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Abstract: In our earlier publication we have shown how to compute by iteration a rational number
u2,k in the two-term Machin-like formula for π of the kind π

4 = 2k−1 arctan
(

1
u1,k

)
+ arctan

(
1

u2,k

)
, k ∈

Z, k ≥ 1, where u1,k can be chosen as an integer u1,k =
⌊

ak/
√

2− ak−1
⌋

with nested radicals defined
as ak =

√
2 + ak−1 and a0 = 0. In this work, we report an alternative method for determination of the

integer u1,k. This approach is based on a simple iteration and does not require any irrational (surd)
numbers from the set {ak} in computation of the integer u1,k. Mathematica programs validating
these results are presented.

Keywords: constant π; Machin-like formula; Lehmer’s measure; surd number; Ramanujan’s
nested radical

MSC: 11Y60

1. Introduction

Historically, a computation of decimal digits of π was a big challenge until 1706, when
the English astronomer and mathematician John Machin discovered a two-term formula
for π as given by

π

4
= 4 arctan

(
1
5

)
− arctan

(
1

239

)
, (1)

that is named in his honor now. Using this remarkable formula he first was able to calculate
100 decimal digits of π [1–3]. Nowadays the identities of kind

π

4
=

J

∑
j=1

Aj arctan

(
1
Bj

)
, (2)

where Aj and Bj are rational numbers, are regarded as the Machin-like formulas for
π. Interestingly that some of them, including the original Equation (1), can be proved
geometrically [4,5]. It is very often when in the Machin-like formulas for π the constants
Aj and Bj are both integers [6–8]. The more complete lists of formulas of kind (2) can be
found in the references [9,10] and weblinks provided therein.

The significance of the Machin-like formulas cannot be overestimated as their ap-
plication may be one of the most efficient ways in computing π. Historically, only these
formulas were able to compete with Chudnovsky formula [2,11] to beat the records in
computation of the decimal digits of π. In particular, in 2002, Kanada first computed more
than one trillion digits of π by using the following self-checking pair of the Machin-like
formulas [12]
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π

4
= 44 arctan

(
1

57

)
+ 7 arctan

(
1

239

)
− 12 arctan

(
1

682

)
+ 24 arctan

(
1

12, 943

)
and

π

4
= 12 arctan

(
1
49

)
+ 32 arctan

(
1

57

)
− 5 arctan

(
1

239

)
+ 12 arctan

(
1

110, 443

)
.

Such an achievement made by Kanada shows a colossal potential of the Machin-like
formulas for computation of the decimal digits of π.

As a simplest case one can apply the Maclaurin expansion series for computation of
the arctangent functions in Equation (2)

arctan(x) = x− x3

3
+

x5

5
− x7

7
+ · · · =

∞

∑
n=0

(−1)nx2n+1

2n + 1

and since this equation implies

arctan(x) = x + O
(

x3
)

, (3)

we can conclude that it would be very desirable to have the coefficient Bj as large as
possible by absolute value in order to improve the convergence rate.

Although the Maclaurin expansion series of the arctangent function can be simply
implemented, its application is not optimal. The more efficient way to compute the
arctangent functions in Equation (2) is to use the Euler’s expansion formula [13]

arctan(x) =
∞

∑
n=0

22n(n!)2

(2n + 1)!
x2n+1

(1 + x2)
n+1 .

Alternatively, the following expansion series

arctan(x) = 2
∞

∑
n=1

1
2n− 1

gn(x)
g2

n(x) + h2
n(x)

,

where
g1(x) = 2/x, h1(x) = 1,

gn(x) =
(

1− 4/x2
)

gn−1 + 4hn−1(x)/x,

hn(x) =
(

1− 4/x2
)

hn−1 − 4gn−1(x)/x,

can also be used for more rapid convergence. This formula can be obtained by a trivial
rearrangement of the Equation (5) from our work [14] (see also [15]).

In 1938 Lehmer introduced a measure defined as [6,16]

µ =
J

∑
j=1

1
log10

(∣∣Bj
∣∣) .

This measure can be used to determine a computational efficiency of a given Machin-
like formula for π. Specifically, when value of the constant µ is smaller, then less com-
putational labour is required to compute π by a given Machin-like formula. Therefore,
it is very desirable to reduce the number of the terms J and to increase Bj by absolute
value. The more detailed information about the Lehmer’s measure µ and its significance
for efficient computation of π can be found in literature [7].
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In our previous publication using de Moivre’s formula we derived the two-term
Machin-like formula for π [15]

π

4
= 2k−1 arctan

(
1

u1,k

)
+ arctan

1− sin
(

2k−1 arctan
(

2u1,k
u2

1,k−1

))
cos
(

2k−1 arctan
(

2u1,k
u2

1,k−1

))
, (4)

where u1,k can be chosen as an integer

u1,k =

⌊
ak√

2− ak−1

⌋
, (5)

such that a set of nested radicals {ak} can be computed as ak =
√

2 + ak−1 starting from
a0 = 0.

In the recent publication the researcher(s) from the Wolfram Mathematica [17] demon-
strated an example for computation of π as a rational fraction. In particular, it was shown
that with integer constant u1,1000 the constant π can be computed such that the ratio

π

4
≈ 2999

u1,1000

results in more than 300 correct decimal digits. However, the method of computation shown
in [17] is based on Equation (5) that involves the nested radicals consisting of multiple
square roots of 2 [18–23]. Although Equation (5) helps generate the required integers u1,k,
it should not be generally used at larger values k since a function based on multiple square
roots is not an elementary. Therefore, a simple method based on rational approximation
would be preferable. In this work, we develop a new method of computation of the integer
u1,k that excludes application of the set of nested radicals {ak}. This approach is simple
and does not require any irrational (surd) numbers in computation.

2. Preliminaries

Suppose that
π

4
= α arctan

(
1
γ

)
, α, γ ∈ R. (6)

The simplest case when α = γ = 1. However, there may be infinitely many identities
of kind (6). Let us show the infinitude of this kind of formulas.

Theorem 1. There are infinitely many numbers α and γ satisfying the relation (6).

Proof. The proof becomes straightforward by considering the following example

π

4
= 2k−1 arctan

(√
2− ak−1

ak

)
, k ∈ Z, k ≥ 1, (7)

where nested radicals are computed as ak =
√

2 + ak−1 at a0 = 0. Comparing
Equations (6) with (7) immediately yields that α = 2k−1 and γ = ak/

√
2− ak−1. The

derivation of Equation (7) is very simple and can be found in [14].

It is interesting to note that using Equation (7) one can easily prove the well-known
Equation (8) for π below.
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Theorem 2. We have that

π = lim
k→∞

2k

√√√√√√2−

√
2 +

√
2 +
√

2 + · · ·︸ ︷︷ ︸
k−1 square roots

. (8)

Proof. The following relation

lim
k→∞

ak =

√
2 +

√
2 +

√
2 +
√

2 · · ·

is a simplest Ramanujan’s nested radical [18–23]. Denote X as unknown, then from
the relation √

2 +

√
2 +

√
2 +
√

2 · · · = X

it immediately follows that √
2 + X = X

or
2 + X = X2.

Solving this equation yields two solutions for X that are −1 and 2. Since

0 <
√

2 <

√
2 +
√

2 <

√
2 +

√
2 +
√

2 . . .

all values of ak are non-negative and monotonically increase with increasing integer k.
Therefore, excluding −1 from consideration we end up with a solution

lim
k→∞

ak = 2.

From this limit it immediately follows that

lim
k→∞

√
2− ak−1 = lim

k→∞

√
2− ak = 0.

Consequently, the ratio
√

2− ak−1/ak → 0 as k→ ∞.
The argument of the arctangent function in Equation (7) tends to zero as the integer k

increases. Therefore, in accordance with relation (3) we can write

arctan

(√
2− ak−1

ak

)
→ 0,

√
2− ak−1

ak
→ 0 at k→ ∞,

from which it follows that

π

4
= lim

k→∞
2k−1 arctan

(√
2− ak−1

ak

)
= lim

k→∞
2k−1

√
2− ak−1

ak
= lim

k→∞
2k−2√2− ak−1

or
π = lim

k→∞
2k√2− ak−1.
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As we can see, this proof of Equation (8) is as easy as the one shown in [18]. We also
note that the following limit that we used in the proof

π

4
= lim

k→∞
2k−1 arctan

(√
2− ak−1

ak

)

is valid since the identity (7) remains valid at any arbitrarily large positive integer k.
It is also easy to prove the infinitude of the Machin-like formulas (2) for π; substituting

x = 1 into the expansion series [24]

arctan(x) =
N

∑
n=1

arctan
(

Nx
N2 + (n− 1)nx2

)

⇔ arctan(Nx) =
N

∑
n=1

arctan
(

x
1 + (n− 1)nx2

)
we obtain the following identity [25]

π

4
=

N

∑
n=1

arctan
(

N
(n− 1)n + N2

)
(9)

leading to
π

4
= arctan(1), N = 1,

π

4
= arctan

(
1
3

)
+ arctan

(
1
2

)
, N = 2,

π

4
= arctan

(
1
5

)
+ arctan

(
3
11

)
+ arctan

(
1
3

)
, N = 3,

π

4
= arctan

(
1
7

)
+ arctan

(
2

11

)
+ arctan

(
2
9

)
+ arctan

(
1
4

)
, N = 4

and so on. Although the identity (9) shows infinitude of the Machin-like formulas for π,
its number of the terms increases with increasing N. We can also show a simple proof for
infinitude of the two-term Machin-like formulas for π.

Lemma 1. For real α and β1, there are infinitely many two-terms Machin-like formulas for π
of kind

π

4
= α arctan

(
1
β1

)
+ arctan

(
1
β2

)
. (10)

Proof. The Lemma 1 follows directly from the Theorem 1 that implies infinitude of equa-
tions of kind (6). In order to show this relation, we assume that α and γ in Equation (6) are
both positive numbers and represent γ as a sum γ = ζ + δ, where δ is any small number
that can be chosen arbitrarily such that γ >> |δ|. Thus, we can rewrite the Equation (6)
in form

π

4
= α arctan

(
1

ζ + δ

)
.

From the inequality γ >> |δ| it follows that ζ ≈ β. Therefore, we can approximate

arctan
(

1
γ

)
≈ arctan

(
1
ζ

)
.
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By introducing now an error term ε, we can infer that

arctan
(

1
ζ + δ

)
= arctan

(
1
ζ

)
+ ε.

Consequently, we have
π

4
= α arctan

(
1
ζ

)
+ ε

or
π

4
= α arctan

(
1
ζ

)
+ arctan

(
1
η

)
, (11)

where η is defined such that

arctan
(

1
η

)
= ε.

The Equation (11) is of the same kind as that of given by Equation (10). This completes
the proof since for any equation of kind (6) we can always construct an equation of
kind (10).

When α and β1 in Equation (10) are known, then the unknown value β2 is given by

β2 =
2

((β1 + i)/(β1 − i))α − i
− i. (12)

The derivation of Equation (12) can be shown from the following identity

arctan
(

1
x

)
=

1
2i

ln
(

x + i
x− i

)
Thus, substituting this identity into Equation (10) results in

π

4
=

α

2i
ln
(

β1 + i
β1 − i

)
+

1
2i

ln
(

β2 + i
β2 − i

)
or

π

2
i = ln

((
β1 + i
β1 − i

)α β2 + i
β2 − i

)
.

Exponentiation on both sides leads to(
β1 + i
β1 − i

)α β2 + i
β2 − i

= i. (13)

Solving this with respect to the constant β2 leads to Equation (12).

Theorem 3. If in Equation (10) ∀k ≥ 2 the multiplier α = 2k−1 and β1 is a rational number
greater than 1, then β2 is also a rational number.

Proof. Define σ1 and τ1 such that

σ1 = Re
[

β1 + i
β1 − i

]
=

β2
1
− 1

β2
1
+ 1

and

τ1 = Im
[

β1 + i
β1 − i

]
=

2β1

β2
1
+ 1

.
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Then, it is not difficult to see by induction that

(σ1 + iτ1)
2k−1 =

k−1 powers of 2︷ ︸︸ ︷(((
(σ1 + iτ1)

2
)2
)2···

)2

=

k−2 powers of 2︷ ︸︸ ︷(((
(σ2 + iτ2)

2
)2
)2···

)2

=

k−3 powers of 2︷ ︸︸ ︷(((
(σ3 + iτ3)

2
)2
)2···

)2

= · · · =

k−n powers of 2︷ ︸︸ ︷(((
(σn + iτn)

2
)2
)2···

)2

= · · ·

=
(
(σk−2 + iτk−2)

2
)2

= (σk−1 + iτk−1)
2 = σk + iτk,

where by the following two-step iteration we have{
σn = σ2

n−1 − τ2
n−1

τn = 2σn−1τn−1, n = {2, 3, 4, . . . , k}.
(14)

Consequently, Equation (12) can be rewritten in form

β2 =
2

σk + iτk − i
− i =

2σk

σ2
k + (τk − 1)2 + i

(
2(1− τk)

σ2
k + (τk − 1)2 − 1

)
. (15)

Applying the de Moivre’s formula we can separate the complex number (σ1 + iτ1)
2k−1

into real and imaginary parts in polar form as

(σ1 + iτ1)
2k−1 =

(
σ2

1 + τ2
1

)2k−2(
cos
(

2k−1Arg(σ1 + iτ1)
)
+ i sin

(
2k−1Arg(σ1 + iτ1)

))
.

Substituting this expression into the Equation (15) after some trivial rearrangement
we get

β2 =
cos
(

2k−1Arg
(

β1+i
β1−i

))
1− sin

(
2k−1Arg

(
β1+i
β1−i

)) .

Since β1 > 1, then

Re
[

β1 + i
β1 − i

]
=

β2
1 − 1

β2
1 + 1

> 1

and, therefore, the principal value argument can be replaced by the arctangent function
as follows

Arg
(

β1 + i
β1 − i

)
= Arg

(
β2

1 − 1
β2

1 + 1
+ i

2β1

β2
1 + 1

)

= arctan

((
2β1

β2
1 + 1

)
/

(
β2

1 − 1
β2

1 + 1

))
= arctan

(
2β1

β2
1 − 1

)
.

Consequently, we can write

β2 =

cos
(

2k−1 arctan
(

2β1
β2

1−1

))
1− sin

(
2k−1 arctan

(
2β1

β2
1−1

)) . (16)
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As we can see from this equation, the constant β2 ∈ R. This signifies that the imaginary
part of Equation (15) must be equal to zero. Therefore, from Equation (15) we get

2(1− τk)

σ2
k + (τk − 1)2 − 1 = 0⇔ β2 =

σk
1− τk

.

The values σk and τk are rational since, according to two-step iteration (14) all values
σn and τn at any intermediate steps of iterations are rational. Therefore, the constant β2
must be a rational number.

Consider two examples. Choosing α = 16 and β1 = 509/25 = 20.36 and substituting
these two values into Equation (12) we can find that

β2 =
114322283895863787286174872158832679853761

19955894848381168459034791030978450561

The following Mathematica code:

\[Alpha]=16;

\[Beta]1=509/25;

\[Beta]2=114322283895863787286174872158832679853761/

19955894848381168459034791030978450561;

Pi/4==16*ArcTan[1/\[Beta]1]+ArcTan[1/\[Beta]2]

returns True. Choosing now, for example, α = 16 and β1 = 407/20 = 20.35 and substitut-
ing these two values into Equation (12) again, we can get a negative value

β2 = −817344423776293722798294452010774302554561
172199208235943812365929049219262848959

.

The following Mathematica code:

\[Alpha]=16;

\[Beta]1=407/20;

\[Beta]2=-817344423776293722798294452010774302554561/

172199208235943812365929049219262848959;

Pi/4==16*ArcTan[1/\[Beta]1]+ArcTan[1/\[Beta]2]

also validates the two-term Machin-like formula for π by returning True. The different
signs in β2 follow from the chosen integer α = 16 = 2k−1 at k = 5. When we take

β1 =
a5√

2− a4
=

√
2 +

√
2 +

√
2 +

√
2 +
√

2√
2−

√
2 +

√
2 +

√
2 +
√

2

= 20.355467624987188 . . . (irrational),
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then the value of β2 = 0. However, if β1 < ak/
√

2− ak−1, then β2 < 0 and vice versa if
β1 > ak/

√
2− ak−1, then β2 > 0. The examples above correspond to the

following inequality

407
20︸︷︷︸

case β2<0

<

√
2 +

√
2 +

√
2 +

√
2 +
√

2√
2−

√
2 +

√
2 +

√
2 +
√

2︸ ︷︷ ︸
case β2=0

<
509
25︸︷︷︸

case β2>0

.

Chien-Lih proposed a method showing how to reduce the Lehmer’s measure by using
the Euler’s-type identity in an iteration for generating the two-term Machin-like formulas
for π. However, our method of generating the two-term Machin-like formula for π based
on the two-step iteration (14) is much easier than the method proposed by Chien-Lih in the
work [26].

3. Derivation

Using Equation (16) we can rewrite the Equation (10) as

π

4
= 2k−1 arctan

(
1
β1

)
+ arctan

1− sin
(

2k−1 arctan
(

2β1
β2

1−1

))
cos
(

2k−1 arctan
(

2β1
β2

1−1

))
.

In general, the constant β1 may be either rational or irrational number. However, it is
more convenient to apply notation u1,k that is defined by Equation (5) instead of β1. Such a
notation is to emphasize that the constant u1,k is an integer dependent upon on k. Thus,
with this notation the two-term Machin-like formula for π can be represented as

π

4
= 2k−1 arctan

(
1

u1,k

)
+ arctan

(
1

u2,k

)
, (17)

where in accordance with Equation (12) we have now

u2,k =
2

((u1,k + i)/(u1,k − i))2k−1 − i
− i. (18)

It is interesting to note that by taking k = 3, we get

u1,3 =

⌊
a3√

2− a2

⌋
=


√

2 +
√

2 +
√

2√
2−

√
2 +
√

2

 = 5.

Substituting u1,3 = 5 into Equation (17) we obtain u2,3 = −239. Considering that
2k−1 = 22 = 4 and substituting these two constants into Equation (10) we derive an
original Machin-like Formula (1) for π.

Since the value 2k−1 rapidly increases with increasing k, application of the
Equation (18) if not effective to compute the second constant u2,k. However, the two-
step iteration (14) perfectly resolves this issue. Specifically, implying that the initial values
for the two-step iteration (14) are

σ1 = Re
[

u1,k + i
u1,k − i

]
=

u2
1,k
− 1

u2
1,k
+ 1
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and

τ1 = Im
[

u1,k + i
u1,k − i

]
=

2u1,k

u2
1,k
+ 1

,

we can find the second constant as

u2,k =
σk

1− τk
. (19)

We can derive again the original Machin-like Formula (1) for π by using the two-step
iteration (14) at k = 3. This leads to the following

σ1 =
u2

1,3
− 1

u2
1,3

+ 1
=

24
26

, τ1 =
2u1,3

u2
1,3

+ 1
=

10
26

,

σ2 = σ2
1 − τ2

1 =
119
169

, τ2 = 2σ1τ1 =
120
169

,

σ3 = σ2
2 − τ2

2 = − 239
28561

, τ3 = 2σ2τ2 =
28560
28561

.

Finally, using Equation (19) we can find the second constant to be

u2,3 =
σ3

1− τ3
= − 239/28561

1− 28560/28561
= −239.

It should be noted that the second constant u2,k is an integer only at k = 2 and k = 3.
At k > 3 it is not an integer but a rational number.

The next example is k = 6. The first constant is an integer given by

u1,6 =

⌊
a6√

2− a5

⌋
=



√√√√
2 +

√
2 +

√
2 +

√
2 +

√
2 +
√

2√√√√
2−

√
2 +

√
2 +

√
2 +

√
2 +
√

2

 = 40.

The second constant u2,6 is a rational number that can be computed either by Equa-
tion (18) or, more efficiently, by two-step iteration (14)

u2,6 = −2634699316100146880926635665506082395762836079845121
38035138859000075702655846657186322249216830232319

.

The following Mathematica code validates the two-term Machin-like formula for π at
k = 6:

k=6;

\[Beta]1=40;

\[Beta]2=-2634699316100146880926635665506082395762836079845121/

38035138859000075702655846657186322249216830232319;

Pi/4==2^(k-1)*ArcTan[1/\[Beta]1]+ArcTan[1/\[Beta]2]

by returning True.
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Alternatively, the second constant can also be found by using the following identity in
trigonometric form

u2,k =

cos
(

2k−1 arctan
(

2u1,k
u2

1,k−1

))
1− sin

(
2k−1 arctan

(
2u1,k

u2
1,k−1

)) (20)

that follows from Equation (16). It should be noted that the constant u2,k must be a rational
number as it has been shown by Theorem 3.

We can see that from Equation (5) it follows that

u1,k << u2
1,k, k >> 1.

Consequently, the following ratio can be simplified as given by

2u1,k

u2
1,k − 1

≈ 2
u1,k

.

Replacing the arguments of the sine and cosine functions in Equation (20), we can
approximate the two-term Machin-like Formula (17) for π as

π

4
≈ 2k−1 arctan

(
1

u1,k

)
+ arctan

1− sin
(

2k/u1,k

)
cos
(
2k/u1,k

)
.

Using the identities for the double angle

sin(x) =
2 tan(x/2)

1 + tan2(x/2)
,

cos(x) =
1− tan2(x/2)
1 + tan2(x/2)

,

after some trivial rearrangements we obtain

π

4
≈ 2k−1 arctan

(
1

u1,k

)
+ arctan

 1− tan
(

2k−1/u1,k

)
1 + tan2

(
2k−1/u1,k

)
. (21)

Recently, it has been noticed in publication [17] that the ratio 2k−1/u1,k approximates
π/4 reasonably well when integer k = 1000. The following theorem shows why accuracy
of this ratio improves with increasing k.

Theorem 4. There is a limit

lim
k→∞

2k−1

u1,k
=

π

4
. (22)

Proof. By definition of the floor function we have

ak√
2− ak−1

=

⌊
ak√

2− ak−1

⌋
+ frac

(
ak√

2− ak−1

)
,

where by definition the fractional part cannot be smaller than zero and greater than or
equal to unity

0 ≥ frac

(
ak√

2− ak−1

)
< 1.
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Therefore, we can write

lim
k→∞

ak/
√

2− ak−1

u1,k
= lim

k→∞

ak/
√

2− ak−1⌊
ak/
√

2− ak−1
⌋

= lim
k→∞

⌊
ak/
√

2− ak−1
⌋
+ frac

(
ak/
√

2− ak−1
)⌊

ak/
√

2− ak−1
⌋

= 1 + lim
k→∞

frac
(
ak/
√

2− ak−1
)⌊

ak/
√

2− ak−1
⌋ = 1.

Since the fractional part cannot be smaller than 0 and greater than 1 we can conclude
that

lim
k→∞

ak/
√

2− ak−1

u1,k
= 1.

Consequently, we can infer that

lim
k→∞

2k−1
√

2− ak−1

ak
= lim

k→∞

2k−1

u1,k
.

From Theorem 2 we know that

lim
k→∞

√
2− ak−1

ak
=

lim
k→∞

√
2− ak−1

lim
k→∞

ak
=

0
2
= 0.

Consequently, from the relation (3) we get

lim
k→∞

2k−1
√

2− ak−1

ak
= lim

k→∞
2k−1 arctan

(√
2− ak−1

ak

)
=

π

4

and the limit (22) follows.

Lemma 2. There is a limit such that

lim
k→∞

1
u2,k

= 0.

Proof. We know that the limit

π

4
= lim

k→∞

[
2k−1 arctan

(
1

u1,k

)
+ arctan

(
1

u2,k

)]
is valid since the identity (17) remains valid at any arbitrarily large integer k. We also know
that from the Theorem 4 and relation (3) it follows that

π

4
= lim

k→∞

2k−1

u1,k
= lim

k→∞
2k−1 arctan

(
1

u1,k

)
.

This signifies that

lim
k→∞

2k−1 arctan
(

1
u1,k

)
= lim

k→∞

[
2k−1 arctan

(
1

u1,k

)
+ arctan

(
1

u2,k

)]
.

However, according to relation (3) this equation can be simplified as

lim
k→∞

2k−1

u1,k
= lim

k→∞

[
2k−1

u1,k
+

1
u2,k

]
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and the proof follows.

Applying Theorem 4 to the left side of approximation (21) yields

2k−1

u1,k
≈ 2k−1 arctan

(
1

u1,k

)
+ arctan

 1− tan
(

2k−1/u1,k

)
1 + tan2

(
2k−1/u1,k

)
.

or
u1,k ≈

1

arctan
(

1
u1,k

)
+ 1

2k−1 arctan
(

1−tan(2k−1/u1,k)
1+tan2(2k−1/u1,k)

) .

We note that both arguments of the arctangent function tend to zero with increasing k.
Therefore, referring to the relation (3) again we can simplify the approximation above as

u1,k ≈
1

1
u1,k

+
1−tan(2k−1/u1,k)

2k−1(1+tan2(2k−1/u1,k))

.

Using the Theorem 4 it follows that at k→ ∞

tan2

(
2k−1

u1,k

)
→ tan2

(π

4

)
→ 1.

Consequently, the value

1 + tan2

(
2k−1

u1,k

)
→ 2 (23)

with increasing k. This leads to

u1,k ≈
1

1
u1,k

+ 1
2k

(
1− tan

(
2k−1

u1,k

)) , k >> 1. (24)

Comparing Equations (17) and (21) one can see that

u2,k ≈
1 + tan2

(
2k−1/u1,k

)
1− tan

(
2k−1/u1,k

) , k >> 1

and due to relation (23) this approximation can be further simplified to

u2,k ≈
2

1− tan
(
2k−1/u1,k

) , k >> 1. (25)

Although this equation only approximates the second constant u2,k, its accuracy,
nevertheless, improves with increasing k. Perhaps, the approximation (25) can also be used
at larger values of the integer k as an alternative to the exact Formula (19) based on the
two-step iteration (14).

We can see consistency of the approximations (23) and (25) with Theorem 4 and
Lemma 2. In particular, when k tends to infinity the constants u1,k and u2,k also tend to
infinity. Therefore, in order to enhance a convergence rate, it is important to obtain the
integer u1,k in the two-term Machin-like Formula (17) for π as large as possible. Once the
value of the first constant u1,k is determined, the second constant u2,k can be computed by
using Equation (19) based on two-step iteration Formula (14). For example, at k = 27 the
value u1,27 = 85,445,659. The corresponding Lehmer’s measure is µ ≈ 0.245319 only. Such
a small Lehmer’s measure implies a rapid convergence rate. In particular, we can observe
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16 correct decimal digits of π per term increment. This can be confirmed by running a
Mathematica program provided in [27].

At k = 27 Equation (19) yields a rational number u2,27 consisting of 522,185,807
digits in numerator and 522,185,816 digits in denominator. Such a quotient with huge
numbers in numerator and denominator is not unusual and can also be observed in
Borwein integrals. Specifically, Bäsel and Baillie in their work [28] showed that a formula
for π can be generated with a quotient consisting of 453,130,145 and 453,237,170 digits in
its numerator and denominator, respectively. The interested readers can download the
exact number u2,27 with all digits from [29].

4. Implementation

At first glance, the approximation (24) does not look interesting as its both sides contain
the constant u1,k and it is unclear how to represent it in explicit form. However, sample
computations we performed with this approximation show that it can be implemented
effectively. In particular, we noticed that application of approximation (24) in iteration
provides a result that tends to be more accurate with increasing the integer k.

Consider for example k = 10. In this case we have that

u1,10 =

⌊
a10√

2− a9

⌋
= 651.

With initial guess for u1,10, say 1000, after just 5 iterations (self-substitutions) we obtain

u1,10 ≈ 651.899.

This can be seen by running the following Mathematica command lines that show the
results of computation based on this iteration:

k=10;

a[1]=Sqrt[2];

a[n_]:=a[n]=Sqrt[2+a[n-1]];

Print["Exact value: ",Floor[a[10]/Sqrt[2-a[9]]]];

u2k:=1000;

itr=1;

Print["Initial guess value: ",u2k];

Print["--------------------------"];

Print["Iteration ","Approximation"];

Print["-------------- -----------"];

While[itr<=5,u2k=1/(1/u2k+1/2^k (1-Tan[2^(k-1)/u2k]));

Print[itr," ",u2k//N];itr++];

The Mathematica generates the following output:

Exact value: 651

Initial guess value: 1000

--------------------------

Iteration Approximation

--------------------------

1 700.404

2 654.196

3 651.905

4 651.899

5 651.899
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We have ceased the iterative process after 5-th cycle since two successive numbers
coincide with each other at fourth and fifth iterations with same output 651.899.

Application of the Equation (24) is convenient since for each consecutive increment of
the integer k the following inequality remains valid

2u1,k ≤ u1,k+1 ≤ 2u1,k + 1. (26)

This inequality follows from the property of the floor function that is used in
Equation (5); the constant u1,k+1 should be either equal to 2u1,k or larger it by unity (see [17]
for some examples). Thus, based on Equation (24) and inequality (26) we can make the
following assumption

u1,k+1 =

2 · 1
1

u1,k
+ 1

2k

(
1− tan

(
2k−1/u1,k

))
. (27)

The computational tests we performed shows that this formula provides correct results
for a large range of the integer k ≥ 2. However, its general applicability for any arbitrarily
large k yet to be proved.

There are different methods to approximate the tangent function in Equation (27). One
of the ways is to truncate the following expansion series

tan(x) =
∞

∑
n=1

(−1)n−122n(22n − 1
)

B2n

(2n)!
x2n−1

=x +
x3

3
+

2x5

15
+

17x7

315
+

62x9

2835
+ · · · ⇔ tan(x) = x + O

(
x3
)

,

(28)

where Bn are the Bernoulli numbers, defined by a contour integral

Bn =
n!

2πi

∮ z
ez − 1

dz
zn+1 .

Although this series expansion is rapid in convergence, its application may not be
optimal since it requires the determination of the Bernoulli numbers. One of the ways to
compute them is given by the following identity

Bn =
n

∑
m=0

1
m + 1

m

∑
`=0

(−1)`
(

m

`

)
`n.

We can see that this formula involves the double summation and, therefore, cannot
be rapid in principle especially at larger orders of n. Although other methods of compu-
tation of the Bernoulli numbers are more efficient, their implementations require quite
sophisticated algorithms [30–32].

Alternatively, the tangent function may also be computed by using continued frac-
tions [33–35]. However, algorithmic implementation of the continued fractions may not be
optimal for our particular task.

This problem can be resolved by noticing that at each consecutive step of iteration the
integer u1,k increases, and because of this the argument of the tangent function decreases.
Consequently, it may be reasonable to utilize argument reduction method for computation
of the tangent function [36]. As a simplest case we can use, for example, the double angle
identity providing argument reduction by a factor of two

tan(2x) =
2 tan(x)

1− tan2(x)
.
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Therefore, taking into account that in accordance with (28) tan(x)→ x at x → 0, we
can approximate the double angle identity above as

tan(2x) ≈ 2x
1− x2 , |x| << 1.

This approximation implies that the arctangent function can be calculated in a simple
iteration over and over again by defining the following function

fn(x) =
2 fn−1(x)

1− f 2
n−1(x)

≈ tan(2nx), (29)

where
f1(x) =

2x
1− x2 .

Tangent function can be computed more accurately by defining

f1(x) =
2
(
x + x3/3

)
1− (x + x3/3)2

since according to expansion series (28) we can also infer that tan(x) = x + x3/3 + O
(

x5).
The following Mathematica command lines execute the program for computation of

the integer constant u1,k by using Equations (27) and (29):

(* Clear previous value *)

Clear[\[Beta]1];

(* Set of nested radicals *)

a[0]=0;a[k_]:=a[k]=Sqrt[2+a[k-1]];

(* Equation (5) *)

\[Beta]1[k_]:=\[Beta]1[k]=Floor[a[k]/Sqrt[2-a[k-1]]];

(* Applying Equation (29) in iteration *)

f[x_,1]:=f[x,1]=SetPrecision[(2*x)/(1-x^2),k];

f[x_,n_]:=f[x,n]=(2*f[x,n-1])/(1-f[x,n-1]^2);

(*Main computation*)

func[u1_,k_]:=func[u1,k]=1/(1/u1+1/2^k*(1-f[1/u1,k-1]));

k=2; (* iteger k *)

fstConst=2; (* first constant *)

kMax=30; (* max number for iteration *)

str={{"Integer k"," | ","Equation (5)"," | ","Equation (27)"}}; (* string *)

While[k<=kMax,AppendTo[str,{k," | ",\[Beta]1[k]," | ",fstConst}];

fstConst=Floor[func[2*fstConst,k+1]];k++];

Print[TableForm[str]];

The Mathematica generates the following table:

Integer k | Equation (5) | Equation (27)

2 | 2 | 2

3 | 5 | 5

4 | 10 | 10

5 | 20 | 20

6 | 40 | 40

7 | 81 | 81
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8 | 162 | 162

9 | 325 | 325

10 | 651 | 651

11 | 1303 | 1303

12 | 2607 | 2607

13 | 5215 | 5215

14 | 10430 | 10430

15 | 20860 | 20860

16 | 41721 | 41721

17 | 83443 | 83443

18 | 166886 | 166886

19 | 333772 | 333772

20 | 667544 | 667544

21 | 1335088 | 1335088

22 | 2670176 | 2670176

23 | 5340353 | 5340353

24 | 10680707 | 10680707

25 | 21361414 | 21361414

26 | 42722829 | 42722829

27 | 85445659 | 85445659

28 | 170891318 | 170891318

29 | 341782637 | 341782637

30 | 683565275 | 683565275

Thus, we can see the feasibility of computation of the constant u1,k without any
irrational (surd) numbers. Just by applying only arithmetic manipulations (summations,
multiplications and divisions) we can compute the integer u1,k by iteration based on
Equation (27).

5. Quadratic Convergence to π

There is another interesting application of Equation (24). In particular, we found
experimentally that the following formula defined by iteration

θn+1 =
1

1
θn

+ 1
2k

(
1− tan

(
2k−1

θn

)) , (30)

leads to a quadratic convergence to the constant π such that (by assumption)

π = lim
n→∞

2k+1

θn
, k ≥ 1.

The quadratic convergence to π can be observed by running the command lines:

Clear[k,\[Theta]]

k=7;(* assign value of k *)

\[Theta]=2^k;(* initial guess *)

str={{"Iteration No."," | ","Computed digits of \[Pi]"}};(* string *)

If[k>17,Print["Please wait. Computing..."]];

(* Equation (30) used in iteration *)

For[n=1,If[k<15,n<=15,n<=k],n++,\[Theta]=SetPrecision[1/(1/\[Theta]+

1/2^k*(1-Tan[2^(k-1)/\[Theta]])),2^(n+1)];AppendTo[str,

{n," | ",MantissaExponent[Pi-2^(k+1)/\[Theta]][[2]]//Abs}]];
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Print[str//TableForm];

The output of Mathematica is the following table:

Iteration No. | Computed digits of π
1 | 0

2 | 1

3 | 4

4 | 9

5 | 19

6 | 39

7 | 79

8 | 159

9 | 319

10 | 639

11 | 1278

12 | 2558

13 | 5116

14 | 10233

15 | 20468

As we can see from this table, after third iteration the number of correct digits of π
increases by factor of two at each consecutive step of iteration.

More explicitly, the dynamics of computation of π can be seen by running the follow-
ing Mathematica code:

Clear[k,\[Theta]]

k=7;(*assign value of k*)

\[Theta][0]:=2^k;(*initial guess*)

(* Iteration formula (30) *)

\[Theta][n_]:=1/(1/\[Theta][n-1]+1/2^k*(1-Tan[2^(k-1)/\[Theta][n-1]]));

(* Approximated value of \[Pi] *)

piAppr[n_]:=2^(k+1)/\[Theta][n];

Print["Iteration 1"];

Print[N[piAppr[1],25],"..."];

Print["Iteration 2"];

Print[N[piAppr[2],25],"..."];

Print["Iteration 3"];

Print[N[piAppr[3],25],"..."];

Print["Iteration 4"];

Print[N[piAppr[4],25],"..."];

Print["Iteration 5"];

Print[N[piAppr[5],25],"..."];

Print["------------------"];

Print["Actual value of \[Pi]"];

Print[N[Pi,25],"..."];
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Mathematica returns the following output:

Iteration 1

2.907395020312418973489641...

Iteration 2

3.128878092399718501843067...

Iteration 3

3.141552409181815125317050...

Iteration 4

3.141592653184895576712223...

Iteration 5

3.141592653589793238421658...

Actual value of π
3.141592653589793238462643...

As we can see, the first five iterations provide 0, 1, 4, 9 and 19 correct decimal digits of
π, respectively. The actual value of π, generated by Mathematica built-in function, is also
shown for comparison.

The quadratic convergence to π can be implemented by using the Brent–Salamin
algorithm [37–40] (It is also known as the Gauss–Brent–Salamin algorithm). However,
in contrast to the Brent–Salamin algorithm the proposed iteration Formula (30) provides
quadratic convergence to π without any irrational (surd) numbers.

6. Conclusions

In this work we propose a method for determination of the integer u1,k. In particular,
the algorithmic implementation of the Formula (27) shows that it can be used as an alterna-
tive to Equation (5) requiring a set of the nested radicals {ak} defined as ak =

√
2 + ak−1

and a1 = 0. This method is based on a simple iteration and can be implemented without
any irrational (surd) numbers.
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