
mathematics

Article

A Hybrid Genetic Algorithm for the Simple Assembly Line
Balancing Problem with a Fixed Number of Workstations

Eduardo Álvarez-Miranda 1, Jordi Pereira 2,*, Harold Torrez-Meruvia 3 and Mariona Vilà 3

����������
�������

Citation: Álvarez-Miranda, E.;

Pereira, J.; Torrez-Meruvia, H.; Vilà,

M. A Hybrid Genetic Algorithm for

the Simple Assembly Line Balancing

Problem with Fixed Number of

Workstations. Mathematics 2021, 9,

2157. https://doi.org/10.3390/

math9172157

Academic Editor: Frank Werner

Received: 6 August 2021

Accepted: 30 August 2021

Published: 4 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Economics and Business, Universidad de Talca, Talca 3460000, Chile; ealvarez@utalca.cl
2 Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750,

Viña del Mar 2520000, Chile
3 EAE Business School, C. Aragó 55, 08015 Barcelona, Spain; harold.torrez@eae.es (H.T.-M.);

mvila@eae.es (M.V.)
* Correspondence: jorge.pereira@uai.cl

Abstract: The assembly line balancing problem is a classical optimisation problem whose objective is
to assign each production task to one of the stations on the assembly line so that the total efficiency of
the line is maximized. This study proposes a novel hybrid method to solve the simple version of the
problem in which the number of stations is fixed, a problem known as SALBP-2. The hybrid differs
from previous approaches by encoding individuals of a genetic algorithm as instances of a modified
problem that contains only a subset of the solutions to the original formulation. These individuals
are decoded to feasible solutions of the original problem during fitness evaluation in which the
resolution of the modified problem is conducted using a dynamic programming based approach that
uses new bounds to reduce its state space. Computational experiments show the efficiency of the
method as it is able to obtain several new best-known solutions for some of the benchmark instances
used in the literature for comparison purposes.

Keywords: assembly lines; manufacturing; line balancing; hybrid genetic algorithm

1. Introduction

The Assembly Line Balancing Problem (ALBP) is a classic problem that has been a
subject of research for nearly seventy years [1]; see [2–4] for reviews on the problem. The
objective of the problem is to assign each task into which the production process may be
divided into one of the stations of the assembly line.

The most studied case is known as the Simple Assembly Line Balancing Problem
(SALBP) [5]. This case considers serially arranged stations and a single product, which
travels from station to station by means of a conveyor belt or a similar transportation
device. The operations necessary to manufacture the product are known as tasks. Each task
has a deterministic duration and may not be able to start until another task is completed.
The latter condition is known as a precedence relationship, e.g., the seats of a car must
be assembled before installing the doors. Each station performs one or several tasks,
which generate a workload equal to the sum of the durations of all the tasks assigned
to it. Once steady-state manufacturing conditions have been achieved, the production
items travel along the line at a constant rate, and each station is allotted an identical time
to complete its workload. This time is known as the cycle time, c, and it is equal to the
maximum workload. The difference between the cycle time and the workload in each
station is known as the idle time of the station. The objective of the problem is to assign the
tasks to the stations in such a manner that maximises productivity, which is equivalent to
minimising the sum of idle times for all the stations, while fulfilling workload constraints
and precedence relationships.

Any other problem in which additional constraints or different objectives are consid-
ered is known in the literature as a General Assembly Line Balancing Problem (GALBP) [5].

Mathematics 2021, 9, 2157. https://doi.org/10.3390/math9172157 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-9214-4615
https://orcid.org/0000-0001-8132-969X
https://doi.org/10.3390/math9172157
https://doi.org/10.3390/math9172157
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9172157
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9172157?type=check_update&version=2

Mathematics 2021, 9, 2157 2 of 19

While most real-life balancing problems belong in the GALBP family, the SALBP is the
underlying basic formulation of many of these cases. In addition to the real-life importance,
the SALBP provides a unified framework for algorithm comparison and it also acts as a
test-bed to propose new ideas applicable to a wide range of balancing problems.

The case studied in the present work is the SALBP-2 in which, given a number of
stations, maximising efficiency is achieved by minimising the cycle time. This case matches
a line rebalancing problem which has been specifically studied in [6,7] among others, as it
considers the number of stations from a previous line design, but technology or production
changes alter the duration of the tasks, forcing the rebalancing of the line.

The literature is more focused on the study of the line design problem (SALBP-1),
where the cycle time is known and the objective is to minimise the number of stations,
even if line rebalancing problems (SALBP-2) are more frequent in real situations. The
reason given by some authors [3,8] is that the SALBP-2 can be reformulated as the problem
of finding the smallest cycle time for which the optimal solution to the corresponding
SALBP-1 has the desired number of stations. This method has proved to be very effective,
and resolution procedures using this property are collectively known as reformulation
methods, as opposed to direct resolution methods.

As stated in [3],

The success of reformulation methods “gives a certain foundation for the concen-
tration on finding effective procedures for SALBP-1 in the past 50 years though
SALBP-2 is a problem which may even have the greater practical relevance be-
cause it arises whenever an existing line has to be rebalanced, while SALBP-1 is
relevant mainly in case of the first installation of a line.”

The previous statement is supported by the state-of-the-art methods found in the
literature, which are based on reformulation approaches, but hard SALBP-2 instances
still seem to be more challenging than their SALBP-1 counterparts. While the SALBP-1
reference set contains no open instances, the reference set for SALBP-2 contains 14 open
instances out of 302.

This perceived difficulty could be explained by the fact that a reformulation method
is required to solve several SALBP-1 instances, including the instance with the smallest
possible total idle time and the desired number of stations. Such an instance is more
difficult than any other instance with greater idle time and the same number of stations,
as the set of solutions of the former is a subset of the set of the latter. Moreover, an exact
reformulation method also needs to verify that there is no feasible assignment for the
instance with a cycle time that is one unit lower.

Both the practical relevance and the greater perceived difficulty of the SALBP-2
drive us to the study of this problem and the development of a new algorithm to solve
hard instances. The proposed method is based on a SALBP-1 solution procedure but
modifies the search space to add additional exploration in order to tackle these more
challenging instances.

1.1. Problem Description

Formally, a SALBP-2 instance is defined by a set of elementary tasks V, with |V| = n,
into which the assembly process of the product has been divided and a set of m workstations.
Each task has a known deterministic duration, di, i = 1, . . . , n, and it must be assigned to
one of the stations Sj, j = 1, . . . , m. Precedence relations between tasks are represented
using an acyclic graph G(V, A) in which the vertices represent each one of the tasks and an
arc between two vertices denotes a precedence relationship between the tasks. The task
associated with the initial vertex is commonly referred to as the predecessor task and must
be processed before the task associated with the terminal vertex, commonly referred to as
the successor task.

The objective of the problem is to assign the tasks to the stations minimising the
cycle time, c, defined as the maximum workload of any station, while fulfilling all the
precedence constraints.

Mathematics 2021, 9, 2157 3 of 19

Given a set of binary decision variables xij associated with assigning task i to station j,
objective (1) and constraint sets (2)–(4) represent a valid integer programming model for
the SALBP-2:

[MIN]c = max
1≤j≤m

n

∑
i=1

dixij, (1)

m

∑
j=1

xij = 1 1 ≤ i ≤ n, (2)

m

∑
j=1

jxij ≤
m

∑
j=1

jxi′ j (i, i′) ∈ A, (3)

xij ∈ {0, 1} 1 ≤ i ≤ n, 1 ≤ j ≤ m. (4)

The objective function (1) minimises the cycle time. Constraint set (2) ensures the
unique assignment of each task to a station, constraint set (3) ensures the fulfilment of
precedence constraints, and (4) defines the decision variables as binary. Note that this
problem is reversible. As such, the direction of the precedence constraints may be reversed,
and a solution for the original instance can be obtained by renumbering the stations of the
solution to the reverse instance, Sj ← Sm+1−j, for every Sj, j = 1, . . . , m.

1.2. Review on the Resolution Methods

As previously discussed, the methods to solve the SALBP-2 can be classified as either
reformulation or direct methods. A secondary classification divides them into heuristic
and exact methods. A tertiary classification applicable for reformulation methods divides
them according to how they explore the range of cycle times. As numerous procedures
have been proposed in the literature (see [3] for a review of solution methods), we only cite
some of the most significant approaches for the resolution of the SALBP-2 and GALBP with
cycle time minimization objectives and refer to the references in [2,3] for additional details.

Among the direct approaches, we highlight the Tabu Search (TS) heuristic proposed
in [9], the two-phase heuristic based on linear programming proposed in [10], the variable
neighborhood search, simulated annealing hybrid proposed in [11], the iterated local search
proposed found in [12] the exact method described in [13] and the constraint programming
approaches described in [14,15].

Heuristic approaches initially find a feasible solution using a greedy heuristic for
the SALBP-1 and then explore the neighbourhood of the SALBP-2 solution found during
the initial step. The TS [9] explores the neighbourhood using two local search operators:
the first moves a task from one station to another, and the second exchanges the station
assignment of two tasks. The linear programming based method [10] explores a different
neighbourhood using a variant of the simplex algorithm to search through the vertices of a
polytope containing integral solutions to the problem’s integer programming formulation.
The methods proposed in [11,12] take into account other features from the GALBP problem
under study and define different neighborhoods that not only take tasks into account
but also other features of the problem, like sides within the assembly line, or stochastic
task times.

The exact method described in [13] proposes a Local Lower Bound Method enumer-
ation scheme for the problem. In comparison to the reformulation methods, its main
advantage is that it maintains a single enumeration tree during the complete search. Its
main drawback is that better lower bounds exist for the SALBP-1.

Among the heuristic methods based on a reformulation approach, we highlight a Petri-
net-based heuristic [16], an evolutionary algorithm based on the Differential Evolution
(DE) paradigm [17], and a constructive iterative Beam Search (BS) heuristic [18]. All three
methods use trial cycle times and iteratively solve the related SALBP-1, but they differ
on the technique used to tackle the SALBP-1 and the order in which the trial cycle times
are explored.

Mathematics 2021, 9, 2157 4 of 19

The heuristic proposed in [16] uses an initial trial time equal to a lower bound on the
optimal cycle time, and it increases the cycle time until a feasible solution is found. This
technique for the exploration of the interval of cycle times is known as a lower bound
method [13]. Each SALBP-1 instance is solved using a constructive procedure based on
a Petri Net token movement and reachability analysis. Ref. [19] uses a similar approach
but codes the solution as a permutation of tasks that need to be decoded to obtain an
assignment of tasks to stations.

The DE algorithm proposed in [17] codes each solution using a random-key for each
task. Each DE solution is evaluated using a station-oriented SALBP-1 greedy heuristic that
uses the random-key as the priority value for each task. The interval of cycle times is also
explored using the lower bound method. The indirect solution representation is also used
in [20–22].

The iterative BS [18] uses the Beam Search heuristic to solve the trial values. The
search is divided into two phases. The first phase uses a lower bound method to find a
feasible cycle time. This phase is set to use a small fraction of the total allotted time. The
second phase uses an upper bound method, in which the algorithm tries to find a valid
solution for the next possible smaller cycle time until the total run time is consumed.

Lastly, Ref. [8] provides results of the iterative application of SALOME-1 (an exact
solution method for the SALBP-1) to optimally solve the problem. The cycle time search
interval is successively divided into subintervals using a binary search until the lower
bound is equal to the upper bound.

The cycle time minimization objective of the SALBP-2 is a common objective within
multi-objective versions of the SALBP [23] and the GALBP [21,24,25], assembly line balanc-
ing problems with heterogeneous workstations [19,26–29].

1.3. Outline of the Proposed Algorithm

This study proposes a new hybrid method intended to address hard SALBP-2 in-
stances. The hybrid procedure is a reformulation method and combines a genetic algorithm
(GA) [30] with an adapted and strengthened version of one of the current state-of-the-art
heuristic procedures for the SALPB-1, the Dynamic Programming (DP)-based Bounded
Dynamic Programming (BDP) procedure [31].

The BDP is a resolution procedure based on the partial exploration of the state-space
of the problem. Given the very large number of states of any DP formulation for the
problem, it is impractical to perform a complete enumeration of the state-space associated
with the DP. This is why the BDP explores a reduced state-space by (1) using lower bounds
and dominance rules to purge states and (2) using heuristic rules to discard the least
promising states.

The presented algorithm tries to alleviate one of the shortcomings of the BDP when
solving difficult SALBP-1 instances, namely, the use of a heuristic rule to discard states
that favour intensification over diversification. This leads to disregarding large areas of the
state-space that may contain the optimal solution for difficult instances, as shown in the
computational experiments.

In this work, diversification is introduced into the search by incorporating new con-
straints into the original problem. The addition of constraints modifies the state-space,
leading the BDP to explore a subset of the original search space.

The constraints incorporated into the original problem are incompatibilities between
tasks. An incompatibility between two tasks indicates that these tasks cannot be performed
in the same station. This problem has been studied previously in the literature (see the
review of previous work in [32], and it is also studied in the present work to develop new
lower bounds and reduction rules. Note that, as a consequence, the present manuscript
makes several contributions to the state-of-the-art of the problem with incompatibilities
between tasks, even if it is not the main focus of this work. From this point forward, this
problem will be denoted as the IBT-ALBP (Incompatibilities Between Tasks-Assembly Line
Balancing Problem).

Mathematics 2021, 9, 2157 5 of 19

The generation of these modified instances is performed by the GA component of
the procedure. A GA is a metaheuristic method inspired by natural selection and the
evolution of species, commonly used for solving difficult optimisation problems. A regular
GA explores the solution space of the problem using a set of solutions, known as the
population of individuals. The fitness of each individual is related to the quality of the
solution it represents, and it is used to decide which individuals create a new population
using different operators (i.e., selection, crossover, and mutation).

In our case, each individual of the GA represents an IBT-ALBP instance. The GA is
hybridised with the BDP method, which decodes individuals into SALBP-2 solutions while
measuring their fitness.

The results obtained in the computational experiments carried out with the algorithm
show the advantages of the proposed method. The presented algorithm improves the
best-known solution for eight of the fourteen open instances from the benchmark instance
set and obtains the best-known solution for all but one of the instances in the reference set.

The remainder of the study is structured as follows. Section 2 introduces the IBT-ALBP,
presents some new lower bounds and pre-processing techniques for the problem, and
puts forward the modified BDP method proposed for its resolution. Section 3 presents
the hybrid GA procedure. Section 4 discusses the results of a computational experiment
conducted with the algorithm. Lastly, Section 5 puts forward the conclusions derived from
the present work.

2. Line Balancing with Incompatibilities between Tasks

In this section, we study the IBT-ALBP. A description of the problem is given in
Section 2.1, whereas subsection 2.2 studies some lower bounds for the problem. Lastly, the
BDP method proposed to solve the IBT-ALBP is described in Section 2.3.

2.1. Problem Description

As stated in Section 1, the objective of the SALBP-2 is to assign production tasks
to stations while fulfilling certain precedence constraints and maximising the efficiency
of the line. Other constraints may be added to this basic formulation to obtain more
general problems. One of these additional constraints often found in real-life assembly line
balancing problems are assignment restrictions, see [32] for a classification—which model
zoning constraints or resource restrictions, among others. Incompatibilities between tasks
are among the most common representations of these restrictions.

An incompatibility constraint between two tasks forces them to be processed by
two different stations. The problem has been previously studied by different authors
(see [32–35] among others) including several real-life case studies [36,37].

The formulation of the problem builds upon the original SALBP formulation seen in
Section 1, see (1)–(4), where constraint set (5) is added. An auxiliary graph G′(V, E) is used
to represent the incompatibilities. The vertices of the graph represent the tasks, and an
edge between two vertices indicates that the associated tasks cannot be processed in the
same station,

xij + xi′ j ≤ 1 {i, i′} ∈ E, j = 1, . . . , m. (5)

There are three common characteristics between the original and the modified problem
that are used in the present work:

1. The problem may feature both type-1 and type-2 objectives, and the latter can be
solved using a reformulation method;

2. The SALBP is a simplified version of the IBT-ALBP and, as such, any lower bound for
the SALBP is a valid lower bound for the modified problem;

3. The problem is reversible (see Section 1.1).

Mathematics 2021, 9, 2157 6 of 19

2.2. Bounds and Reduction Rules

The study of lower bounds and reduction rules in this work is limited to the problem
with a type-1 objective, as the reformulation method solves the type-2 problem by iteratively
solving type-1 instances. These bounds and reduction rules will be used both before
attempting to solve the problem to preprocess the instance and within the BDP to reduce
the state-space.

2.2.1. SALBP-1 Lower Bounds

A first set of bounds is derived from the relationship between the SALBP and the
IBT-ALBP. The procedure four classical lower bounds, which are referred to as LB1, LB2,
LB3, and LB4 according to [8] notation.

The first three (LB1, LB2 and LB3) of these bounds are an assimilation of a type-1
bin-packing problem. LB1, also known as the trivial bound, corresponds to the sum of
the durations of all of the tasks divided by the value of the cycle time. LB2 considers the
minimum number of workstations required by those tasks that require more than half the
workstation workload, i.e., tasks where di > c/2 holds, and the tasks that require half the
workstation workload, i.e., tasks with a duration of exactly half the cycle time. LB3 behaves
like LB2 but considers tasks according to thirds of the cycle time.

The fourth bound (LB4) relaxes the problem to a one-machine scheduling problem [38].
Tasks are interpreted as jobs, with operation times pi =

di
c for all i = 1, . . . , n that must be

performed on one machine. After processing each job, a certain amount of time is needed
before the operation is finished. This time is known as the tail of the task. The objective of
the problem is to find a sequence of jobs that minimises the makespan, whose value is a
lower bound on the required number of stations.

The optimal solution of the one-machine problem can be obtained by processing the
jobs in order of non-increasing tails. Let ηi, i = 1, . . . , n be the tails of the tasks and let
〈h1, . . . , hn] be such an ordering of tasks. Then, the minimum makespan can be obtained as
in (6):

ηi = max{ph1 + ηh1 , ph1 + ph2 + ηh2 , . . . , ph1 + ph2 + . . . + phn + ηhn}. (6)

Initially, not all of the tails are available, i.e., the available tails are only those that
pertain to tasks with no successors and value 0. To compute the tail of the remaining tasks,
one uses (6) considering only the set of successors of the said task. During the computation,
the tail of task i, ηi, can be rounded up using the following two rules:

Rule 1: if both ηi < dηie and pi + ηi > dηie hold, the argument for the rounding is
that the task cannot share a station with its successors. This rule was originally proposed
in Johnson (1988).

Rule 2: if (i, i′) ∈ G(V, A′) (i, i′) ∈ G(V, E) and bηic = bηi′c, then ηi can be rounded
up. The rationale is as follows: if bηic = bηi′c, the tails state that tasks i and i′ may share a
station. As the incompatibility forbids the assignment, and task i should be assigned before
task i′, and its tail can be rounded up following the argument described in rule 1. Note that
this rounding rule is a novel contribution of this study.

To obtain a lower bound for the problem, the calculation determines the tail of a
fictitious task that is a predecessor of all other tasks. Moreover, one can perform the same
calculations on the reverse instance to obtain an alternative bound. The tails for the reverse
instance are denoted as the heads (ai) of the tasks, and refer to a certain amount of time
that is needed before the operation is started.

The heads and the tails of each task also provide a bound on the earliest ei and latest
li station to which each task may be assigned if the solution is to have m stations (see
Equations (7) and (8)). These values are useful for reducing the number of states of the
dynamic program and for detecting implicit incompatibilities. Note that m is known in
advance, as the number of desired stations m is part of the SALBP-2 instance definition:

ei = baic+ 1, (7)

Mathematics 2021, 9, 2157 7 of 19

li = m− bηic. (8)

2.2.2. New Lower Bounds for the IBT-ALBP

A new bound can be derived exclusively from the incompatibilities. The bound is
noted as LBIBT , and it is based on the identification of strongly connected sub-graphs in
G(V, E′) and the observation that each strongly connected sub-graph contains a set V′ ⊆ V
of tasks that cannot share a station with any other task in the subset.

Theorem 1. The cardinality of any strongly connected sub-graph in G′(V, E) is a lower bound on
the optimal solution of the type-1 IBT-ALBP.

Proof of Theorem 1. In a strongly connected graph, every vertex is connected with every
other vertex. As such, none of the associated tasks can share a station. Therefore, the
minimum number of stations to which these tasks can be assigned is the cardinality of the
subset of vertices that defines the strongly connected graph.

Theorem 2. Let V′ ⊆ V be a subset of tasks from G′(V, E) that defines a strongly connected sub-
graph and ei be the earliest station to which task i may be assigned; then, mini∈V′{ei + |V′| − 1}
is a valid lower bound on the number of stations for the type-1 IBT-ALBP.

Proof of Theorem 2. No task in V′ can be assigned to any station before mini∈V′{ei}, and
a minimum of |V′| − 1 additional stations are required to assign the remaining tasks in
V′.

Theorem 3. Let V′ ⊆ V be a subset of tasks from G′(V, E) that defines a strongly connected
sub-graph. Let the tasks in V′ be sorted by the non-decreasing earliest station. Assume that
〈v1, . . . , v|V′ | represents such an ordering. Then, maxi∈V′{evi + |V′| − i} is a valid lower bound
on the optimum value of the problem.

Proof of Theorem 3. For v1, the bound provides the same result as Theorem 2. For v2,
the best possible circumstance is that the task associated with v1 has been scheduled in a
previous station, and thus the remaining problem would provide a bound using the proof
for Theorem 2. The same reasoning holds for the remaining vertices.

Based on these theorems, LBIBT is defined as the maximum value reported by Theorem
3 for every strongly connected sub-graph in G′(V, E) which are identified using [39].

2.2.3. Preprocessing Rules

Both the previous bound and the new rounding proposed for LB4 depend on the
number of incompatibilities between the tasks. While the original SALBP formulation
does not contain explicit incompatibilities, instances may contain them implicitly, and their
explicit representation can tighten the value provided by these bounds. Two methods
are proposed:

The first method makes use of the earliest and latest station for each task. Let i and i′

be two tasks with durations di and di′ and let the cycle time be c. If di + di′ > c holds, then
tasks i and i′ must be assigned to different stations, and the incompatibility may be added.

Note that, with the introduction of these incompatibilities, LBIBT dominates LB2
because it will provide an equal or better bound.

These two methods make use, directly or indirectly, of the durations, and thus a rule
to increase them would improve their quality. In this case, we propose a strengthened
version of the EDAR rule for the SALBP-1 [38].

The set of tasks that may share a station with any task i is composed by those tasks
i′ for which ei′ ≤ li, ei ≤ li′ , and no incompatibility between these tasks exists. If no
combination between i and the tasks in the set fills a station completely, the duration of i,
di, can be modified to account for the unavoidable idle time, i.e., the difference between

Mathematics 2021, 9, 2157 8 of 19

the cycle time and the maximum load including task i. This formulation corresponds to a
binary knapsack, where weights and values of each item correspond to the duration of the
tasks (see [40]).

Note that any change in the durations of the tasks may also change the computation
of LB4 which in turn might change the earliest and latest station to which a task may
be assigned. Each change may detect new incompatibilities, leading us to compute the
aforementioned rules iteratively until no further changes appear.

2.3. Resolution by Means of Bounded Dynamic Programming

Dynamic programming, DP, approaches were one of the first methods used to solve
ALBPs [41], and they were recently shown to be competitive for the SALBP-1 [31] and
certain general cases [42] when the formulation is heuristically relaxed.

The DP formulation considers the SALBP-1 as a multistage decision process in which,
for every stage u, the assignment of tasks to station u must be decided. Each stage contains
a set of states that define all the possible partial solutions up to the stage. A state S is
subsequently represented by a subset S ⊆ V of assigned tasks. The states of stage u + 1
can be generated from the states of stage u using a transition. A transition indicates which
tasks are assigned to station u + 1. A transition between two states Su and Su+1 exists only
if (9) and (10) hold:

∑
i∈Su+1\Su

di ≤ c, (9)

i /∈ Su+1 =⇒ i′ /∈ Su+1 ∀(i, i′) ∈ A. (10)

Any sequence of transitions taken from the initial state S = ∅ to the final state S = V
is a solution for the problem. The optimal solution is defined by the shortest sequence of
transitions between these two states.

To use the DP formulation to solve the IBT-ALBP, it is necessary to modify the transi-
tions. Transitions must verify that incompatible tasks are not assigned in the same station.
Thus, for a transition to exist between Su and Su+1 in addition to conditions (9) and (10),
(11) and (12) must hold:

if i /∈ Su ∧ i ∈ Su+1 =⇒ i′ /∈ Su+1 (i, i′) ∈ E, (11)

if i /∈ Su ∧ i′ /∈ Su ∧ i′ ∈ Su+1 =⇒ i /∈ Su+1 (i, i′) ∈ E. (12)

The major drawback of the previous DP formulation is that the number of transitions
and states grows exponentially with the number of tasks. As such, a direct DP approach
is often impractical. To handle these problems, the BDP applies several lower bounds,
reduction techniques, and heuristic rules to reduce the number of states and transitions
that need to be considered in each stage.

The BDP explores the state-space stage by stage, beginning with the initial stage,
composed of a single state S = ∅. The method uses two lists into which the states are
sequentially stored: a first list for the states of the last stage explored and a second list for
the states of the stage under construction. Both lists are allowed to contain a single copy of
each state.

Each state from the first list is removed, and the descending states, those that can
be created from it after a transition, are stored in the second list. Only a subset of the
descending states is generated to reduce the run time of the algorithm. Moreover, after
generating all descending states, the list is subjected to a reduction procedure to remove
the least promising states and then replaces the first list. The process is repeated until a
solution is found or both lists are empty, in which case the algorithm reports the stage in
which the last feasible state was constructed. Algorithm 1 outlines the BDP procedure.

Algorithm 1 requires the instance definition, the cycle time, c, and the desired number
of the stations, m, as inputs and two parameters, w and t that are used to control the
behaviour of the enumerate and reduce procedures. The first parameter w is the maximum

Mathematics 2021, 9, 2157 9 of 19

number of states that the algorithm is allowed to maintain from one stage to the following.
The second parameter t is the maximum number of transitions to develop for each state.
These procedures are briefly described below.

Algorithm 1 Outline of the BDP procedure.
Input: Parameters w, t, c, and m, and instance definition
1: Initialisation, stage← 0, States[stage]← {∅}, endCondition← False
2: repeat
3: stage← stage + 1
4: for state ∈ States[stage− 1] do
5: States[stage]← States[stage] ∪ enumerate(state, c, t)
6: if ∃state ∈ States[Statage] | state = V then
7: endCondition← True . Solution found
8: States[stage]← reduce(States[stage], w, m)
9: if States[stage] = {∅} then

10: endCondition← True . no solution found
11: until endCondition = True

The enumerate procedure takes a state and enumerates every feasible task assignment
for the station stage. The procedure returns the t “best” assignments enumerated (those
with minimum idle time), breaking any possible ties in favour of those generated first. The
above rule makes it possible to stop the enumeration when t assignments with zero idle
time have been generated.

The enumerate procedure is implemented using an enumeration method reminiscent
of the Hoffmann heuristic [43], which is adapted for the IBT-ALBP. To further reduce the
enumeration effort, tasks whose latest feasible station, li, corresponds to the stage under
construction are pre-assigned. This rule was not present in the original proposal to solve the
SALBP-1 [31], and it reduces the computing time required by the method. In addition, note
that enumerating will return a void set of assignments if the total duration of unassigned
tasks with li = stage is greater than the cycle time or li = stage holds for two unassigned
incompatible tasks.

The efficiency of the enumerate procedure depends on the order of the tasks. To
increase the overall efficiency, the tasks are reordered so that (1) successors always appear
after their predecessors, (2) tasks have a non-decreasing earliest station (ei) order, and
(3) if there is a tie in the previous rules, the task with a greater processing time appears
first on the list. This ordering was previously proposed by several authors [8,31]. Note
that different orderings might provide different solutions (due to the tie-breaking rule
among states with the same idle time). This property is used in one of the hybrid methods
proposed in the computational experience for comparison purposes.

The reduce procedure uses bounds LB1, LB3, and LBIBT to prune the list by eliminating
the states that report a lower bound on the required stations greater than m. Next, the
procedure orders the remaining states in non-decreasing total idle time order and selects
the first w different states or all states if the number of states is less than w. Non-selected
states are discarded. Note that LB4 and the preprocessing rules are only applied during the
initialisation of Algorithm 1.

3. The Genetic Algorithm

A Genetic Algorithm (GA) [44] is a metaheuristic commonly used for solving difficult
optimisation problems. The method is inspired by natural selection and the evolution
of species. GAs are some of the most commonly used metaheuristics for solving ALBPs
(see [45] for a review). According to [3], the adaptation of a GA to a specific ALBP needs
to address two main issues: (1) the encoding of individuals and (2) the definition of an
effective fitness function.

To tackle the first issue, previous methods have used one of the two following approaches:

Mathematics 2021, 9, 2157 10 of 19

• A direct encoding, in which the individuals are represented as vectors containing the
labels of the station to which each task is assigned [46]. Alternatively, individuals can
be represented as groups of tasks for each station [47,48].

• An indirect encoding, in which a secondary method, usually a task-oriented or a
station-oriented constructive scheme, decodes the individual to obtain a solution.
Several indirect encoding mechanisms have been proposed, such as using a sequence
of tasks [49] or a priority value for each task [50].

Both direct and indirect encodings have their advantages and disadvantages. A direct
encoding offers a direct exploration of the solution space, but standard crossover and
mutation operators generate infeasible solutions. The GA will then need to address these
infeasibilities directly, using a recovery operator, or indirectly, by penalising them during
fitness evaluation. In contrast, indirect methods can use problem-specific algorithms to
decode individuals, but the mapping between individuals and solutions is not unique,
and, as such, several different encodings may lead to the same solution. Overall, indirect
methods appear to offer better solutions for ALBPs (see [51,52] for indirect methods applied
to some GALBPs).

The second issue, namely, the definition of a fitness function, revolves around the
relationship between the objective and fitness functions. A GA needs a good fitness function
to lead the exploration to promising areas of the solution space, but the objective functions
of some ALBPs, particularly those with type-1 objectives, are not able to provide such an
indication. This has led to the use of indirect fitness functions, such as using the imbalance
of station loads [49,53].

For type-2 problems, the objective can be directly linked to fitness. While this direct
relation is clearly advantageous, it may come at the price of wasted computation time. Most
reformulation approaches [51,52], evaluate each individual using a greedy-like heuristic
in combination with a lower- or upper-bound reformulation method, leading fitness
evaluation to solve for trial cycle times that cannot improve the best-known solution. This
may not be an issue when the evaluation procedure is a greedy-like heuristic, but, in our
proposal, it needs to be addressed because each trial is solved using a BDP, which is a
computing-intensive task. As such, an indirect objective function is more desirable than a
direct one.

The proposed hybrid GA offers a novel approach to these two issues and uses simple
methods to initialise, cross, and mutate the individuals. The method uses an indirect encod-
ing method based on representing individuals as instances of the IBT-ALBP. Individuals
are decoded using the BDP, but—to avoid the drawbacks of a direct fitness evaluation—a
secondary function is used. This function measures the relative difficulty of the BDP in
finding an improved solution.

The rest of the section is divided into four subsections. Section 3.1 is devoted to the
encoding and the description of the procedure used to initialise individuals. Section 3.2
studies fitness evaluation and describes the reformulation method in which the hybrid
GA is integrated. Section 3.3 presents the genetic operators not described in any previous
subsection and introduces the parallelisation approach. Lastly, Section 3.4 gives an outline
of the proposed method.

3.1. Representation Scheme and Initialisation

Indirect encoding methods explore a different solution space than direct methods.
While both try to obtain good solutions to the problem, indirect methods search the best
input data for a secondary search method that is then responsible for offering a solution to
the problem. In our case, the secondary search method is the BDP proposed in Section 2.3,
and each individual represents an IBT-ALBP instance. An individual will have a good
fitness value (see Section 3.2) if the modified solution space created by the corresponding
IBT-ALBP instance leads the BDP away from previously explored local optima and towards
improved solutions.

Mathematics 2021, 9, 2157 11 of 19

Each individual is represented using a list of pairs of incompatible tasks that define
the edges of graph G′(V, E). To use the reversibility property, each individual also contains
a binary value that defines the direction of the arcs of the precedence graph G(V, A).

The list has a fixed length, equal to l, which is a parameter of the algorithm. Each
pair contains two integers to identify the incompatible tasks. The binary value associated
with the direction is equal to 0 if the original precedence graph should be used and 1 if the
reverse is preferred.

Note that some of these incompatibilities may be irrelevant (e.g., a pair of tasks may
already have an implicit incompatibility), and, as such, l should be seen as a maximum
rather than the actual number of pairs added to the original instance. This effect is de-
liberately accepted to allow individuals with a different number of incompatibility pairs
to exist within a single population, while keeping an upper limit to avoid an excessive
perturbation of the original solution space.

Individuals of the initial population are randomly constructed as follows: for each
incompatibility pair from 1 to l, randomly select (with even probability) two different tasks
to form the pair. Note that repeated pairs are accepted. The value associated with the
direction is randomly set to 0 or 1 with even probability.

3.2. Reformulation Method and Fitness Evaluation

A commonly used technique to embed the reformulation method within an evolu-
tionary algorithm is to use it within fitness evaluation [17,51,52,54]. In such a case, the
evaluation of an individual requires the exploration of the range of feasible cycle times, by
means of a lower bound, upper bound, or binary search method, among others [8], using
the decoding scheme as the evaluation method of each trial cycle time.

The main drawback of this technique is that it requires the resolution of several
trial type-1 instances in each evaluation, some of which are only intended to provide a
fitness value.

In contrast, in our proposal, the GA is embedded into the reformulation method. The
new reformulation is divided into two phases. The first phase uses a binary search method
to obtain an initial cycle time, whereas the second phase uses the GA in conjunction with
the BDP to find improved solutions.

The first phase initially obtains a lower bound, c, and an upper bound, c, on the cycle
time using (13) and (14), respectively

c = ∑i∈V di
m

, (13)

c = ∑
i∈V

di. (14)

The interval [c, c] of candidate cycle times is then explored using a binary search
method in conjunction with the BDP proposed in Section 2.3. Note that (1) the original
instance, with no incompatibilities between tasks, is solved during this phase; and (2) the
BDP attempts to solve both the direct and reverse instance before marking a trial cycle time
as unfeasible.

In the second phase, the hybrid GA tries to improve the best-known solution using
an upper bound method. During fitness evaluation, the BDP tries to solve the IBT-ALBP
instance coded in the individual using a cycle time one unit smaller than the best-known
cycle time. If the BDP finds a feasible solution, the current best-known cycle time is
updated, and the BDP is executed with a new cycle time. Fitness evaluation stops when the
BDP is not able to find a feasible solution. At this point, the fitness of the individual is set
to the last station for which the BDP was able to generate a partial assignment. The value
is an indication of the difficulty the BDP encounters in finding an improving solution.

The main advantage of the approach is that it reduces the run time devoted to fitness
evaluation, which is the most time-consuming element of the algorithm, at the price of
losing the direct relationship between the objective function and fitness value.

Mathematics 2021, 9, 2157 12 of 19

Note that other similar indirect fitness functions are possible. Some of them were
tested, such as counting the maximum number of tasks assigned to any partial solution or
the total duration of tasks assigned to any partial solution, but they were deemed to be
inferior in terms of solution quality to the fitness function used in the final implementation.

In addition, note that the fitness of different individuals may come from the evaluation
of different trial cycle times (take the extreme case of an individual improving the best-
known cycle time; once inserted into the population, it is the only individual evaluated with
the new sought-after cycle time). While this behaviour appears to be counter-productive,
our preliminary tests showed that this was not the case and that any method oriented to
favour individuals who improved the best-known solution provoked an undesired level
of elitism.

3.3. Genetic Operations and Parallelisation Scheme

In addition to the representation scheme and the initialisation and evaluation method
of the individuals, an implementation of a GA needs to define a selection, crossover,
mutation, and replacement operator and a stopping criterion. This subsection addresses
the description of each of these elements and the parallelisation technique proposed to
make use of the multi-core architecture of current commodity computers.

The selection operator is based on a binary tournament. To select each parent, two
candidates from the current population are randomly chosen, and the better fit becomes
the parent.

Two parents always produce a child using the crossover operator (i.e., crossover
probability equals 1). The crossover randomly chooses characteristics from the parents.
In this case, for each pair in the list of incompatibilities, from 1 to l, the operator selects
(with even probability) the corresponding incompatibility pair from one of the parents.
The direction of the precedence constraint is also evenly chosen between the directions
coded in the parents.

The mutation operator uses a fixed mutation rate to diversify the search. For each
incompatibility pair, the pair mutates with probability mp, where mp is a parameter of the
algorithm. In the case of mutation, a new pair is generated by randomly selecting (with
even probability) two different tasks to form a new pair that is substituted for the previous
one. The direction is also subject to mutation with probability mp, and, if it mutates, the
direction is reversed.

The child obtained after crossover and mutation is evaluated and is inserted in the
population by replacing a randomly chosen member. The replacement operator also uses
a binary tournament. Two candidates from the current population are chosen with even
probabilities, and the worst fit candidate (lowest fitness value) is replaced.

The described GA corresponds to a steady-state GA in which each iteration only
alters a subset of the total population. This scheme leads to an easy parallelisation using a
master–slave model [55]. The implementation creates a thread for each available processor
in the computer, and each thread works concurrently on the same population. Once the
population has been initialised, each thread applies the selection, crossover, mutation,
evaluation, and replacement operators concurrently until the stopping criterion is met. The
stopping criterion used in the final implementation is a run time (CPU time) limit.

The proposed parallelisation method can be described as a coarse-grained paralleli-
sation format. This scheme was chosen for two main reasons: (1) the most intensive task
(fitness evaluation) is fully parallelised; and (2) synchronisation between different threads
is only necessary during the selection and replacement operations—to avoid concurrent
reading/writing operations—or to update the best-known solution.

Note that the implemented operators and the parallelisation scheme are simple when
compared with some previous proposals [51,52]. This has been a deliberate decision, to
highlight the importance of the two main contributions of this work: the use of a derived
problem to code the individuals, and the hybridisation of the GA with a state-of-the-art
technique to solve the type-1 problem.

Mathematics 2021, 9, 2157 13 of 19

3.4. Overall Structure of the Genetic Algorithm

Algorithm 2 provides an outline of the proposed approach. The first step, line 1, is
to find an initial feasible solution to the SALBP-2 using Algorithm 1 embedded within a
binary search. Then, the population is initialised as IBT-ALBP instances with l random
incompatibilities and evaluated using the proposed decoding scheme; see lines 2–4. If
an improving solution for the SALBP-2 is found during evaluation, line 4, the best found
solution is updated.

After initialization, the algorithm enters its main loop, lines 5–10, where the genetic
algorithm operators are performed in parallel. When the total CPU time is reached, the
algorithm ends and reports the best found solution for the SALBP-2.

Algorithm 2 Outline of the complete procedure.
Input: Parameters m, w, t, m, population Size, mp, time limit, l, and instance definition
1: Find an initial c, see Section 3.2
2: for p:=1...populationSize do . Initialize population
3: Create individual and add it to the population, see Section 3.1
4: Evaluate the fitness of the individual using Algorithm 1, see Section 3.2
5: repeat . Steps performed in parallel
6: Select parents, see Section 3.3
7: Perform crossover, see Section 3.3
8: Apply mutation, see Section 3.3
9: Evaluate new individual

10: until time limit is reached
11: Return best found solution for the SALBP-2.

4. Computational Experiments

To assess the quality of the proposed method, the algorithm was programmed in C++
and compiled using version 4.6.1 of the GNU GCC compiler. An Intel Core i5 3.2 GHz
processor with four cores and 4 GB of RAM running the Linux operating system was used
for the experiments. In addition to the proposed method, three other algorithms were
implemented for comparison purposes:

1. A reformulation method that uses a binary search to investigate the interval of cycle
times as in [8]. Each tentative cycle time is tested using the original BDP [31] for the
SALBP-1. The BDP parameters are set to w = 1600 and t = 400, the largest values
tested to solve SALBP-1 instances.

2. A random key-encoded hybrid GA version of the algorithm whose encoding of indi-
viduals is similar to the proposal found in [50]. The procedure is also a reformulation
method that uses the same approach proposed in Section 3. The GA encodes each
individual using a random valued weight for each task of the instance. In [50], these
weights were decoded using a station-oriented constructive procedure. In our pro-
posal, the weights substitute the criterion used to reorder tasks in the BDP (a higher
weight indicates that the task should appear first in the ordering), which is then used
during the fitness evaluation. The modified GA uses the initialisation, crossover, and
mutation operators proposed in [50] to handle the weight encoding. In addition to
the weight information, each individual also encodes a binary value to determine the
direction of the precedence graph given to the BDP. The precedence graph part of
each individual uses the operators defined in Section 3.3.

3. A random sampling method. The reformulation approach proposed in Section 3.2 is
used. The second phase—the upper-bound search phase—is not conducted using a
GA but rather by iteratively creating new IBT-ALBP instances using the procedure
proposed in Section 3.1 and solving them using the BDP.

For the remainder of the paper, each algorithm is identified by the following acronyms:
BS-BDP represents the binary search exploration of cycle time intervals using the original
BDP, RK-GA represents the random key-based genetic algorithm, IBT-RS represents the

Mathematics 2021, 9, 2157 14 of 19

random sampling method, and IBT-GA represents the genetic algorithm described in
Section 3.

Note that each of these methods attempts to verify the efficiency of the components
of the final method. BS-BDP studies the efficiency of the original BDP, RK-GA studies the
efficiency of the BDP when diversification is introduced without modifying the original
instance, IBT-RS studies the behaviour of the proposed method to diversify the solutions
provided by the BDP, and, lastly, IBT-GA studies the combined behaviour of each compo-
nent of the proposed algorithm.

The computational study was carried out using the SALBP-2 benchmark set obtained
at www.assembly-line-balancing.de. The instance set is composed of 302 instances, with a
number of tasks ranging from 29 to 297. As the performance of each algorithm depends on
several parameters, a number of preliminary tests were performed to determine the best
performing set of values. After optimisation by hand, the selected values are shown in
Table 1, as they were able to produce the best results.

Table 1. Parameters used by the proposed algorithms. Population size, mutation probability (mp),
number of incompatibilities introduced on the original instance (l), window width (w), maximum
number of transitions (t), and time limit are given.

Population Size = 100 w = 500 l = 20
Time limit = 3600 s mp = 0.03 t = 50

Algorithm BS-BDP, as a deterministic algorithm, was run once without time limit.
Alternatively, the rest of the algorithms were run 10 times for each of the 302 instances of
the set, with a CPU time limit of 3600 s. Tables 2 and 3 report the results obtained by each
of the algorithms.

Table 2 presents a summary of the results for each algorithm and the combined results
of any previous method as reported in the benchmark set (row Literature). Two values are
reported: the first value (column # Best) is the number of instances in which the best-known
solution is obtained by the method; the second value (column # Improves) reports the
number of instances in which the algorithm improved the previously best-known solution.

The numbers of best-known and improved solutions demonstrate the quality of
the proposed hybrid algorithm and the relative importance of each component of the
algorithm. Note that the number of best solutions reported in the literature is equal to
294 instances (out of 302), meaning that the proposed algorithm has improved eight of
the previously best-known solutions (see Appendix A for a list of the instances and their
improved solutions).

Table 2. Results of the procedures applied to the instance set (composed of 302 instances). For each
procedure, the number of instances in which the algorithm provides the best solution (column #Best)
or improves upon the best-known solution in the literature (column #Improves) are reported.

Procedure # Best # Improves

Literature 294
BS-BDP 293 1
RK-GA 296 6
RS-BDP 296 5
IBT-GA 301 8

Mathematics 2021, 9, 2157 15 of 19

Table 3. Individual results of the algorithms for the hard instances of the reference set (instances
in which the best solution of any of the proposed methods in any of its executions differs from
the previous best-known solution in the literature). For each instance, defined by graph name and
number of stations (m), the solutions found in the literature (Lit), and the solutions provided by
each of the proposed methods are reported. The minimum and average value out of 10 executions
are reported for the RK-GA, RS-BDP, and IBT-GA methods. Best-known solutions are indicated
in boldface.

BS- RK-GA (3600 s) RS-BDP (3600 s) IBT-GA (3600 s)
Graph(m) Lit. BDP Min. Avg. Min. Avg. Min. Avg.

Arcus2(19) 7922 7922 7921 7921.5 7921 7921.5 7921 7921.3
Arcus2(20) 7524 7523 7523 7523.2 7523 7523 7523 7523.1
Arcus2(21) 7187 7186 7184 7185.4 7184 7185.5 7184 7185.1
Arcus2(22) 6856 6856 6859 6859 6858 6858 6850 6854.1
Arcus2(23) 6560 6560 6559 6564 6560 6562.7 6559 6561.4
Arcus2(24) 6282 6290 6286 6295 6286 6292.2 6280 6280.6
Arcus2(25) 6101 6118 6108 6110.1 6105 6109.6 6096 6096.5
Arcus2(26) 5855 5860 5864 5867.4 5854 5857.4 5851 5851.5

Mukherje(20) 220 220 221 221 221 221 221 221
Barthol2(50) 85 86 85 85 85 85.7 85 85.5

The results of the BS-BDP confirm the applicability of the reformulation methods to
efficiently solve the SALBP-2. BS-BDP is able to obtain a similar number of best-known
solutions as the combination of any previous method reported in the literature, and it
is able to find a new best-known solution. The results also demonstrate the limitations
faced by this method, as discussed in Section 1. While the BDP was able to obtain the
best-known solution for 268 instances (out of 269) for the SALBP-1 set [31], it does not
obtain the best solution for nine instances of the SALBP-2 set. In addition, note that the
parameters (w = 1600, t = 400) used in the computational experience were chosen to obtain
good-quality solutions, disregarding possible high run times, as, for some instances, the
BS-BDP requires several hours to obtain the reported solution.

Combining the BDP with a source of diversification makes it possible to partially
overcome the perceived shortcoming. RK-GA diversifies the BDP by studying alternative
task orderings rather than increasing the width and number of transitions of the DP.
The hybrid outperforms the basic BDP and is able to improve the previously best-known
solution for six of the instances. This improvement shows the importance of diversifying the
states constructed during the enumerate step of the BDP, as opposed to the intensification
provided by increasing the value of its parameters. Combining the BDP with a source of
diversification makes it possible to partially overcome the perceived shortcoming. RK-
GA diversifies the BDP by studying alternative task orderings rather than increasing
the width and number of transitions of the DP. The hybrid outperforms the basic BDP
and is able to improve the previously best-known solution for six of the instances. This
improvement shows the importance of diversifying the states constructed during the
enumerate step of the BDP, as opposed to the intensification provided by increasing the
value of its parameters.

The results of RK-GA are similar to the results of RS-BDP even if no algorithm directs
the introduction of diversity. This shows the efficiency of diversifying the search by
constraining the solution space using modified IBT-ALBP instances in contrast to altering
the behaviour of the BDP.

The final procedure, IBT-GA, outperforms all of the previously discussed meth-
ods, and clearly improves the results from the literature, providing the best-known so-
lution for 301 out of the 302 instances in the benchmark set and providing eight new
best-known solutions.

Table 3 provides individual results for the instances in which the best solution of any
of the proposed methods in any of its executions differs from the previous best-known

Mathematics 2021, 9, 2157 16 of 19

solution in the literature. For each instance, denoted by the graph name and the number of
stations, the solution found in the literature (column Lit.) and the solutions provided by
the proposed algorithms (BS-BDP, RK-GA, RS-BDP, and IBT-GA) are reported. Minimum,
average, and maximum values (columns min., av., and max., respectively) for the ten
executions of algorithms RK-GA, RS-BDP, and IBT-GA are provided. Best-known solutions
are indicated in boldface.

The results for the individual instances also show the quality of the IBT-GA. The
average solution outperforms the results from the literature, and even its worst-case
performance is comparable to the best previously known solutions. The results lead us to
conclude that IBT-GA outperforms previously reported approaches for the problem if low
run times (solutions obtained within seconds) is not a critical concern.

The results for individual instances also show that no single method dominates the
other methods. Although the IBT-GA provides most of the best-known solutions, there is a
case, the Mukherje graph with 20 stations, in which the original BDP algorithm outperforms
the solutions given by the procedure.

The main weakness of the proposed method is its run time, but good results are also
obtained with smaller time limits. For a time limit of 600 s, IBT-GA was able to obtain
the best solution for 291 instances in every one of the 10 runs. In addition, note that 261
instances were optimally solved during phase 1 of the proposed method. Overall, we can
conclude the following: (1) the considerable run times are only required for the hardest
instances of the set, and (2) the proposed GA offers a slow convergence rate and a degree
of diversification, which are desirable characteristics to hybridise with the intensification
provided by the BDP.

5. Discussion and Conclusions

In this work, we have proposed a hybrid genetic algorithm for the simple assembly
line balancing problem with a fixed number of stations, the SALBP-2. The experimental
evaluation of the algorithm shows the quality of the proposed method, which is capable of
providing eight new best-known solutions for the benchmark set used in the literature.

The hybrid GA uses a Dynamic Programming-based heuristic, the BDP procedure,
to evaluate the individuals. These individuals represent instances of a modified problem
rather than solutions to the original SALPB-2. The modified problem corresponds to the
assembly line balancing problem with incompatibilities between tasks. This study also
contributes to the state of the art of this problem by developing a new lower bound and
several reduction rules for the balancing problem with incompatibilities between tasks.

While the proposed operators are simple, the GA part of the hybrid provides enough
diversification to drive the BDP away from local optimality.

The main weakness of the proposed algorithm is its run time; thus, it is only applicable
if enough time is available or the user accepts a possible deterioration in the quality of the
solution. However, note that balancing assembly lines is not a time-critical application, as
it is not a daily decision, and thus the run time required by the proposed method is usually
available. Moreover, the solutions obtained with reduced run times are still competitive
with those found in the literature.

We would also like to point out the applicability of similar-based methods for other
line balancing problems, including multicriteria problems, where a high-performing con-
structive method may be available.

Author Contributions: Conceptualization, E.Á.-M. and J.P.; methodology, E.Á.-M. and J.P.; software,
J.P. and M.V.; validation, J.P., H.T.-M. and M.V.; formal analysis, E.Á.-M. and J.P.; investigation,
E.Á.-M. and J.P.; resources, J.P.; data curation, E.Á.-M.; writing—original draft preparation, J.P.,
H.T.-M., and M.V.; writing—review and editing, J.P.; visualization, E.Á.-M., J.P., H.T.-M. and M.V.;
supervision, E.Á.-M., J.P., H.T.-M. and M.V.; funding acquisition, E.Á.-M. and J.P. All authors have
read and agreed to the published version of the manuscript.

Funding: E. Álvarez-Miranda acknowledges the support of Chilean National Agency for Research
and Development (ANID) through the grant FONDECYT N.1191624 “Assembly line balancing for

Mathematics 2021, 9, 2157 17 of 19

industry 4.0” and through the Complex Engineering Systems Institute ANID PIA/BASAL AFB180003.
J.P. acknowledges the support of ANID through the grant FONDECYT No.1191624 “Assembly line
balancing for industry 4.0”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Dataset available at http://www.assembly-line-balancing.de (accessed
on 2 September 2021) or upon request to the authors.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Improved Solutions

List of new best-known solutions: The instances are identified by graph name and
number of workstations m. The best cycle time c is reported, and the task assignments
are reported as a list of n integers in which the ith position indicates the workstation
assignment of task i.

Graph: Arcus2, m = 19, c = 7921. Task Assignment = {1, 1, 1, 1, 1, 8, 4, 4, 1, 2, 2, 2, 5, 3,
2, 2, 5, 2, 6, 7, 5, 6, 3, 8, 4, 4, 2, 6, 3, 10, 6, 3, 14, 5, 3, 7, 4, 11, 18, 18, 8, 6, 4, 12, 7, 15, 7, 7, 11, 18,
8, 19, 14, 8, 9, 11, 9, 7, 14, 8, 9, 10, 11, 12, 9, 7, 15, 11, 10, 9, 10, 12, 12, 12, 13, 13, 13, 14, 16, 15,
15, 15, 15, 14, 16, 15, 15, 19, 16, 19, 16, 17, 16, 17, 17, 17, 18, 17, 19, 19, 18, 19, 17, 17, 19, 19, 19,
17, 19, 18,19}.

Graph: Arcus2, m = 20, c = 7523. Task Assignment = {1, 1, 1, 1, 3, 2, 1, 2, 1, 2, 2, 3, 6, 3,
8, 3, 3, 3, 5, 7, 9, 3, 4, 11, 3, 18, 6, 6, 4, 8, 10, 7, 5, 4, 7, 6, 4, 9, 19, 20, 7, 5, 8, 13, 8, 9, 6, 8, 10, 16,
10, 11, 14, 10, 8, 10, 6, 8, 12, 7, 8, 9, 20, 12, 11, 8, 13, 20, 13, 11, 11, 12, 13, 13, 14, 13, 14, 15, 14,
15, 14, 18, 15, 15, 16, 20, 14, 16, 17, 16, 16, 16, 16, 16, 17, 18, 17, 17, 20, 19, 18, 18, 19, 20, 18, 18,
19, 19, 20, 19, 20}.

Graph: Arcus2, m = 21, c = 7184. Task Assignment = {1, 1, 1, 1, 1, 2, 1, 11, 5, 2, 2, 2, 16,
3, 13, 4, 2, 4, 2, 5, 3, 3, 4, 5, 4, 21, 4, 4, 6, 2, 3, 6, 5, 5, 4, 8, 6, 2, 6, 7, 9, 7, 4, 12, 7, 8, 8, 11, 15, 15,
18, 10, 11, 8, 8, 11, 9, 10, 14, 12, 9, 15, 13, 12, 17, 21, 14, 20, 9, 10, 16, 12, 10, 13, 11, 14, 17, 13,
14, 18, 15, 21, 17, 16, 15, 19, 15, 19, 17, 16, 18, 18, 19, 18, 19, 20, 20, 19, 21, 21, 20, 20, 20, 21, 20,
20, 20, 20, 21, 20, 21}.

Graph: Arcus2, m = 22, c = 6850. Task Assignment = {1, 1, 1, 1, 1, 4, 1, 2, 2, 2, 3, 2, 7, 3,
3, 6, 3, 4, 5, 7, 21, 6, 4, 10, 5, 6, 6, 5, 4, 6, 16, 4, 21, 6, 6, 5, 8, 6, 22, 22, 5, 7, 6, 7, 8, 9, 8, 10, 12, 11,
9, 15, 19, 10, 8, 9, 8, 16, 10, 11, 10, 14, 9, 12, 12, 16, 11, 11, 10, 11, 17, 13, 12, 13, 12, 13, 15, 15,
13, 14, 17, 14, 15, 16, 14, 17, 18, 17, 17, 18, 18, 19, 18, 19, 19, 19, 20, 20, 20, 21, 20, 20, 20, 19, 20,
21, 21, 21, 22, 22, 22}.

Graph: Arcus2, m = 23, c = 6559. Task Assignment = {1, 1, 1, 1, 6, 2, 1, 4, 8, 2, 2, 2, 7, 3,
4, 2, 2, 2, 3, 9, 5, 10, 3, 4, 5, 6, 4, 2, 4, 3, 10, 9, 4, 6, 5, 2, 6, 3, 23, 23, 10, 7, 7, 6, 6, 12, 8, 10, 7, 11,
9, 18, 12, 10, 8, 9, 11, 17, 11, 14, 11, 17, 22, 13, 22, 19, 13, 18, 11, 12, 18, 13, 12, 14, 12, 15, 16, 14,
13, 15, 16, 16, 18, 14, 15, 16, 17, 18, 15, 17, 19, 20, 19, 19, 20, 21, 20, 21, 21, 21, 21, 20, 21, 21, 22,
20, 22, 21, 20, 21, 23}.

Graph: Arcus2, m = 24, c = 6280. Task Assignment = {1, 1, 1, 1, 3, 2, 7, 9, 4, 2, 2, 2, 7, 3,
14, 3, 5, 7, 6, 11, 22, 4, 3, 6, 4, 17, 4, 5, 8, 6, 11, 5, 4, 5, 10, 6, 8, 10, 16, 23, 10, 6, 10, 13, 9, 16, 7,
11, 10, 13, 17, 19, 12, 8, 7, 12, 19, 8, 8, 17, 10, 9, 15, 13, 22, 8, 11, 23, 10, 11, 13, 14, 12, 14, 14, 15,
18, 16, 17, 19, 17, 24, 18, 19, 20, 24, 18, 24, 24, 19, 20, 20, 21, 21, 21, 22, 22, 21, 23, 23, 22, 24, 23,
23, 24, 24, 24, 23, 24, 23, 24}.

Graph: Arcus2, m = 25, c = 6096. Task Assignment = {1, 1, 1, 2, 8, 4, 2, 5, 4, 2, 2, 3, 9, 3,
3, 3, 4, 5, 5, 7, 15, 4, 5, 6, 4, 22, 6, 11, 6, 6, 6, 9, 22, 6, 6, 13, 8, 8, 23, 25, 11, 7, 6, 17, 9, 12, 8, 9, 11,
19, 12, 19, 12, 9, 10, 10, 9, 13, 11, 10, 12, 13, 24, 12, 21, 16, 12, 11, 13, 14, 19, 14, 15, 14, 15, 16,
18, 16, 16, 17, 17, 24, 19, 17, 18, 18, 19, 18, 18, 20, 20, 21, 20, 21, 21, 24, 23, 22, 25, 22, 24, 24, 22,
24, 25, 24, 24, 23, 25, 23, 25}.

Graph: Arcus2, m = 26, c = 5851. Task Assignment = {1, 1, 1, 2, 2, 2, 2, 2, 5, 3, 3, 3, 3, 4,
23, 6, 3, 4, 5, 7, 17, 5, 9, 5, 4, 23, 6, 4, 5, 7, 13, 11, 25, 5, 9, 4, 5, 8, 24, 25, 11, 6, 9, 6, 6, 9, 7, 10, 10,
6, 11, 14, 15, 10, 7, 8, 8, 19, 12, 14, 9, 10, 25, 12, 11, 23, 13, 14, 12, 13, 18, 15, 14, 16, 14, 16, 15,

http://www.assembly-line-balancing.de

Mathematics 2021, 9, 2157 18 of 19

16, 16, 19, 17, 26, 18, 19, 18, 22, 17, 21, 22, 17, 20, 21, 20, 21, 21, 22, 22, 22, 22, 26, 26, 23, 24, 23,
26, 25, 24, 24, 26, 24, 26}.

References
1. Salveson, M.E. The assembly line balancing problem. J. Ind. Eng. 1954, 6, 18–25.
2. Battaïa, O.; Dolgui, A. A taxonomy of line balancing problems and their solution approaches. Int. J. Prod. Econ. 2013, 142, 259–277.

[CrossRef]
3. Scholl, A.; Becker, C. State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. Eur. J. Oper. Res.

2006, 168, 666–693. [CrossRef]
4. Becker, C.; Scholl, A. A survey on problems and methods in generalized assembly line balancing. Eur. J. Oper. Res. 2006, 168,

694–715. [CrossRef]
5. Baybars, I. A survey of exact algorithms for the simple assembly line balancing problem. Manag. Sci. 1986, 32, 909–932. [CrossRef]
6. Li, Y. The type-ii assembly line rebalancing problem considering stochastic task learning. Int. J. Prod. Res. 2017, 55, 7334–7355.

[CrossRef]
7. Sancı, E.; Azizoǧlu, M. Rebalancing the assembly lines: Exact solution approaches. Int. J. Prod. Res. 2017, 55, 5991–6010. [CrossRef]
8. Scholl, A. Balancing and Sequencing of Assembly Lines, 2nd ed.; Springer-Verlag: Berlin/Heidelberg, Germany, 1999.
9. Scholl, A.; Voss, S. Simple assembly line balancing—Heuristic approaches. J. Heur. 1996, 2, 217–244. [CrossRef]
10. Ugurdag, H.F.; Rachamadugu, R.; Papachristou, C.A. Designing paced assembly lines with fixed number of stations. Eur. J. Oper.

Res. 1997, 102, 488–501. [CrossRef]
11. Roshani, A.; Paolucci, M.; Giglio, D.; Tonelli, F. A hybrid adaptive variable neighbourhood search approach for multi-sided

assembly line balancing problem to minimise the cycle time. Int. J. Prod. Res. 2021, 59, 3696–3721. [CrossRef]
12. Lopes, T.C.; Michels, A.S.; Lüders, R.; Magatão, L. A simheuristic approach for throughput maximization of asynchronous

buffered stochastic mixed-model assembly lines. Coput. Oper. Res. 2020, 115, 104863.
13. Klein, R.; Scholl, A. Maximizing the production rate in simple assembly line balancing—A branch and bound procedure. Eur. J.

Oper. Res. 1996, 91, 367–385. [CrossRef]
14. Pınarbaşı, M.; Alakaş, H.M. Balancing stochastic type-II assembly lines: Chance-constrained mixed integer and constraint

programming models. Eng. Opt. 2020, 52, 2146–2163. [CrossRef]
15. Abidin Çil, Z.; Kizilay, D. Constraint programming model for multi-manned assembly line balancing problem. Comput. Oper. Res.

2020, 124, 105069. [CrossRef]
16. Kilincci, O. A Petri net-based heuristic for simple assembly line balancing problem of type 2. Int. J. Adv. Manuf. Technol. 2010, 46,

329–338. [CrossRef]
17. Nearchou, A.C. Balancing large assembly lines by a new heuristic based on differential evolution method. Int. J. Adv. Manuf.

Technol. 2007, 34, 1016–1029. [CrossRef]
18. Blum, C. Iterative beam search for simple assembly line balancing with a fixed number of work stations. Stat. Oper. Res. Trans.

2011, 35, 145–164.
19. Li, Z.; Janardhanan, M.N.; Ponnambalam, S.G. Cost-oriented robotic assembly line balancing problem with setup times: Multi-

objective algorithms. J. Intell. Manuf. 2021, 32, 989–1007. [CrossRef]
20. Zhang, H.; Yan, Q.; Liu, Y.; Jiang, Z. An integer-coded differential evolution algorithm for simple assembly line balancing problem

of type 2. Assem. Autom. 2016, 36, 246–261. [CrossRef]
21. Fang, Y.; Ming, H.; Li, M.; Liu, Q.; Pham, D.T. Multi-objective evolutionary simulated annealing optimisation for mixed-model

multi-robotic disassembly line balancing with interval processing time. Int. J. Prod. Res. 2020, 58, 846–862. [CrossRef]
22. Meng, K.; Tang, Q.; Zhang, Z.; Qian, X. An Improved Lexicographical Whale Optimization Algorithm for the Type-II Assembly

Line Balancing Problem Considering Preventive Maintenance Scenarios. IEEE Access 2020, 8, 30421–30435. [CrossRef]
23. Cerqueus, A.; Delorme, X. A branch-and-bound method for the bi-objective simple line assembly balancing problem. Int. J. Prod.

Res. 2019, 57, 5640–5659. [CrossRef]
24. Li, Y.; Wang, H.; Yang, Z. Type II assembly line balancing problem with multi-operators. Neural Comput. Appl. 2019, 31, 347–357.
25. Cao, Y.; Li, Y.; Liu, Q.; Zhang, J. An Optimization Model for Assembly Line Balancing Problem with Uncertain Cycle Time. Math.

Probl. Eng. 2020, 2020, 2785278. [CrossRef]
26. Bukchin, Y.; Raviv, T. Constraint programming for solving various assembly line balancing problems. Omega 2018, 78, 57–68.

[CrossRef]
27. Borba, L.; Ritt, M.; Miralles, C. Exact and heuristic methods for solving the Robotic Assembly Line Balancing Problem. Eur. J.

Oper. Res. 2018, 270, 146–156. [CrossRef]
28. Janardhanan, M.N.; Li, Z.; Bocewicz, G.; Banaszak, Z.; Nielsen, P. Metaheuristic algorithms for balancing robotic assembly lines

with sequence-dependent robot setup times. Appl. Math. Model. 2019, 65, 256–270. [CrossRef]
29. Pinarbasi, M.; Alakas, H.M.; Yuzukirmizi, M. A constraint programming approach to type-2 assembly line balancing problem

with assignment restrictions. Assem. Autom. 2019, 39, 813–826. [CrossRef]
30. Goldberg, D. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison-Wesley: Reading, MA, USA, 1989.
31. Bautista, J.; Pereira, J. A dynamic programming based heuristic for the assembly line balancing problem. Eur. J. Oper. Res. 2009,

194, 787–794. [CrossRef]

http://doi.org/10.1016/j.ijpe.2012.10.020
http://dx.doi.org/10.1016/j.ejor.2004.07.022
http://dx.doi.org/10.1016/j.ejor.2004.07.023
http://dx.doi.org/10.1287/mnsc.32.8.909
http://dx.doi.org/10.1080/00207543.2017.1346316
http://dx.doi.org/10.1080/00207543.2017.1319583
http://dx.doi.org/10.1007/BF00127358
http://dx.doi.org/10.1016/S0377-2217(96)00248-2
http://dx.doi.org/10.1080/00207543.2020.1749958
http://dx.doi.org/10.1016/0377-2217(95)00047-X
http://dx.doi.org/10.1080/0305215X.2020.1716746
http://dx.doi.org/10.1016/j.cor.2020.105069
http://dx.doi.org/10.1007/s00170-009-2082-z
http://dx.doi.org/10.1007/s00170-006-0655-7
http://dx.doi.org/10.1007/s10845-020-01598-7
http://dx.doi.org/10.1108/AA-11-2015-089
http://dx.doi.org/10.1080/00207543.2019.1602290
http://dx.doi.org/10.1109/ACCESS.2020.2972619
http://dx.doi.org/10.1080/00207543.2018.1539266
http://dx.doi.org/10.1155/2020/2785278
http://dx.doi.org/10.1016/j.omega.2017.06.008
http://dx.doi.org/10.1016/j.ejor.2018.03.011
http://dx.doi.org/10.1016/j.apm.2018.08.016
http://dx.doi.org/10.1108/AA-12-2018-0262
http://dx.doi.org/10.1016/j.ejor.2008.01.016

Mathematics 2021, 9, 2157 19 of 19

32. Scholl, A.; Boysen, N.; Fliedner, M. ABSALOM: Balancing assembly lines with assignment restrictions. Eur. J. Oper. Res. 2010, 200,
688–701. [CrossRef]

33. Boysen, N.; Fliedner, M. A versatile algorithm for assembly line balancing. Eur. J. Oper. Res. 2008, 184, 39–55. [CrossRef]
34. Vilarinho, P.M.; Simaria, A.S. A two-stage heuristic method for balancing mixed- model assembly lines with parallel stations. Int.

J. Prod. Res. 2002, 40, 1405–1420. [CrossRef]
35. Vilarinho, P.M.; Simaria, A.S. ANTBAL: An ant colony optimization algorithm for balancing mixed-model assembly lines with

parallel stations. Int. J. Prod. Res. 2006, 44, 291–303. [CrossRef]
36. Bautista, J.; Pereira, J. Ant algorithms for assembly line balancing. Lect. Notes Comput. Sci. 2002, 2463, 65–75.
37. Lapierre, S.D.; Ruiz, A.B. Balancing assembly lines: An industrial case study. J. Oper. Res. Soc. 2004, 55, 589–597. [CrossRef]
38. Johnson, R.V. Optimally balancing large assembly lines with ‘fable’. Manag. Sci. 1988, 34, 240–253. [CrossRef]
39. Tarjan, R.E. Depth-first search and linear graph algorithms. SIAM J. Comput. 1972, 1, 146–160. [CrossRef]
40. Martello, S.; Toth, P. Knapsack Problems: Algorithms and Computer Implementations; John Wiley & Sons: Hoboken, NJ, USA, 1990.
41. Jackson, J.R. A computing procedure for a line balancing problem. Manag. Sci. 1956, 2, 261–271. [CrossRef]
42. Bautista, J.; Pereira, J. Procedures for the Time and Space constrained Assembly Line Balancing Problem. Eur. J. Oper. Res. 2011,

212, 473–481. [CrossRef]
43. Hoffmann, T.R. Assembly line balancing with a precedence matrix. Manag. Sci. 1963, 9, 551–562. [CrossRef]
44. Holland, J.H. Adaptation in Natural and Artificial Systems; The University of Michigan Press: Ann Arbor, MI, USA, 1975.
45. Tasan, S.O.; Tunali, S. A review of current applications of genetic algorithms in assembly line balancing. J. Intell. Manuf. 2008, 19,

49–69. [CrossRef]
46. Kim, Y.K.; Kim, Y.; Kim, Y.J. Two-sided assembly line balancing: A genetic algorithm approach. Prod. Plan. Control 2000, 11, 44–53.

[CrossRef]
47. Falkenauer, E. A hybrid grouping genetic algorithm for bin packing. J. Heur. 1996, 2, 5–30. [CrossRef]
48. Rekiek, B.; de Lit, P.; Pellichero, F.; Eglise, T.; Fouda, P.; Falkenauer, E.; Delchambre, A.A multiple objective grouping genetic

algorithm for assembly line balancing. J. Intell. Manuf. 2001, 12, 467–485. [CrossRef]
49. Sabuncuoglu, I.; Erel, E.; Tanyer, M. Assembly line balancing using genetic algorithms. J. Intell. Manuf. 2000, 11, 295–310.

[CrossRef]
50. Gonçalves, J.F.; Almeida, J.R. A hybrid genetic algorithm for assembly line balancing. J. Heur. 2002, 8, 629–642. [CrossRef]
51. Gao, J.; Sun, L.; Wang, L.; Gen, M. An efficient approach for type II robotic assembly line balancing problems. Comput. Ind. Eng.

2009, 56, 1065–1080. [CrossRef]
52. Mutlu, O.; Polat, O.; Supciller, A.A. An iterative genetic algorithm for the assembly line worker assignment and balancing

problem of type-II. Comput. Oper. Res. 2013, 40, 418–426. [CrossRef]
53. Bautista, J.; Suárez, R.; Mateo, M.; Companys, R. Local search heuristics for the assembly line balancing problem with incompati-

bilities between tasks. In Proceedings of the 2000 IEEE International Conference on Robotics and Automation, San Francisco, CA,
USA, 24–28 April 2000; pp. 2404–2409.

54. Simaria, A.S.; Vilarinho, P.M. A genetic algorithm based approach to the mixed-model assembly line balancing problem of type II.
Comput. Ind. Eng. 2004, 47, 391–407. [CrossRef]

55. Luque, G.; Alba, E.; Dorronsoro, B. Parallel Genetic Algorithms, In Parallel Metaheuristics; Alba, E., Ed.; Wiley: Hoboken, NJ, USA,
2005; pp. 107–125.

http://dx.doi.org/10.1016/j.ejor.2009.01.049
http://dx.doi.org/10.1016/j.ejor.2006.11.006
http://dx.doi.org/10.1080/00207540110116273
http://dx.doi.org/10.1080/00207540500227612
http://dx.doi.org/10.1057/palgrave.jors.2601708
http://dx.doi.org/10.1287/mnsc.34.2.240
http://dx.doi.org/10.1137/0201010
http://dx.doi.org/10.1287/mnsc.2.3.261
http://dx.doi.org/10.1016/j.ejor.2011.01.052
http://dx.doi.org/10.1287/mnsc.9.4.551
http://dx.doi.org/10.1007/s10845-007-0045-5
http://dx.doi.org/10.1080/095372800232478
http://dx.doi.org/10.1007/BF00226291
http://dx.doi.org/10.1023/A:1012200403940
http://dx.doi.org/10.1023/A:1008923410076
http://dx.doi.org/10.1023/A:1020377910258
http://dx.doi.org/10.1016/j.cie.2008.09.027
http://dx.doi.org/10.1016/j.cor.2012.07.010
http://dx.doi.org/10.1016/j.cie.2004.09.001

	Introduction
	Problem Description
	Review on the Resolution Methods
	Outline of the Proposed Algorithm

	Line Balancing with Incompatibilities between Tasks
	Problem Description
	Bounds and Reduction Rules
	SALBP-1 Lower Bounds
	New Lower Bounds for the IBT-ALBP
	Preprocessing Rules

	Resolution by Means of Bounded Dynamic Programming

	The Genetic Algorithm
	Representation Scheme and Initialisation
	Reformulation Method and Fitness Evaluation
	Genetic Operations and Parallelisation Scheme
	Overall Structure of the Genetic Algorithm

	Computational Experiments
	Discussion and Conclusions
	Improved Solutions
	References

