relations

P
(

Rm

m
< x

)
= 1− P

(
Rm

m
≥ x

)
≤ 1− P

(
Rm

m
≥ x; max

t∈Aα(x,m)

∣∣∣∣ Fm0(t)− t
t

∣∣∣∣ ≤ ε

γ
; max

t∈Aα(x,m)

∣∣∣∣Gm1(t)− G(t)
t

∣∣∣∣ ≤ ε

1− γ

)
≤ 1−

(
1− KM

F (x, m, γ, ε, α)
)(

1− KM
G (x, m, 1− γ, ε, α)

)
×

× I{
(1−γ)H

(
α
dmxe

m

)
≥ 1

α−1+2ε
}

(27)

and an appeal to (26).

For practical reasons and especially for the accompanying software routine it is optimal
to choose ε in Theorem 1 as large as possible. The latter is due to fact that the bounds for
KM

F , KM
G , see (19) and (20), are decreasing in ε. Since in practical computations m is usually
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available, it is then beneficial to choose the largest ε as a function in x, m in a way that the
previous theorem holds. In this direction we have the following result:

Theorem 2. Under the conditions of Theorem 1 and m ∈ N+, x ∈ (xα,γ, 1) fixed we have that

P
(

Rm

m
≤ x

)
≥ 1− KM

F (x, m, γ, εG, α)− KM
G (x, m, 1− γ, εG, α), (28)

where

εG = ε(x, m) =
1
2

(
1
α
− 1
)
− 1− γ

2
H
(

α
dmxe

m

)
=

1− γ

2

(
H(αxα,γ)− H

(
α
dmxe

m

))
.

(29)

Similarly, if m ∈ N, x ∈ (0, xα,γ) are fixed and dmxe
m < xα,γ then

P
(

Rm

m
< x

)
≤ KM

F (x, m, γ, εG, α) + KM
G (x, m, 1− γ, εG, α), (30)

where

εG = ε(x, m) =
1− γ

2
H
(

α
dmxe

m

)
− 1

2

(
1
α
− 1
)

=
1− γ

2

(
H
(

α
dmxe

m

)
− H(αxα,γ)

)
.

(31)

Proof. To show (28) with εG as in (29) it suffices to show that for the chosen εG and the
given m, x we have that

I{
(1−γ)maxt∈Aα(x,m)

G(t)−t
t ≥ 1

α−1−2ε
} = 0

in (16). However, as condition (M) holds, then

max
t∈Aα(x,m)

G(t)− t
t

= max
t∈Aα(x,m)

H(t) = H
(

α
dmxe

m

)
and we see that εG is the maximal possible choice such that

I{
(1−γ)H

(
α
dmxe

m

)
≥ 1

α−1−2ε
} = 0.

For the second part of (29) we only recall that (1− γ)H(αxα,γ) =
1
α − 1, see (22). The

rest of the theorem, that is (30) and (31), follows in a similar fashion from (27) wherein the
expression of (31) is the maximal ε such that for the fixed m, x ∈ (0, xα,γ)

I{
(1−γ)H

(
α
dmxe

m

)
≥ 1

α−1+2ε
} = 1.

We only note that in this instance we need to have that x < dmxe
m < xα,γ, which is part

of the assumptions of the theorem.

2.5. Exponential Convergence to the Theoretical Limit of the Power of the
Benjamini–Hochberg Procedure

We proceed by studying the question about the power of the test. It is clear that if we
denote by

Sm =
m1

∑
j=1

I{Xj≤α Rm
m }, (32)
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where
(
Xj
)

1≤j≤m1
are i.i.d. with c.d.f G then

S∗m =
Sm

m1
(33)

is the proportion of tested elements that we have correctly identified as significant or the
power of the test. If one wishes to understand the behavior of S∗m with the increase of m
one ought to decouple its dependence on Rm

m in (32). Theorem 1 aids in this matter. We
note that if we choose x1 < lim

m→∞
Rm
m = xα,γ < x2, see (18) for the definition of xα,γ, then

from Theorem 1 we have for every

m ≥ max
{

mG(x1,
1
α
− 1− 2ε, α, γ); mG(x2,

1
α
− 1 + 2ε, α, γ)

}
:= m∗(x1, x2, ε, α, γ)

with ε ≤ min{ε(x1), ε(x2)} that

P
(

Rm

m
∈ [x1, x2]

)
= P

(
Rm

m
≤ x2

)
− P

(
Rm

m
< x1

)
≥ 1−

(
KM

F (x2, m, γ, ε, α) + KM
G (x2, m, 1− γ, ε, α)

)
−
(

KM
F (x1, m, γ, ε, α) + KM

G (x1, m, 1− γ, ε, α)
)

.

(34)

Then we can formulate the following fundamental result that offers exponential
bounds on the convergence of S∗m.

Theorem 3. Let condition (M) be valid and assume the notation of Theorem 1. Let next xα,γ ∈
(x1, x2) ⊂ (0, 1). Then there exists m∗ = m∗(x1, x2, ε, α, γ) and ε∗ = ε(x1, x2) such that for any
m ≥ m∗ and any ε ≤ ε∗

P
(

1
m1

m1

∑
j=1

I{Xj≤αx1} ≤ S∗m ≤
1

m1

m1

∑
j=1

I{Xj≤αx2}

)
≥ 1−

(
KM

F (x1, m, γ, ε, α) + KM
G (x1, m, 1− γ, ε, α)

)
−
(

KM
F (x2, m, γ, ε, α) + KM

G (x2, m, 1− γ, ε, α)
)

.

(35)

Clearly, the random variables ∑m1
j=1 I{Xj≤αx} are Binomial with parameters m1 and G(αx) =

P(X1 ≤ αx). Henceforth,

lim
m→∞

S∗m = G(αxα,γ) = xα,γ
1− αγ

1− γ
. (36)

Moreover, for any η ∈ (0, 1) with m, ε as above, we have that

P((1− η)G(αx1) ≤ S∗m ≤ (1 + η)G(αx2))

≥ 1−
(

KM
F (x1, m, γ, ε, α) + KM

G (x1, m, 1− γ, ε, α)
)

−
(

KM
F (x2, m, γ, ε, α) + KM

G (x2, m, 1− γ, ε, α)
)

− e−mc(η)(1−γ)G(αx1) − e−mc(η)(1−γ)G(αx2)

(37)

where c(η) = (1 + η) ln(1 + η)− η, η > 0, is considered in Proposition A1.

Remark 11. We note that (36) has been proved in Corollary 3.3 in [15], but here we offer some
exponential bounds on this convergence.
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Proof of Theorem 3. The proof of (35) follows immediately from (32), (34) and the consid-
erations thereabout since

P
(

1
m1

m1

∑
j=1

I{Xj≤αx1} ≤ S∗m ≤
1

m1

m1

∑
j=1

I{Xj≤αx2}

)
≥ P

(
Rm

m
∈ [x1, x2]

)
. (38)

The fact that ∑m1
j=1 I{Xj≤αx} is Binomial with parameters m1 and G(αx) = P(X1 ≤ αx)

is straightforward which with the help of (35) and

lim
m→∞

(
KM

F (x1, m, γ, ε, α) + KM
G (x1, m, 1− γ, ε, α)

)
+ lim

m→∞

(
KM

F (x2, m, γ, ε, α) + KM
G (x2, m, 1− γ, ε, α)

)
= 0

prove (36). Indeed, the strong law of large numbers gives almost surely that

lim
m1→∞

1
m1

m1

∑
j=1

I{Xj≤αx} = G(αx)

and from (35) lim
m→∞

S∗m = G(αxα,γ). Next, from (22) we get that

H(αxα,γ) =
G(αxα,γ)− αxα,γ

αxα,γ
=

1− α

α

and henceforth G(αxα,γ) = xα,γ
1−αγ
1−γ . The latter is the limit on the right-hand side of (36). The

very last relation, that is (37), follows again from (35) and an application of Proposition A1
which yields in our case with m1 = m(1− γ) the bounds

P
(

1
m1

m1

∑
j=1

I{Xj≤αx2} ≥ (1 + η)G(αx2)

)
≤ e−c(η)(1−γ)mG(αx2)

and

P
(

1
m1

m1

∑
j=1

I{Xj≤αx1} ≤ (1− η)G(αx1)

)
≤ e−c(η)(1−γ)mG(αx1).

This concludes the proof.

As in the case of Rm
m we state a more practical version of Theorem 3 which is aimed to

compute the largest ε for fixed m, x1, x2. It is in the spirit of Theorem 2.

Theorem 4. Let condition (M) be valid and assume the notation of Theorem 2. Let m ∈ N+ be
fixed. Let next xα,γ ∈ (x1, x2) ⊂ (0, 1) and x1 is such that dmx1e

m < xα,γ. Finally, let η ∈ (0, 1)
be fixed. Then with

ε1 = ε(x1, m) =
1
2

(
1
α
− 1
)
− 1− γ

2
H
(

α
dmxe

m

)
=

1− γ

2

(
H(αxα,γ)− H

(
α
dmxe

m

))
,

(39)

and

ε2 = ε(x2, m) =
1− γ

2
H
(

α
dmxe

m

)
− 1

2

(
1
α
− 1
)

=
1− γ

2

(
H
(

α
dmxe

m

)
− H(αxα,γ)

) (40)



Mathematics 2021, 9, 2154 13 of 19

we have that

P((1− η)G(αx1) ≤ S∗m ≤ (1 + η)G(αx2))

≥ max{1−
(

KM
F (x1, m, γ, ε1, α) + KM

G (x1, m, 1− γ, ε1, α)
)

−
(

KM
F (x2, m, γ, ε2, α) + KM

G (x2, m, 1− γ, ε2, α)
)

− e−mc(η)(1−γ)G(αx1) − e−mc(η)(1−γ)G(αx2); 0}

(41)

and c(η) = (1 + η) ln(1 + η)− η is considered in Proposition A1. For a one-sided bound we get
the inequality

P((1− η)G(αx1) ≤ S∗m)

≥ max{1− KM
F (x1, m, γ, ε1, α)− KM

G (x1, m, 1− γ, ε1, α)− e−mc(η)(1−γ)G(αx1); 0}.
(42)

Remark 12. Noting Remark 9 we see that the expressions involving KM
F , KM

G can be substituted with

2 min

 ∑
t∈Aα(m,x)

e−kT(t)c
(

ε
ρ

t
T(t)

)
, e
−2 k

ρ2 (εαx)2

,

where T is either F or G.

Proof of Theorem 4. The proof is immediate but we note that the assumption dmx1e
m < xα,γ

and the choice of ε1, ε2 are such that Theorem 2 applies to the right-hand side of (38), which
yields an inequality identical to (35). The rest is as in the proof of Theorem 3.

3. Workflow

In this section we consider the case when the non-uniform distribution of
(
Xj
)

m0<j≤m
is Beta with parameters a, b, that is G(·, a, b) is the cdf of B(a, b), where a < 1 and b > 1
are taken so that condition (M) is satisfied. In this case Lemma 1 is valid and condition
(M) holds since elementary calculations yield that g′a,b < 0 on (0, α) and lim

x→0
ga,b(x) = ∞,

where ga,b is the probability density function of B(a, b).
For a given number of hypotheses m, level of significance α and proportion of signifi-

cant hypotheses γ, we are interested in finding a theoretical bound for the probability that
the power is between a number l and 1, where of course only l < G(αxα,γ, a, b) makes sense
to be considered. We shall only provide a step by step description of the implementation
and we shall refrain from developing a particular, explicit theoretical example for given
values of a, b since the latter involves tedious, non-instructive and lengthy computations.
We proceed with describing the workflow that has been implemented numerically in R:

1. we calculate xα,γ by solving numerically Equation (22) wherein G(·) = G(·, a, b);
2. using the value of xα,γ, we calculate the power limit of S∗m, see (33), i.e., G(αxα,γ, a, b),

according to (36);
3. for given l < G(αxα,γ, a, b) , any given η and x1 is such that dmx1e

m < xα,γ we have an
estimate based on (42), that is

P((1− η)G(αx1) ≤ S∗m)

≥ max{1− KM
F (x1, m, γ, ε1, α)− KM

G (x1, m, 1− γ, ε1, α)−

− e−mc(η)(1−γ)G(αx1,a,b); 0};

4. fixing η we attempt to solve (numerically) in x1 the equation

l = (1− η)G(αx1, a, b);
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5. if dmx1e
m < xα,γ then (42) represents a valid theoretical lower bound, that is

p(η) = max{1− KM
F (x1, m, γ, ε1, α)− KM

G (x1, m, 1− γ, ε1, α)−

− e−mc(η)(1−γ)G(αx1,a,b); 0}

with P(l ≤ S∗m) ≥ p(η);
6. finally, we optimize p(η) in η and choose η∗ so that the estimated probability bound

is the largest, that is P(l ≤ S∗m) ≥ supη∈(0,1) p(η) = p(η∗).

4. Results

The following Tables 1–4 give empirical results for some values of m, a, b, γ. We
have included different cases for the real power limit—taking large, moderate and small
values. In all cases the significance level is α = 0.05. These tables also show the empirical
probability based on numerical simulations with 1 million repetitions. Empirical probability
of 1 means that no simulation repetition had power lower than l. Theoretical probability of
0 or empty value of η∗ indicate that some of the conditions of the method were not met.

Table 1. Simulation results for B(0.1, 100), number genes = 20,000, proportion significant = 0.1, real
power limit = 0.940359.

Lower Bound l Empirical Probability Theoretical Estimate p(η∗) η∗

0.750 1.000 1.000 0.098
0.760 1.000 1.000 0.097
0.770 1.000 1.000 0.096
0.780 1.000 1.000 0.096
0.790 1.000 1.000 0.095
0.800 1.000 1.000 0.095
0.810 1.000 1.000 0.094
0.820 1.000 1.000 0.094
0.830 1.000 1.000 0.093
0.840 1.000 1.000 0.093
0.850 1.000 0.999 0.085
0.860 1.000 0.996 0.078
0.870 1.000 0.985 0.068
0.880 1.000 0.952 0.058
0.890 1.000 0.873 0.048
0.900 1.000 0.714 0.037
0.910 1.000 0.476 0.027
0.920 1.000 0.204 0.016
0.930 0.967 0.018 0.005
0.940 0.550 0.000

Larger sample size would result in a smaller parameter a of the Beta distribution, thus
squeezing the distribution towards 0 and increasing the statistical power and its theoretical
estimates, e.g., as in Tables 2 and 3.

We have carried out numerical simulations for many values of the parameters and
based on the results it appears that the theoretical bound works well when l is not close to
the real power limit lG(αxα,γ, a, b). Link to our R code is provided in the Supplementary
Materials section.

Interestingly, when m increases and all other parameters are kept fixed, the expected
power decreases for most values of m. This is shown in the following Figure 1. Perhaps
this is due to the fact that the set for which we take the maximum in (2) increases its size
for most values of m (unless the ceiling function jumps).
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We note that as expected when either a is closer to 1 or/and γ is smaller then the
theoretical estimates are getting significantly worse. This is natural as the closer the
alternative distribution gets to the uniform the harder is to distinguish that the respective
random variable X originates from it. The same is valid if the lower bound l is very close
to the true limit and it is harder to account for the possible error. All these points reflect
natural restrictions when one deals with universal, theoretical bounds, which are seemingly
conducted in an optimal way.

Table 2. Simulation results for B(0.25, 2), number genes = 20,000, proportion significant = 0.1, real
power limit = 0.233737.

Lower Bound l Empirical Probability Theoretical Estimate p(η∗) η∗

0.190 1.000 0.779 0.105
0.200 0.997 0.434 0.072
0.210 0.972 0.000 0.001
0.220 0.868 0.000 0.001
0.230 0.626 0.000 0.001

Table 3. Simulation results for B(0.1, 2), number genes = 20,000, proportion significant = 0.1, real
power limit = 0.620014.

Lower Bound l Empirical Probability Theoretical Estimate p(η∗) η∗

0.500 1.000 1.000 0.119
0.510 1.000 1.000 0.117
0.520 1.000 1.000 0.116
0.530 1.000 1.000 0.115
0.540 1.000 0.999 0.106
0.550 1.000 0.996 0.097
0.560 1.000 0.979 0.081
0.570 1.000 0.926 0.067
0.580 1.000 0.786 0.052
0.590 0.994 0.521 0.036
0.600 0.953 0.189 0.02
0.610 0.803 0.000 0.001
0.620 0.511 0.000

Table 4. Simulation results for B(0.1, 10), number genes = 20,000, proportion significant = 0.1, real
power limit = 0.755055.

Lower Bound l Empirical Probability Theoretical Estimate p(η∗) η∗

0.600 1.000 1.000 0.109
0.610 1.000 1.000 0.108
0.620 1.000 1.000 0.107
0.630 1.000 1.000 0.106
0.640 1.000 1.000 0.105
0.650 1.000 1.000 0.105
0.660 1.000 1.000 0.104
0.670 1.000 0.999 0.096
0.680 1.000 0.995 0.085
0.690 1.000 0.980 0.074
0.700 1.000 0.934 0.062
0.710 1.000 0.821 0.049
0.720 0.999 0.608 0.037
0.730 0.991 0.309 0.024
0.740 0.924 0.048 0.009
0.750 0.693 0.000 0.001
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Figure 1. Empirical results when the p-values under the alternative hypothesis have B(0.5, 100)
distribution and the proportion of alternative tests is 2%. The x-axis shows the common logarithm
of the number of tests m. The y-axis shows the empirical power. The dots depict the mean of the
empirical power, the vertical lines are of length one standard deviation below and above the mean.
The dotted line shows the asymptotic power.

5. Discussion
5.1. Related Work

There are a number of results concerning the statistical power of the Benjamini–
Hochberg procedure that relate to our result. Paper [15] discusses different properties of
the procedure and shows that when increasing the number of tests m, while keeping the
underlying distributions and the proportion of true significant tests the same, the statistical
power under some conditions converges to a limit that can be found as a solution of a
particular equation, see (3.8) of Corollary 3.3 of that article. A step forward is made in [13]
wherein it is shown that the proportions related to the power of the test obey even a law of
the iterated logarithm. Other notable contributions amongst others include the papers [18]
which deal with various properties of the Benjamini–Hochberg procedure, including a
Donsker-type of convergence. They are discussed in more detail in Remark 5. We wish to
highlight explicitly that to our knowledge there are no bounds, albeit conservative, for the
probability to uncover a given proportion of the truly significant tests (that is Sn/n) with
respect to the limit of Sn/n, as n goes to infinity. We achieve this by evaluating the speed of
convergence, whereas the results under more general assumptions, including under weak
dependence between the tests, consider limit results. This does not allow for the derivation
of any concrete intervals, depending solely on the set of parameters, which give a certain
probability for the proportion of correctly identified significant tests.

While we argue below that for genetic studies the assumption of independence is
not binding at all, we wish to mention some achievements under the weak dependence
assumption since it is natural to pursue as a future development the extension of our results
to this scenario. The limit for the power of the Benjamini–Hochberg procedure is proved
in [15]. An interesting contribution is [12] which shows that for a large number of tests the
FDR is controlled even when there is some degree of dependence between the test statistics.
A conservative estimator for the proportion of false nulls among the hypotheses (the
quantity 1− γ in our work) is found (the proof there uses the Dvoretsky–Kiefer–Wolfowitz
inequality [16], as we do for different purposes in our work). Then the estimator is used in
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a plug-in procedure in order to boost the power of the procedure while keeping the FDR
controlled. An estimator for γ may precede the application of our procedure.

We are not interested in improving the procedure itself, but rather than that in estimat-
ing the power of the original procedure, that as we mentioned in the Introduction section,
is the most widely used among the similar procedures.

As mentioned in [20], the results in [12] assume that Rn/n is asymptotically larger
than zero, where Rn is the number of rejected tests out of all n tests (the R notation is
consistent with ours through this work). A counterexample is given of a case in which
Rn/n converges asymptotically to zero with positive probability and in which the FDR is
larger than α. Such situation does not appear to be relevant to the RNA-seq data used for
single-step differential expression methods that prompted our work. Moreover, paper [12]
is concerned with controlling the FDR rather than estimates of the power, which is the scope
of our work in which we are interested in the power of the procedure that the scientists
predominantly use, regardless of whether the FDR is controlled.

5.2. Considerations about Our Work

Because this is the first result of this exact type that we are aware of, we start our
considerations under independence assumption. We want to point out that, as mentioned
above, there are more general results under convergence, but they do not include explicit
bounds for given set of parameters. The independence assumption holds approximately
in the case of RNA-seq expression level analysis, where there are groups of genes that are
correlated within the group, but most pairs of genes are weakly or not correlated. Even
in the case of weak dependence, having real-world RNA-seq expression data, one cannot
reliably estimate or replicate the dependence unless the sample size is much larger than
the one of the currently available datasets. In addition, more complicated assumptions for
the structure of dependence would make the numerical procedure impossible to set up as
there would be too many parameters in the input and these parameters cannot be easily
estimated for small sample sizes that are typical for RNA-seq experiments.

Theoretical results under more complicated assumptions for the dependence could be
a subject of a follow-up studies. Numerical simulations of RNA-seq data under different
basic types of weak dependencies could also be considered in subsequent studies.

It is important to also emphasize that our considerations differ from the basic situations
in which the statistical power is studied. In a case of a simple test the statistical power
is typically considered as a function of the sample size. However, in a case of a complex
tests such as the ones cited above, often it is not possible to estimate the distribution of
the test statistic, even for a single test in the multiple comparison setup. In order to be
able to model a general setup we model the test statistic under the alternative hypothesis
using the Beta family of distributions. In order to use our current results, one would
first have to approximately or exactly estimate the parameters of the Beta distribution as
function of the sample size of the particular test. Because such estimates are test-specific
and cannot be studied in general, this would be a subject of another article. One would also
have to estimate the proportion of significant tests and, having achieved that, one would
apply our results for that proportion and those parameters of the Beta distribution, taking
into account the possible values of the number of tests. For example, in the differential
expression analysis methods, mentioned above, the sample size corresponds to the number
of individuals and the number of tests may correspond to the number of genes.

Supplementary Materials: The R script and instructions are available at the following page: http:
//www.math.bas.bg/~palejev/BH.
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Abbreviations

The following abbreviations are used in this manuscript:
FDR False Discovery Rate
PET Positron Emission Tomography
CT Computerized Tomography
fMRI Functional Magnetic Resonance Imaging

Appendix A. Petrov’s Inequality

In this part we state and outline the proof of a celebrated inequality which can be
found in the monograph [22].

Proposition A1. Let X is binomially distributed with parameters n, p. Then we have that for any
ε > 0

P(X− np > εnp) ≤ e−npc(ε), P(np− X > εnp) ≤ e−npc(ε) (A1)

where c(ε) = (1 + ε) ln(1 + ε)− ε, c : (0, ∞) 7→ (0, ∞) is an increasing function and the limit
lim
ε→0

2c(ε)/ε2 = 1 holds. Finally, c(ε) ≤ ε2 and c(ε) ≥ min
(

1, ε2

2e

)
for any ε > 0.

Proof. We consider

P(X > (1 + ε)np) ≤ e−λnp(1+ε)E
[
eλX
]
= en ln(1−p+peλ)−λnp(1+ε),

where the latter is simply the Markov’s inequality with some λ > 0. Then using ln(1 + ε) ≤
ε, ε > 0, we deduct that

P(X > (1 + ε)np) ≤ enp(eλ−1−λ(1+ε)).

The minimum of f (λ) = eλ − 1− λ(1 + ε) is attained at λ = ln(1 + ε) and thus we
conclude that

P(X > (1 + ε)np) ≤ e−np((1+ε) ln(1+ε)−ε).

Similar computation works for P(X > (1− ε)np). Clearly, setting the function

c(ε) = (ε− (1 + ε)× ln(1 + ε))

we arrive at the limit

lim
ε→0

2
(ε− (1 + ε) ln(1 + ε))

ε2 = 1

and (1 + ε) ln(1 + ε) − ε is increasing in ε. Using again ln(1 + ε) ≤ ε, ε > 0, we also
conclude that c(ε) ≤ ε2 for any ε > 0. Considering the properties of the function f (ε) =
c(ε)− ε2

2e for ε ∈ (0, e− 1) and noting that c(ε) ≥ 1 for ε > e− 1 we deduct that c(ε) ≥
min

(
1, ε2

2e

)
.



Mathematics 2021, 9, 2154 19 of 19

References
1. Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R.

Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [CrossRef]
2. Love, M.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome

Biol. 2014, 15, 550. [CrossRef]
3. Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene

expression data. Bioinformatics 2010, 26, 139–140. [CrossRef] [PubMed]
4. Trapnell, C.; Hendrickson, D.G.; Sauvageau, M.; Goff, L.; Rinn, J.L.; Pachter, L. Differential analysis of gene regulation at transcript

resolution with RNA-seq. Nat. Biotechnol. 2012, 31, 46–53. [CrossRef]
5. Chalkidou, A.; O’Doherty, M.J.; Marsden, P.K. False Discovery Rates in PET and CT Studies with Texture Features: A Systematic

Review. PLoS ONE 2015, 10, e0124165. [CrossRef]
6. Bennett, C.M.; Wolford, G.L.; Miller, M.B. The principled control of false positives in neuroimaging. Soc. Cogn. Affect. Neurosci.

2009, 4, 417–422. [CrossRef]
7. Miller, C.J.; Genovese, C.; Nichol, R.C.; Wasserman, L.; Connolly, A.; Reichart, D.; Hopkins, A.; Schneider, J.; Moore, A. Controlling

the False-Discovery Rate in Astrophysical Data Analysis. Astron. J. 2001, 122, 3492. [CrossRef]
8. Benjamini, Y.; Yekutieli, D. The Control of the False Discovery Rate in Multiple Testing under Dependency. Ann. Stat. 2001,

29, 1165–1188. [CrossRef]
9. Storey, J.D.; Taylor, J.E.; Siegmund, D. Strong control, conservative point estimation and simultaneous conservative consistency

of false discovery rates: A unified approach. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2004, 66, 187–205. [CrossRef]
10. Pollard, K.S.; van der Laan, M.J. Choice of a null distribution in resampling-based multiple testing. J. Stat. Plan. Inference 2004,

125, 85–100. [CrossRef]
11. Van Noorden, R.; Maher, B.; Nuzzo, R. The top 100 papers. Nature 2014, 514, 550–553. [CrossRef]
12. Farcomeni, A. Some Results on the Control of the False Discovery Rate under Dependence. Scand. J. Stat. 2007, 34, 275–297.

[CrossRef]
13. Chi, Z. On the performance of FDR control: Constraints and a partial solution. Ann. Statist. 2007, 35, 1409–1431. [CrossRef]
14. Ferreira, J.A.; Zwinderman, A.H. Approximate Power and Sample Size Calculations with the Benjamini-Hochberg Method. Int. J.

Biostat 2006, 2, 8. [CrossRef]
15. Ferreira, J.A.; Zwinderman, A.H. On the Benjamini—Hochberg method. Ann. Statist. 2006, 34, 1827–1849. [CrossRef]
16. Dvoretzky, A.; Kiefer, J.; Wolfowitz, J. Asymptotic Minimax Character of the Sample Distribution Function and of the Classical

Multinomial Estimator. Ann. Math. Stat. 1956, 27, 642–669. [CrossRef]
17. Pounds, S.; Morris, S.W. Estimating the occurrence of false positives and false negatives in microarray studies by approximating

and partitioning the empirical distribution of p-values. Bioinformatics 2003, 19, 1236–1242. [CrossRef] [PubMed]
18. Neuvial, P. Asymptotic properties of false discovery rate controlling procedures under independence. Electron. J. Stat. 2008,

2, 1065–1110. [CrossRef]
19. Finner, H.; Dickhaus, T.; Roters, M. On the false discovery rate and an asymptotically optimal rejection curve. Ann. Statist. 2009,

37, 596–618. [CrossRef]
20. Gontscharuk, V.; Finner, H. Asymptotic FDR control under weak dependence: A counterexample. Stat. Probab. Lett. 2013,

83, 1888–1893. [CrossRef]
21. Atanassov, E.; Gurov, T.; Karaivanova, A.; Ivanovska, S.; Durchova, M.; Dimitrov, D. On the parallelization approaches for Intel

MIC architecture. AIP Conf. Proc. 2016, 1773, 070001. [CrossRef]
22. Petrov, V.V. Sums of Independent Random Variables; Brown, A.A., Translator; Ergebnisse der Mathematik und ihrer Grenzgebiete;

Springer: Berlin/Heidelberg, Germany, 1975; Volume 82.

http://doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://dx.doi.org/10.1186/s13059-014-0550-8
http://dx.doi.org/10.1093/bioinformatics/btp616
http://www.ncbi.nlm.nih.gov/pubmed/19910308
http://dx.doi.org/10.1038/nbt.2450
http://dx.doi.org/10.1371/journal.pone.0124165
http://dx.doi.org/10.1093/scan/nsp053
http://dx.doi.org/10.1086/324109
http://dx.doi.org/10.1214/aos/1013699998
http://dx.doi.org/10.1111/j.1467-9868.2004.00439.x
http://dx.doi.org/10.1016/j.jspi.2003.07.019
http://dx.doi.org/10.1038/514550a
http://dx.doi.org/10.1111/j.1467-9469.2006.00530.x
http://dx.doi.org/10.1214/009053607000000037
http://dx.doi.org/10.2202/1557-4679.1018
http://dx.doi.org/10.1214/009053606000000425
http://dx.doi.org/10.1214/aoms/1177728174
http://dx.doi.org/10.1093/bioinformatics/btg148
http://www.ncbi.nlm.nih.gov/pubmed/12835267
http://dx.doi.org/10.1214/08-EJS207
http://dx.doi.org/10.1214/07-AOS569
http://dx.doi.org/10.1016/j.spl.2013.04.025
http://dx.doi.org/10.1063/1.4964983

	Introduction
	Main Results and Their Proofs
	Some Preliminary Notation
	General Inequalities and Information Concerning the Distribution of Rm
	Condition (M)
	Theoretical Bounds on the Distribution of Rm under Condition ( M)
	Exponential Convergence to the Theoretical Limit of the Power of the Benjamini–Hochberg Procedure

	Workflow
	Results
	Discussion
	Related Work
	Considerations about Our Work

	Petrov's Inequality
	References

