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Abstract: The efficient operation of emergency medical services is critical for any society. Typically,
optimisation and simulation models support decisions on emergency ambulance stations’ locations
and ambulance management strategies. Essential inputs for such models are the spatiotemporal
characteristics of ambulance trips. Access to data on the movements of ambulances is limited,
and therefore modelling efforts often rely on assumptions (e.g., the Euclidean distance is used as
a surrogate of the ambulance travel time; the closest available ambulance is dispatched to a call;
or the travel time estimates, offered by application programming interfaces for ordinary vehicles,
are applied to ambulances). These simplifying assumptions are often based on incomplete data or
common sense without being fully supported by the evidence. Thus, data-driven research to model
ambulance trips is required. We investigated a unique dataset of global positioning system-based
measurements collected from seventeen emergency ambulances over three years. We enriched the
data by exploring external sources and designed a rule-based procedure to extract ambulance trips
for emergency cases. Trips were split into training and test sets. The training set was used to develop
a series of statistical models that capture the spatiotemporal characteristics of emergency ambulance
trips. The models were used to generate synthetic ambulance trips, and those were compared with
the test set to decide which models are the most suitable and to evaluate degrees to which they fit
the statistical properties of real-world trips. As confirmed by the low values of the Kullback–Leibler
divergence (0.004–0.229) and by the Kolmogorov–Smirnov test at the significance level of 0.05, we
found a very good fit between the probability distributions of spatiotemporal properties of synthetic
and real trips. A reasonable modelling choice is a model where the exponential dependency on the
population density is used to locate emergency cases, emergency cases are allocated to hospitals
following empirical probabilities, and ambulances are routed using the fastest paths. The models we
developed can be used in optimisations and simulations to improve their validity.

Keywords: emergency medical services; GPS-based measurements; ambulance trips; data-driven
modelling

1. Introduction

Rapid responses to medical emergencies depend on the proper design and manage-
ment of emergency medical services (EMS). Traditionally, to design EMS that fit the local
conditions, mathematical optimisation and simulation models are used. There are several
drawbacks of earlier models, such as the necessity to rely on simplifying assumptions for
fundamental issues, e.g., coverage of emergency cases, relocation of ambulances, and busy
probabilities [1]. Many models ignore patient survivability [2], uncertainties linked with
travel times, or route choice [3].

The need to apply simplifying assumptions arises due to the lack of data and to make
underlying optimisation problems more tractable. More recently, due to improvements in
sensing and communication technologies, access to data has been significantly improved,
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opening new pathways for data-centric approaches. This paper explores a unique dataset of
global positioning system (GPS)-based measurements collected from seventeen emergency
ambulances that extends over three years. Based on the data, we developed a series
of models that can be used to generate synthetic ambulance trips that fit reasonably
well with the spatiotemporal properties of real emergency ambulance trips. We gave
priority to models that are simple to use, and together with the models, we also present the
parameter values; so the models can be directly applied by other researchers or practitioners.
In particular, this study focuses on mountainous regions and medium-sized cities and
their neighbourhoods. The case study included the data from the Žilina region in Slovakia;
however, some of the parameters could also be transferable to other similar areas. Moreover,
this paper describes a methodology that can be applied to similar data from different types
of geographical areas. The developed models can inform optimisations and simulations of
EMS and improve their validity.

1.1. Literature Review

In this section, we start by providing a short overview of the literature covering EMS
modelling that concerns optimisation, simulation, and data-centric methodologies. Further,
we introduce several selected studies based on optimisation or simulation techniques
while highlighting some typical modelling assumptions that can be replaced with data
on ambulance trips. Next, we discuss data-centric and mixed (optimisation, simulation,
and data) approaches. We conclude the section by overviewing papers that exploited
GPS-based measurements from ambulances to demonstrate the novelty of our approach to
such data.

Over the last few decades, several monographs discussed the optimisation of EMS.
The foundations and historical evolution of location science were thoroughly documented
in [4], and an overview of applications, including emergency response to traffic accidents
and preventive healthcare, was given in [5]. Several review papers addressed some selected
modelling aspects. The location and relocation models were summarised in [6]. Problems
were covered in [7], and location problems with multiple criteria in [8]. Comprehensive
taxonomy and an overview of available literature on EMS-related location problems were
given in [9]. A more recent review of successive model innovations of location models for
emergency services was given in [10]. Despite an abundance of literature on EMS optimisa-
tion, only a few review papers have considered the full range of EMS systems. Review [11],
argues in favour of a holistic and user-centric approach to EMS that follows the whole path
of a patient through the EMS. Regarding the modelling, the paper emphasises the need to
incorporate realistic information, sources of uncertainty, and forecasting methods.

Optimisation approaches to emergency systems are dominant in the literature, and the
assumptions regarding spatiotemporal characteristics of emergency trips are central in
the methodology. The bi-objective spatial optimisation model, integrating coverage and
median objectives, was proposed by [12]. The problem is solved in two stages; first,
the number of fire stations is minimised; second, the number of fire stations is constrained,
and the total weighted travel time is minimised. The Euclidean distance is considered
in the objective as a surrogate for travel time. Similarly, [13] proposed a methodology
for reorganising a network of volunteer fire departments while estimating travel times
of emergency vehicles with the Euclidean distances and a constant travel speed. The Eu-
clidean distance has been commonly considered as a satisfactory surrogate of network
travel time in the literature [14–16]. Another approach is to approximate travel time from
road segment speed limits. For instance, it has been used when looking for the optimal
locations of healthcare centres with a modified p-median model [17] and when developing
a versatile framework for solving location-allocation problems applicable to public service
systems [18]. An extension of this approach was introduced in [19], where uncertainties in
delays, travel time, and ambulance availability derived from EMS calls were considered
to maximise the expected coverage, subject to the limited number of ambulances. Travel
times were estimated using the road network data and by taking into account accelera-
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tion at the beginning and deceleration at the end of the trip. The higher availability of
services based on several APIs (Google Maps APIs, TomTom Maps APIs, etc.) has provided
new modelling opportunities. The problem of optimising preventive healthcare facility
locations to maximise the participation of patients was addressed by [20]. Distances and
travel times were estimated using Google Maps. The paper [21] proposed an approach
on how to maximise the overall expected survival probabilities of multiple classes of pa-
tients. In numerical experiments, the travel time was again estimated using Google Maps.
The drawback of such an approach is that models behind the API do not consider the
driving characteristics of emergency vehicles that may differ from those of ordinary traffic.
Modelling assumptions also concern the composition of emergency trips (e.g., after the
treatment of a patient at the scene, the ambulance may return back to the station or the
patient is transported to a hospital). Focusing on rural regions, the authors in [22] proposed
dynamic relocation strategies in which ambulances are proactively redeployed throughout
the region. The proposed theoretical framework considers the different compositions of
trips; however, in numerical analysis, none of the patients was transported to a hospital.
Another type of assumption concerns the allocation of ambulances to emergency cases.
Paper [23] proposes a methodology for evaluation of the performances of response time
thresholds in terms of the resulting patient survival rate. In the model, the closest available
ambulance is always dispatched to a call. If two ambulances are equidistant from the call,
one is randomly selected. Possible strategies for assignment of ambulances to incidents
were investigated in [24], confirming that the choice of the strategy affects the fraction of
late arrivals. Mixed simulation and optimisation approaches tend to apply similar mod-
elling assumptions regarding emergency trips. A discrete event simulator for the Singapore
Emergency Medical system was developed to investigate alternative actions regarding
how to improve ambulance response time [25]. The destination hospital is decided based
on the proximity to the incident scene, and travel times are deduced from speed limits of
roads, without explicitly considering intersection delays, traffic congestion, acceleration,
and deceleration. A historical emergency call database is used to deduce correction factors
for the travel time. An optimisation model, to determine better ambulance base locations,
and a simulation model, to observe dynamic behaviour of the systems, were proposed
in [26]. The travel time was estimated based on Euclidean distances, considering a fixed cor-
rection factor and constant speeds for different periods of the day. Agent-based simulation
applied to the modelling of travel time in the health service domain was presented in [27].
Assuming a constant travel time for each type of landscape, travel times are estimated
in the form of a travel time grid. Simplifying assumptions related to the spatiotemporal
characteristics of ambulance trips are often based on incomplete data or common sense
without being fully supported by data. This is a consequence of the limited access to
detailed and sufficiently large datasets on ambulance trips. Hence, data-driven research to
model ambulance trips is required.

The majority of data-driven approaches in the area of EMS are concerned only with
the temporal characteristics of trips. The spatial characteristics are left behind, as the
emergency calls database is the most typical data source. Among temporal characteristics,
the greatest focus is on the response time. An early paper [28] provided estimates of
ambulance and fire truck speeds. In the analysis, road classes, time of day (rush hours and
non-rush hours), and season (summer and winter) were considered. High priority call data
were used to explore ambulance travel times in [29]. The travel time was modelled by a
probability distribution, and the paper demonstrated how it can be used to create coverage
maps. The paper highlighted the importance of going beyond the constant average speed
assumption. EMS and fire-related calls were examined by [30] to explore the dependence
between EMS response time and weather conditions. They found that the presence of
snow is important for predictions. Apart from call data, response records constitute a
precious source of information about response times. For example, they were used in [31]
to study the spatial variation in ambulance response time for out-of-hospital cardiac arrests
in the city-state of Singapore. The ambulance response time was found to be associated
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with traffic conditions, weekends, distance from the nearest station, and off-peak driving
hours. Whether a longer response time can be attributed to poorer neighbourhoods was
investigated in [32]. The data did not support such a hypothesis. A model predicting the
ambulance arrival time based on historical records was proposed in [33]. The analyses of
significant features confirmed that the use of blue lights and sirens shortened the travel time,
an estimate of transport time based only on a street network significantly underestimated
the transport time, and the wet weather increased the transport times.

It is sensible to combine data-centric and modelling approaches; however, such ap-
proaches are relatively rare in the literature. EMS call data were explored by [34]. They
found that demand for ambulances significantly varies. The dependency discovered in
data was used in combination with a mixed-integer optimisation model to explore how
the reallocation of ambulances could compensate for the time-dependent demand. In [35],
EMS cases for a 5-year interval from 2020 to 2050 were predicted by correlating current
EMS cases with demographic factors and considering expected population changes. Next,
the genetic algorithm was used to find the optimal future locations of ambulance sta-
tions, which were contrasted with the current design. A similar approach was presented
in [36], where an artificial neural network was used to predict emergency cases combined
with the p-center problem to locate facilities. The study shows that the combination of
a predictive model and optimisation model (i.e., prescriptive optimisation) may bring
significant improvements.

Ambulances have been equipped with information technologies based on GPS and
the Global System for Mobile Communications (GSM) for more than 20 years [37]; however,
only limited research efforts have been made to exploit the information contained in this
data to facilitate modelling and planning efforts. After a thorough literature review, we
discovered only a few papers that worked with GPS-based data that came from ambulances.
Motivated by the issue of the redeployment of ambulances, the authors of [38] used a
GPS-based vehicle locator data to predict the most likely ambulance speeds. The speed
profile was estimated for each road segment while separately considering weekdays and
weekends, with the mean average error reaching 15 km/h. Predictions of travel times
together with routes of ambulances with blue lights and sirens activated were conducted
by [39]. The GPS-based measurements were map-matched onto the road segments that
were associated with weights. Considering the weights, the shortest path algorithm was
used to predict the route and the travel time. The best results were achieved by amending
the weights by using a simple regression model and correcting for deviations between the
estimates and real data. A probabilistic prediction approach to estimate the distribution
of travel times on each road segment was elaborated by [40]. The Bayesian model was
shown to outperform other approaches (e.g., the harmonic mean of speeds on the road
segment, maximum likelihood estimates from the log-normal distribution of travel speeds,
and the method proposed by [29]); however, it is computationally exceedingly demanding.
An improvement of the Bayesian model was presented in [41]. The travel time is modelled
at the trip level and not the link level, and it depends on explanatory variables such as the
time of day and day of the week. The proposed model is computationally more tractable
on large networks and provides estimates comparable to [40]. As another use case for
GPS-based ambulance data, the paper [42] presented a procedure for preparing a travel
time coverage map for emergency journeys. Hence, research papers exploiting GPS-based
measurements in unison focus on travel time, which is just a single aspect concerning the
modelling of ambulance trips.

Similar ideas and methods that we used in our work can be found in the below-
mentioned papers. The processing of raw GPS data is described in [40]. Discussion of
appropriate thresholds for identifying stops of the trips is available in [43]. We used similar
methods for extracting the trips from GPS data as in [44]. A description of travel time
modelling (from station to patient) can be found in [29]. The model of the dependency of
travel time on distance was introduced in [45]. Simulation tools intended for the analysis
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of EMS were used in [46,47]. Our pursuit of improving those tools inspired us to prepare
this work.

1.2. The Scientific Contributions and Structure of the Paper

The need for undertaking research that aims to contribute to current EMS efficiency
improvements is perpetual. The rapid construction of new highways and road infrastruc-
ture, the arrival of large companies attracting workers from distant areas, suburbanization
(i.e., a shift of population from urban to close suburbs), ageing of the population, etc., all
of which have been witnessed in the Žilina region and many other Slovak regions in the
last few years, lead to changes that make the current EMS design inefficient. For example,
by combining the p-median-like approaches with computer simulations, it was estimated
by [46] that redesign of the existing EMS in Slovakia could reduce the average response
time by 47 s, leading to an additional 121 patients who could be saved every year. Thus,
there is the potential to bring non-negligible benefits with mathematical modelling efforts.

As the literature review demonstrated, these modelling activities are typically in-
formed by emergency call data or emergency response reports while focusing on the
temporal characteristics of ambulance trips. The operation of emergency ambulances is
to a greater extent described by GPS-based data; however, such data are less accessible
for research purposes. In previous studies, GPS data were mostly used for ambulance
travel time predictions and travel time analysis. Consequently, there is a lack of scientific
literature offering comprehensive models to inform EMS modelling activities about the
spatiotemporal characteristics of ambulance trips.

This paper, through its primary contribution, will impact the state-of-the-art, and
provides some secondary contributions. The primary contribution is a comprehensive set
of spatiotemporal models. To the best of the authors’ knowledge, this is the first application
of GPS-based measurements to modelling, in one paper, all spatiotemporal characteristics
of emergency ambulance trips that are necessary to generate complete synthetic trips.
To achieve this goal, we put together linear and nonlinear regression models, histograms, a
graphical representation of the road network with the concept of shortest/fastest paths,
and fitted a combination of standard probability distribution functions to data. Secondary
contributions are as follows: (i) we developed a new rule-based method that enables
us to extract emergency ambulance trips from GPS-based data whose novelty resides in
the combination of existing methods; (ii) we compared modelling alternatives to choose
the most suitable models, and (iii) we validated the proposed models by comparing the
properties of trips generated by models with real trips in the test set.

The paper is organised as follows. The data processing is described in Section 2.
Section 4 presents the results. Section 4.1 introduces the modelling concept. Models
of ambulance trips are developed in Section 4.2 and they are validated in Section 4.3.
The paper is concluded in Section 5.

2. Materials
Falck Dataset

The geo-referenced ambulance data used in this research were provided by the com-
pany Falck Záchranná a.s. In the early 2019, Falck Záchranná a.s. operated 107 out of 270
ambulance stations in Slovakia while covering approximately 39% of the geographical area
of Slovakia. Falck Záchranná a.s. has been monitoring its fleet of ambulances by using
GPS-based units, and all historical geo-referenced data have been stored on the web portal
www.webdispecink.sk. Altogether, we received permission to extract the geo-referenced
data of 17 ambulances (hereafter referred to as the Falck dataset). On the web portal,
the raw data are organised into two tables. The first table contains car floating data, and it
is composed of rows that represent individual measurements of the ambulance position
characterised by the time stamp, latitude, longitude, speed, and status (on or off) of the
siren and the blue lights. The second table characterises each ambulance trip by providing
the from-address and to-address, start and end time, mileage, and fuel status at the end of

www.webdispecink.sk
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the trip. The selected ambulances are serving the region of Žilina located in the northern
part of Slovakia, which is composed of three counties: Žilina, Čadca and Kysucké Nové
Mesto. The area is 1749 km2 and has a residential population of 281,000 inhabitants.

Typically, the ambulance crew waits at an ambulance station to be assigned a task
from the operation centre. The operation centre handles emergency calls and distributes
tasks to the ambulance crews. The geographical locations of 12 ambulance stations, where
the crews of the 17 vehicles are based, and the frequency of measurements of the car
floating data are shown in Figure 1. The frequency of measurements is evaluated by
analysing the time between two consecutive measurements allocated to the same trip.
Typically, measurements are taken each 5 to 25 s. Such a frequency is sufficient to model
the ambulance trips, as it enables us to trace vehicle trajectories reliably at the level of road
segments and to measure travelled distances and travel times.

Figure 1. (a) The geographical area of the Žilina region with the marked positions showing ambulance stations where the
crews of the observed emergency vehicles are based. Four ambulance stations, S9–S12 are located within the city of Žilina,
and ambulance stations S1–S8 and S13 are distributed in the neighbouring small towns and villages. (b) The frequency of
measurements of the car floating data.

3. Methods
3.1. Data Pre-Processing Workflow

The purpose of the data pre-processing was to extract from the Falck dataset indi-
vidual trips of ambulances. A presented method is a combination of existing methods.
An ambulance engine is typically switched off while waiting for an emergency call at the
station and it can be switched on or off a couple of times during a trip. Hence, the defini-
tion of trips based on switching the ambulance engine on or off, which is provided by the
system archiving GPS-based positions of vehicles, does not fit the purpose of the paper.
Unfortunately, the detailed reports on ambulance trips or annotated data that could be
used to supervise a learning algorithm were not available to us. Therefore, we designed
a simple rule-based approach and a workflow shown in Figure 2 to extract the trips of
emergency vehicles from the Falck dataset.
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GPS data

Data cleaning

Partitioning of GPS data 

to movements (T1, ST1)
GPS positions

 of ambulance 

stations
Formation of ambulance

trips (S1, S2, S3, T1)

GPS positions

 of hospitals

a. Prunning of initial and 

terminal movements

Data analysis

b. Merging of 

insigni cant movements

c. Adding potentialy 

relevant stops

Filtering of ambulance

trips (T2, S2, S3, S5) 

Amendment of 

ambulance trips (S2, S3, S4):

Figure 2. A schematic illustrating the workflow applied to GPS-based data. Symbols enclosed in
brackets indicate spatial and temporal characteristics used the in rules applied by the workflow.
For the explanation of symbols please see the text.

Typically, an ambulance is located at a station, and the crew is waiting for an assign-
ment from the emergency operation centre. Then, the crew drives the ambulance to the
desired destination point(s), delivers the required aid, and returns back to the ambulance
station. Occasionally, the returning part of the trip is used to refuel the ambulance or to
get supplies of medical material. Hence, we consider a trip to be an ordered sequence of
movements between points of interest (e.g., station(s), patient(s), hospital(s), etc.). Each
trip is expected to be initialised and terminated at the same station.

Phases of the workflow and the rules applied when extracting trips have been derived
from the above-mentioned assumptions. We aimed to develop a rule-based workflow
that results in a reasonable set of ambulance trips and depends on a minimum number of
parameters. To construct the rules, we considered temporal characteristics:

• Time between two consecutive GPS-based measurements (T1);
• Overall duration of the trip (T2);

Spatial characteristics:

• Aerial distance between two consecutive GPS-based measurements (S1);
• Aerial distance between an initial (terminal) GPS-based measurements of a movement

and a hospital (S2);
• Aerial distance between an initial (terminal) GPS-based measurements of a movement

and an ambulance station (S3);
• Length of a movement (S4);
• Overall length of a trip (S5);

A spatiotemporal characteristic:

• Instantaneous speed (ST1).

In Figure 2, we use symbols assigned to characteristics to indicate their usage in
phases of the workflow. The initial design of data processing steps was evaluated by
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inspecting the large sample of trip trajectories and trip stops displayed on the map, and by
analysing basic statistical properties of the resulting trips (e.g., the numbers of movements
constituting trips, lengths and durations of movements, frequencies of trip patterns, etc.).
According to the findings, the initial workflow was amended, and finally, we obtained the
following phases:

• Data cleaning: In this phase, typical data problems such as empty, unexpected, or
redundant values were handled. Whenever possible, the data problems were fixed;
e.g., values of categorical features such as the state of the blue lights and siren were
unified. Problematic data, such as redundant table rows, were eliminated. As the
data analysis focuses only on three administrative districts located in the Žilina
region, the records corresponding to the ambulance leaving the area of the Slovak
Republic were eliminated. Similarly, whenever we identified from the data that an
ambulance was operated from a station in a different Slovak region, we excluded the
corresponding records from the analysis. This occurred when the operator decided
to allocate an ambulance to another area temporarily. Moreover, we analysed the
average velocities between consecutive GPS measurements. Only a few records were
identified as outliers and eliminated. For our purposes, every measurement was
represented by ordered tuple M = (t, p, v), where t was the date and time (expressible
in seconds) of the measurement, p was the position (longitude and latitude) of the
vehicle, and v was the instantaneous velocity of the vehicle.

• Partitioning of GPS measurements to movements: For each ambulance, the GPS
measurements were sorted by the time stamps. Hence, we obtained a sequence of
measurements {Mk}n

k=1 for each vehicle, where n was the number of measurements
of a vehicle after data cleaning, and Mk = (tk, pk, vk). The sorted sequence of GPS
measurements was cut into subsequences (referred to as movements) by adding
a dividing point between two consequent GPS measurements if at the time when
the measurements were taken, the instantaneous velocity of the ambulance was
0 km/h (i.e., the ambulance did not move), and the time difference between those GPS
measurements was at least 120 s. This value was empirically selected as a sufficient
value for minimising the chance that a short stop due to the traffic situation or for
other reasons (e.g., waiting at intersections) would be recognised as a significant stop
during a trip. A formal description of the movement can be done as follows: let
{ki}x

i=1 be a subsequence of indices k = 1, 2, . . . , n such that k is a member of this
subsequence if and only if vk = vk−1 = 0 km/h and tk − tk−1 > 120 s. We remark that
x ≤ n is an appropriate natural number. Movement mi = {Mj}

ki+1−1
j=ki

is a sequence of
measurements with times

tki
, tki+1, . . . , tki+1−1 .

• Formation of ambulance trips: We define a trip Tl of an ambulance as a sequence

{mq}
il+1−1
q=il

of co-located movements, and this sequence is initiated and terminated at

an ambulance station, where {il}
y
l=1 is a subsequence of indices i = 1, 2, . . . , x such

that i is a member of this subsequence if and only if the aerial distance between the
points pki

and p is not larger than 300 m. (We remark that p is a position of ambulance
station and y ≤ n is an appropriate natural number.) Two consecutive movements mi
and mi+1 are considered to be co-located if the aerial distance between the terminal
point pki+1−1 of the first movement and the initial point pki+1

of the second movement
is less than 200 m and the time difference tki+1

− tki+1−1 is not larger than 2 h. Initial
and terminal points of a movement were associated with an ambulance station or
hospital if the aerial distance between them was less than or equal to 300 m (for
an illustration, see Figure 3). GPS positions of ambulance stations and hospitals
that are deployed across the Slovak Republic were kindly provided to us by the
authors of the work [46]. Trips were assembled by processing the created movements
(movement by movement) in the order of timestamps associated with the initial GPS
measurements. The process of building an ambulance trip was initiated when the
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first GPS measurement of the movement was associated with an ambulance station.
A trip was grown by appending co-located movements until a movement was found
with the terminal point associated with the initial emergency station. Hence, a trip
was a closed-loop initiated and terminated at the position of an ambulance station.
If a pair of movements that were not collocated was encountered while an ambulance
trip was being formed, the forming process was cancelled, and the next movement
with the first GPS point associated with an ambulance station was used to initiate
the process of trip building. The formation process continued until all movements
were processed.

Figure 3. An illustration of a trip that originates and terminates at the ambulance station and is
formed by three co-located movements. First, GPS measurements should be combined to form
movements; secondly, a trip should be constituted from a sequence of co-located movements.

• Amendment of ambulance trips: By evaluating a sample set of ambulance trips visu-
alised on the map, we concluded that the majority of extracted trips were proper and
ready for analysis. However, some flaws that repeated multiple times were identified:

– Some trips contained very short movements, which appeared to be insignifi-
cant. Often, it was initial or terminal movement located within the area of an
ambulance station.

– Some trips approached a hospital or an ambulance station, but the movement
was not split into two movements (i.e., the potential stop was not recognised).

– Some trips were very short in length and in time.
– Some trips were very long and very complex to interpret (taking a long time and

having many stops till the ambulance returned back to the initial ambulance station).

To mitigate these problems, additional procedures were implemented:

– Pruning of initial and terminal movements: When the initial and terminal
movements of a trip were very short and took place within the close surround-
ings of an ambulance station, they were insignificant for the trip. Therefore,
a sequence of initial (terminal) movements was eliminated from the trip if their
terminal (initial) point was closer than 300 metres from the ambulance station.

– Merging of insignificant inner movements: In further analyses, we considered
inner movements of a trip only in the context of hospitals, ambulance stations,
and potential locations of patients that could be associated with the initial and ter-
minal points of inner movements. Therefore, short inner movements (no longer
than 500 m) were merged with the preceding or the following movements be-
longing to the same trip if either the endpoint of both movements was associated
with the same ambulance station (and/or hospital) or both endpoints were not
associated with any known point of interest (ambulance station or hospital).

– The addition of potentially relevant stops: To not miss a potentially relevant
stop of an ambulance at an ambulance station or a hospital, all movements were
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scanned by inspecting all inner GPS measurements. If an inner GPS measure-
ment with the instantaneous velocity equal to zero was detected, it was checked
whether it could have been associated (i.e., it was located closer than 300 m)
with an ambulance station or hospital different from the ambulance station(s) or
hospital(s) the initial and terminal points of a given movement were associated
with. If there was more than one such inner point, the inner point which was
closest to a given ambulance station or hospital was found. The movement was
cut at an identified inner point, and two movements were formed.

• Filtering of emergency ambulance trips: Finally, to obtain an interpretable set of
trips, we applied a set of simple filters. Trips composed of two movements were
always selected. Trips consisting of more than two movements were selected only if
at least 50% of initial and terminal points of inner movements were associated either
with a hospital or with an ambulance station. To prevent the selection of trips that
were too short or too complex for further analysis, we evaluated the overall lengths
and durations of trips. We only selected trips longer than 1 km (to exclude short
technical trips typically done within the area of an ambulance station) and shorter
than 500 km (the distance that should be sufficient to accommodate trips to major
Slovak hospitals located in the cities of Bratislava and Košice). For similar reasons, we
considered only trips taking more than 15 min and less than six h.

The reported values of thresholds were obtained empirically by running a grid search
and evaluating samples of the trips visually and by evaluating some simple quantities,
such as lengths, durations, and the number of movements.

4. Results
4.1. Extraction of Emergency Ambulance Trips

The workflow presented in Section 3.1 was implemented in R while using dplyr,
geosphere, HereR, scales, factoextra, OpenStreetMap, and ggplot2 libraries. We built
59,020 trips by applying the methodology described in Section 3. After applying the
filtering where too short or too complex trips were excluded, 44,166 ambulance trips
remained. Considering only ambulance stations where at least 100 trips were initialised,
the total number of trips used in the analyses reached 44,099. In Figure 4, we analyse their
basic properties. Ambulances are statically assigned to ambulance stations; however, on a
long time scale, the assignments may change due to organisational reasons. Consequently,
we found several stations (e.g., S1, S6, and S7), which are typically served by the same
ambulance, and some ambulance stations (e.g., S3, S9, and S13) served by more than one
ambulance. Similarly, we found some ambulances typically serving one station, and some
other ambulances being used by multiple stations. In Figure 4, we report the ambulances’
numbers and dates from when the data were available. Not all vehicles were in operation
from March 2016, when the recording of GPS traces was introduced. In all cases, the analysis
included data collected until March 2019.
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Figure 4. Number of trips extracted from the Falck dataset for each ambulance and initial ambulance
station. For each ambulance, we report the start date of the time period for which the data were
available for analysis.

4.2. Modelling of Ambulance Trips

We used trips extracted from the Falck dataset to build a series of models that capture
and reproduce the main characteristics of emergency ambulance trips. Simultaneously,
models should be parsimonious to be easily used by other researchers utilising publicly
available data. Thus, we searched for a reasonable trade-off between the accuracy of models,
data requirements, and simplicity. The modelling workflow is visualised in Figure 5. In the
following subsections, we target the spatial—and afterwards temporal—characteristics
of trips.

Figure 5. Flowchart of the workflow to model characteristics of emergency ambulance trips.



Mathematics 2021, 9, 2165 12 of 30

4.2.1. Trip Patterns

During the data pre-processing (phase “Formation of ambulance trips”), some initial
and terminal points of movements were assigned to one of these two geographic categories:
an emergency ambulance station or a hospital. The unassigned points were considered
locations where treatment was provided to patients. We encoded each of these three
locations with a character: “s” stands for an emergency ambulance station, “h” represents
a hospital, and “p” symbolises a stop associated with the treatment of a patient. Then, we
represent each trip by a string that describes the assignment of the initial and terminal points
of movements that compose a trip. Figure 6 shows the frequencies of ten most frequent trip
patterns. The great majority of trips were composed of two or three movements, and the
number of movements exceeded ten only very rarely (see inset of Figure 6). By far, the two
most common trip categories were “sphs” and “sps”, which together represent 77.5% of
all extracted trips. These two categories involve visiting of a patient, which is, in the
case of a trip category “sphs”, followed by the transport of the patient to a hospital. Less
frequent trips involve pattern “shs”, corresponding either to the transport of a patient who
came to the ambulance station on his own to the hospital, or a technical trip involving
a visit to a hospital. Other categories involve combined trips when the ambulance was
assigned to another trip before returning to the ambulance stations (“sphphs”), transport
of a patient between two hospitals (“shhs”), and other relatively rare categories of complex
trip patterns.

Figure 6. Frequencies of emergency ambulance trip patterns. The characters encode the visit of
an ambulance station (“s”), hospital (“h”), and patient “p”. The inset shows the frequencies of
movement counts that constitute a trip. The empirical probability of observing a trip of a given
pattern can be calculated by dividing the frequency by the total number of trips, 44,099.

4.2.2. Locations of Emergency Cases

The likelihood of the occurrence of emergency cases within a certain geographic area
is frequently assumed to be proportional to the population [18,48]. This is a practical mod-
elling assumption due to the high availability of population data. We used the population
raster, shown in Figure 7b, providing the information on the 2018 residential population
which is available in the resolution of 100× 100 m [49]. By using the same raster geometry,
we counted the emergency cases extracted from the Falck dataset taking place within each
raster cell.
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Figure 7. (a) Counts of emergency cases (only “sps” and “sphs” trips were considered) in Žilina, Kysucké Nové mesto,
and Čadca districts. (b) Residential population in 2018. In both cases, a raster with the cell size 1500× 1500 m was used.
(c) Scatter plot of the number of emergency cases versus the population. Each point in the plot corresponds to a grid cell in
panels (a,b). Lines show the fit to the data with linear and power functions, respectively.

To characterise the locations of emergency cases, we built regression models using
the numbers of emergency cases (y) and the populations (x) of raster cells. We explored
four different sizes of raster cells, 500× 500, 1000× 1000, 1500× 1500, and 2000× 2000
and linear and power functions (see Table 1). As expected, while enlarging the cell size,
the quality of the fit between the regression models and the number of emergency cases
increased, at the expense of the precision, by which we modelled the locations of emergency
cases. The values of adjusted R2 suggest that the fit we started observing with the cell
sizes 1500 and bigger was satisfactory, despite the fact that some residuals are relatively
large (see also Figure 7c). This was confirmed by comparing the lengths and durations
of synthetic and real trips. Thus, cell size is sufficient to identify locations of emergency
cases at the level of municipality. We repeated the same procedure while using ambient
population raster [50]; however, we found very similar results, with slightly worse fits by
the models.

Table 1. Functional forms, values of parameters, and adjusted R2 obtained when modelling the
dependency between the number of emergency cases and the residential population while using
differently sized raster cells.

Raster Cell Size
[m × m] Model a b R2 adj.

500× 500
y = ax + b 0.145 −0.198 0.253

y = axb 0.080 1.103 0.254

1000× 1000
y = ax + b 0.138 −5.751 0.412

y = axb 0.019 1.278 0.423

1500× 1500
y = ax + b 0.139 −14.539 0.468

y = axb 0.009 1.351 0.488

2000× 2000
y = ax + b 0.136 −23.532 0.595

y = axb 0.006 1.369 0.625

Functional forms in Table 1 can be used to determine locations of emergency cases
when generating synthetic ambulance trips. By using them, we determined the expected
number of emergency cases in each cell based on the population count. The probabilities of
observing an emergency case in each raster cell were calculated by normalising obtained
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values. Probabilities were used to decide a grid cell randomly, and an emergency case’s
exact location within the cell was determined with a uniform probability.

4.2.3. Allocation of Emergency Cases to Stations and Hospitals

Frequently, the allocation of an emergency case to a station is derived from its prox-
imity. We applied a probabilistic approach considering the allocation of emergency cases
to the closest, second closest, or farthest emergency station [17,20,24]. In Figure 8, we
show the empirical probability distributions extracted from the data when considering
Euclidean distances. We show a separate distribution for each selected range of the
distance between the emergency case location and the nearest emergency ambulance
station. The results show that the probability distribution changes significantly with
the distance. As the distance increased, it became more likely that an emergency case
was allocated to the closest emergency station. Such behaviour reflects the difference
between urban and rural areas. In urban areas, the density of EMS stations is larger,
and thus it is not so critical to allocate an emergency case to the closest station. When using
road network distances, we obtained only slightly different probability distributions (see
Figure S1 of the Supplementary Information (SI) File).

Figure 8. The empirical probability distributions of emergency cases to be allocated to the k-th
nearest ambulance station (in each row, we present the distribution for a range of the distance from
an emergency case location to the nearest emergency ambulance station). In the evaluations, we used
the Euclidean distances.

We applied a similar approach to model the allocation of emergency cases to hospitals.
The values of empirical probabilities for hospitals are displayed in Figure 9. Again, the dif-
ferences between Euclidean and road network distances are small, making the Euclidean
distances a more practical approach, as they are computationally less demanding. When
modelling a trip, an emergency case can be allocated to a station (hospital) following
the reported empirical probabilities. Comparing the allocation of emergency cases to
stations with hospitals revealed that a small number of hospitals was considered in each
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case, and most frequently, the closest hospital was selected. It can be explained by the
significantly higher spatial density of stations.

Figure 9. The empirical probabilities of emergency cases to be allocated to the k-th closest hospitals. (a) We used the
Euclidean distances. (b) We used the road network distances. In the analyses only "sphs" and "sps" trips were considered.

4.2.4. Routing of Emergency Ambulances

It is plausible to assume that ambulances take efficient paths, especially when heading
towards an emergency case location or transporting a patient to a hospital. We explored two
candidate models, the shortest (i.e., the path between two locations in the road network
with the smallest sum of road segment lengths) and the fastest (i.e., the path with the
smallest sum of travel time estimates of its constituent road segments) paths, and evaluated
their correlations with the real paths taken by emergency ambulances. It is also not equally
essential to model with high precision a part of the trip when an ambulance is transporting
a patient to the hospital or when it is returning without a patient to a station. To explain
these situations, we evaluated the routing at the level of movements.

We selected n = 4000 random samples of movements belonging to “sps” and “sphs”
trip types from the training set, for each “sp”, “ph”, “hs”, and “ps” movement type. To find
the shortest and fastest paths connecting initial and terminal points of movements, we
used the HERE REST API [51]. To evaluate the agreement between the lengths and the
durations of the movements and the estimated lengths and durations of the shortest and
fastest paths, we used the following indicators:

MAPE =
1
n

n

∑
i=1
|yi − ȳi

yi
|, (1)

RMSE =

√
∑n

i=1(yi − ȳi)2

n
, (2)

Pearson =
∑n

i=1(yi − 〈y〉)(ȳi − 〈ȳ〉)√
∑n

i=1(yi − 〈y〉)
√

∑n
i=1(ȳi − 〈ȳ〉)

, (3)

where yi denotes the actual sample value of the length or duration, ȳi is the estimated value
of the length or duration for either the shortest or the fastest path i, and 〈y〉 represents the
average of values yi, for i = 1, . . . , n. The values of indicators are presented in Table 2.

Though the lengths of shortest and fastest paths differed only slightly, we can conclude
that the fastest paths modelled the lengths of movements better than the shortest paths.
The fastest paths constituted a very good model for the routing of “sp” (see Figure 10a), “ph”
(see Figure 10b), and “hs” type movements, due to high values of the Pearson correlation
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coefficient and low values of MAPE and RMSE. As expected, the error was mostly caused
by underestimating the lengths of movements when using the fastest paths. The lengths of
“ps” movements were captured by the fastest paths less precisely (see Figure 10c). As the
ambulance is returning to the station, the crew is sometimes refuelling the vehicle or visiting
the main station. Consequently, routing efficiency decreases. Somewhat surprisingly, we
did not observe a similar effect for the “hs”-type movements, which might be related to
the difficulties with inferring the positions of “p” stops from GPS data, whereas “h” stops
were identified more reliably, as we knew the exact geographical locations of hospitals.

Table 2. An evaluation of the agreement between the lengths and durations of real movements and
the shortest and the fastest paths connecting the same origins and destinations.

Movement
Type

Real Paths

Length [m] Duration [min.]

MAPE RMSE Pearson MAPE RMSE Pearson

Sh
or

te
st

pa
th

s

sp 0.079 2222.6 0.948 0.280 12.2 0.432

ph 0.136 2656.9 0.962 0.323 11.6 0.604

hs 0.105 1492.4 0.988 0.322 12.6 0.570

ps 0.168 6860.1 0.678 0.342 22.7 0.180

Fa
st

es
t

pa
th

s

sp 0.071 2085.2 0.952 0.257 11.9 0.439

ph 0.135 2491.5 0.965 0.294 11.5 0.610

hs 0.151 1562.0 0.986 0.288 12.4 0.676

ps 0.165 6794.1 0.680 0.335 22.7 0.178

Figure 10. The scatter plots of observed and estimated parameters of movements. (a) The lengths
of “sp”-type movements. (b) The lengths of “ph”-type movements. (c) The lengths of “ps”-type
movements. (d) The duration of “ps”-type movements. To facilitate the comparison, we display a
diagonal line with slope 1.0 in each plot, and we show the histogram for each quantity.
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When making the HERE REST API requests, we set the initial date and time of depar-
ture. We activated a parameter that enabled us to consider the real-time traffic situation
when calculating the shortest and fastest paths. Nevertheless, Table 2 and Figure 10d show
that the estimated durations using shortest and fastest paths provided by the HERE REST
API [51] were not good estimates of travel time. For this reason, we devised a specific
model to estimate the travel time, which is presented in Section 4.2.5.

4.2.5. Travel Time

We developed a simple model to provide sufficiently accurate predictions of travel
time. We consider the most common trips “sps” and “sphs”, and five types of movements:
“sps_sp” (the first part of the string indicates the type of trip, and the second part indicates
the type of the movement; in this case, the first movement of the trip was heading from
the ambulance station “s” to the patient location “p”), “sps_ps”, “sphs_sp”, “sphs_ph”,
and ”sphs_hs”. We prepared a model for each type of movement. We derived the travel
time T from the dependency on the movement length d. By adopting the approach
proposed by [29], where the ambulance movements from station to patient (i.e., ”sps_sp”
and “sphs_sp”) are considered, we introduce the model

T = m(d)ec(d)ε, (4)

where m(d) and c(d) are the following functions:

m(d) =
{

c
√

d d ≤ d0
ad + b d > d0,

c(d) =
√

b0(b2 + 1) + b1(b2 + 1)m(d) + b2m(d)2

m(d)
, (5)

with model parameters a, b, b0, b1, b2, c, d0, and ε. Numerical experiments on the Falck
dataset resulted in values of c(d) close to zero. Hence, we simplified the modelling function
to the following form:

T(d) =
{

c
√

d d ≤ d0
ad + b d > d0.

(6)

For the travel time T(d) in minutes and the distance d in metres, we obtained pa-
rameter values reported in Table 3. The data and the obtained functions are presented
in panels (a)–(e) of Figure 11. The linear part of the function was computed by linear
regression, and parameter c was given by a continuity requirement for T(d). Parameter
d0 was computed numerically to minimise the standard deviation. During the data pro-
cessing, we used the Cook distance to identify and discard the outliers, while following
recommendations given in the reference [52] (p. 112).

Table 3. Parameter values of the travel time models given by Equation (6) fitted on the Falck dataset.

Movement
Type

Model Parameters

a b c d0

sps_sp 0.0009 4.1949 0.1309 9471

sps_ps 0.0009 11.3793 0.4603 678

sphs_sp 0.0008 4.8589 0.1262 5745

sphs_ph 0.0015 −9.0302 0.1956 28239

sphs_hs 0.0012 −1.1298 0.1564 19554
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Figure 11. The dependence of travel time on the travelled distance for (a) “sps_sp”, (b) “sps_ps”,
(c) “sphs_sp”, (d) “sphs_ph”, and (e) “sphs_hs” movements. The function T(d) is displayed by red
on interval 〈0, d0〉 and by green on interval 〈d0, 40,000〉.

We can observe that movements “sps_sp” and “sphs_sp” led to similar results as
those reported in the reference [29]. For other movements, the data exhibit more vari-
ance. For “sphs_ph” movements, we obtained significantly different values of parameters,
and the breaking point was at a higher value of d0. We suppose that this was caused by
conditions involved during patient transport. In the case of “sphs_hs” movements, we
observed specific clusters of data that were caused by fixed distances between hospitals
and ambulance stations. In the case of “sps_ps” and “sphs_hs” movements, the great
dispersion of data can be explained by the fact that the ambulance drivers take various
detours or make stops.

4.2.6. Provision Times

Provision times, i.e., durations of stops at patients’ locations or hospitals, constitute
important parts of the trip duration. In Figure 12, we introduce the empirical distribution of
provision times for the “sps” and “sphs” trips. Distributions of provision times are bimodal.
Most likely, short provision times correspond to cases when patients are immediately
loaded into the ambulance. In contrast, longer provision times correspond to emergency
cases when treatment of the patient at the scene is required. We model the density functions
by the weighted sum of two gamma distributions:

f (x) = p
λα1

1 (x− 2)α1−1e−λ1(x−2)

Γ(α1)
+

+ (1− p)
λα2

2 (x− 2)α2−1e−λ2(x−2)

Γ(α2)
, (7)

where p ∈ 〈0, 1〉 is the weight, αi, λi for i = 1, 2 are parameters that need to be fitted to
data, and x ≥ 2 represents the provision time (i.e., we considered provision times longer
than or equal to two minutes due to data processing reasons). The symbol Γ(αi) denotes
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the gamma function. For the fitting, we used a grid search while evaluating the quadratic
error function. The values of parameters are presented in Table 4 and the corresponding
density functions are visualised in Figure 12a–c. Interestingly, by comparing panels (a) and
(b), we see that the distribution of provision times for “sps” trips is slightly wider than for
“sphs” trips.

Figure 12. The empirical distribution of provision times. (a) Durations of patient treatments in “sps” trips. (b) Durations of
patient treatments in the “sphs” trips. (c) Durations of stops at hospitals in the “sphs” trips. The red line indicates the fit to
the data given by Equation (7).

Table 4. Parameter values of the distribution function (7) fitted on the Falck dataset.

Trip Type
(Stop)

Model Parameters

p λ1 α1 λ2 α2

sps (p) 0.19 0.59 1 0.14 4

sphs (p) 0.21 0.54 1 0.2 4

sphs (h) 0.29 0.04 1 0.22 3

The quality of the fit was validated by the Kolmogorov–Smirnov (KS) test. The test
was successful if it output the value of the statistic D which was lower than the critical
value Dα (where α is the level of significance). We considered α = 0.05 as the level of
significance. The results of the KS test, presented in Table 5, confirmed the significance of
all obtained distribution functions.

Table 5. Results of the Kolmogorov–Smirnov test.

K-S Test
Values

Trip Type (Stop)

sps (p) sphs (p) sphs (h)

D0.05 0.137 0.136 0.136

D 0.077 0.089 0.091

4.2.7. Modelling the Start Times of Ambulance Trips

In simulation models of EMS, could be necessary to model the occurrence of emergency
ambulance trips in time. We considered three relevant time scales for ambulance trips:
time of day, day of week, and month of the year. In Figure 13, we evaluate the empirical
probabilities of an ambulance trip to be initiated within a given period. During the day,
the probability fluctuates, but we can observe two peaks: first, at approximately 9.00 a.m.
and second at 7.00 p.m. Emergency cases were approximately uniformly distributed over
the days of the week and months of the year. We considered the trip types “sps” and “sphs”
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separately, finding very similar results. Hence, we report only figures summarising all trips
of these two types.

Figure 13. Empirical probabilities of the initial time of emergency ambulance trips evaluated at three
different time scales. (a) The time scale of hours. (b) The time scale of weekdays. (c) The time scale
of months. The analysis was done on “sps” and “sphs” trips. To avoid the bias caused by different
availability of data from ambulances, in panel (c), we considered only trips that took place in 2018, as
the data from all vehicles were available for that complete year.

Determining the total number of trips that needed be generated for a given area based
on our dataset (e.g., per unit of time and per capita) was difficult, as we analysed data
from only one service provider. Falck Záchranná a.s. was the major service provider in this
period for the given area; however, we cannot exclude that emergency medical services
were also provided by some other providers, e.g., ambulances operated by hospitals.

Considering the total number of trips of patterns of “sps” and “sphs” types reported in
Figure 6 and the overall period in which the data was collected, we calculated the average
number of trips per month; see Table 6. Thus, these numbers apply to the ambulances and
stations considered in this paper, and if needed, these numbers can be recalculated per
ambulance or per ambulance station. Nevertheless, these numbers were used to evaluate
the system from the perspective of one service provider only.

Table 6. The total number and the average number of trips per month and per trip pattern.

Trip Pattern Total Number of Trips Average Number of Trips/Month

sps 10,881 294.1

sphs 23,288 629.4
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4.3. Validation of Models

We validated models derived from data by using them to generate ambulance trips
and comparing them with real trips. We split data into training and test sets, which is a
standard approach in statistical and machine learning to test the generalisation abilities of
models [53]. First, we split the trips of types “sps” and “sphs” randomly into two groups:
training set (8646 and 18,555 trips of types “sps” and “sphs”, respectively, which is about
80% of trips) and test data (2235 and 4733 trips of types “sps” and "sphs", respectively,
which is about 20% of trips). To create the models presented in Sections 4.2.2–4.2.6, we
used only the training data. Second, using models presented in Sections 4.2.2–4.2.6, we
generated 2235 and 4733 trips of types “sps” and “sphs”, respectively, and in this section
we compare them with the trips in the test set.

The process of generating a trip is initiated by drawing a start time (hour of the day)
from the empirical distribution presented in Section 4.2.7. As concluded from the analyses,
the probabilities of observing an ambulance trip as a function of the month of year or day
of the weak are close to uniform. Thus, the day when an ambulance trip took place was
chosen with uniform probability from the interval 1 March 2016 to 30 April 2019, which is
the period when the data were collected.

To generate the spatial characteristics of a trip, we started by selecting the location
of an emergency case by using a model presented in Section 4.2.2. Next, the location was
assigned to an emergency station, and if it was an “sphs” trip, to a hospital by applying the
strategies presented in Section 4.2.3. To find routing for all movements, the approaches
discussed in Section 4.2.4 were utilised while using HereR library [51] and considering the
start times, to account for traffic. The provision times at the emergency locations and at
the hospitals were drawn from empirical distributions presented in Section 4.2.6). Finally,
travel time was set based on models presented in Section 4.2.5.

To validate the proposed models and evaluate which strategies lead to the most
realistic spatial characteristics of trips, we compared the distribution of movements length
and duration of generated trips with the trips in the test set. Preliminary evaluations
indicated that the largest impacts on the obtained density functions were the locations of
emergency cases, the allocation of cases to hospitals, and the routing. Thus, no modelling
alternatives were considered for the empirical probabilities that characterise the allocation
of emergency cases to stations presented in Figure 8. We generated several sets of trips
while considering the following modelling options:

1. Location of an emergency case (see Section 4.2.2):

• L1—default: By exponential model 0.009x1.351 to identify a 1500× 1500 grid cell
and then choose a location within a cell with uniform probability.

• L2—alternative: By the linear model 0.139× x− 14.539 to choose a 1500× 1500 grid
cell and then find a location within a cell with uniform probability.

• L3—alternative: To choose a 1500× 1500 grid cell with empirical probabilities
(derived from data) and then find a location within a cell with uniform probability.
Comparison of this option with L1 and L2 enables us to evaluate the models
locating the emergency cases based on the proposed models that depend on the
population density.

2. Allocation of an emergency case (see Section 4.2.3):

• A1–default: To a hospital following the empirical probabilities of allocating a
station to the 1st, 2nd, 3rd, and so on closest hospital;

• A2—alternative: To the closest hospital;
• A3—alternative: To a hospital following the closest-hospital-specific empirical

probability distribution to allocate a station to the 1st, 2nd, 3rd, and so on
closest hospital.

3. Routing (see Section 4.2.4):

• R1—default: Following the fastest path in the road network;
• R2—alternative: Following the shortest path in the road network.
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4.3.1. Validation of Spatial Characteristics

To evaluate the above-mentioned modelling options, we compare the probability
density function of movement length with the default settings (i.e., L1_A1_R1_1) and
test data in Figure 14. Models fit the test data for both movements (“sp” and “ps”) of
“sps” trips and the “sp” movements of “sphs” trips well. Models fit less satisfactorily the
movements heading towards the hospital, as the distribution was multimodal for that
phase. This effect was even more pronounced with the movements returning from the
hospital to the ambulance station. In the latter case, this was caused by detours (e.g., often
related to visits to petrol stations or destinations other than home emergency stations) that
ambulances often take. Detours add to the complexity of movements and are difficult to
predict. Movements when an ambulance is returning back to the emergency station are not
so critical for the EMS, as they have a limited impact on the quality of service provided to
the patients. For this reason, we did not put a high priority on these movements.

Figure 14. The probability density functions of movements’ lengths for “sps” and “sphs” trips. Each panel (a–e) corresponds
to a different movement type of “sps” and “sphs” trips (indicated by the x-axis label). The default settings, i.e., L1_A1_R1,
are compared with test data, a linear model (L2), empirical probabilities (L3), the allocation of emergency cases to the closest
hospital (A2), closest hospital-specific empirical probability distributions (A3), and the shortest path’s routing (R2).

By comparing the modelling options with the trips in the test sets, we validated the
models. To facilitate the comparison, we present in Table 7 the values of the Kullback–
Leibler (KL) divergence [54].

DKL(p(x)||q(x)) =
∫ ∞

−∞
p(x)

p(x)
q(x)

dx, (8)
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where p(x) is the distribution corresponding to the test dataset and q(x) is the distribution
corresponding to a model. The KL divergence is a measure of a distance between two
density functions. Values of DKL are non-negative. Larger values indicate larger differences
between distributions and DKL = 0 if and only if the distributions are identical.

To understand the impact of randomness on the density functions, we generated
five independent sets of trips (i.e., L1_A1_R1_1–L1_A1_R1_5) for the default settings
(i.e., L1_A1_R1) while varying the seed that affects the sequence of numbers produced
by random number generators. A comparison of the first five rows in Table 7 with other
rows confirms that the variance due to the randomisation was smaller than the differences
between models. Instances of random numbers had only minor effects on the distribu-
tion, confirming that the test set constitutes a sufficiently large sample of data (see also
Figure S2 of the Supplementary Information File). Overall, the differences between mod-
els and the test data are small. No model fit the test data in the best way for all types of
movement. According to D̄KL (the row average of DKL values), the lengths of movements
are approximated the best by the L1_A2_R1 model. The values of D̄KL for the L1_A1_R1,
L2_A1_R1„ and L3_A1_R1 models are similar as well. Hence, modelling options L1 and
L2, presented in Section 4.2.2 are valid alternatives for L3.

Table 7. The values DKL of the KL divergence measuring the distances between probability density
functions of movement lengths obtained by models and trips in the test dataset. In column D̄KL,
the row averages of DKL values are presented.

Model
Movement

sps_sp sps_ps sphs_sp sphs_ph sphs_hs D̄KL

L1_A1_R1_1 0.014 0.014 0.023 0.042 0.112 0.041

L1_A1_R1_2 0.013 0.014 0.021 0.038 0.109 0.039

L1_A1_R1_3 0.019 0.017 0.028 0.041 0.129 0.047

L1_A1_R1_4 0.019 0.020 0.025 0.039 0.111 0.043

L1_A1_R1_5 0.016 0.016 0.022 0.038 0.120 0.042

L1_A1_R2 0.014 0.016 0.016 0.039 0.103 0.038

L1_A2_R1 0.014 0.014 0.022 0.032 0.043 0.025

L1_A3_R1 0.014 0.014 0.022 0.031 0.071 0.030

L2_A1_R1 0.007 0.007 0.035 0.053 0.116 0.044

L3_A1_R1 0.025 0.028 0.009 0.031 0.081 0.035

4.3.2. Validation of Temporal Characteristics

Analogously to the previous section, here we compare the temporal characteristics of
trips with the test set. Figure 15 presents the probability density functions of the duration
of movements determined by models presented in Section 4.2.5. The initial movements
(“sps_sp” and “sphs_sp”) agree very well with the test data. The dependency of the
duration of outbound movements from a patient’s location on distance is associated with
higher variability (see panels (b) and (d) of Figure 11). Consequently, the estimates of
movement duration (panels (b) and (d) in Figure 15) were less precise. Similar to lengths,
the density function of the duration of return movements to the station of the trip type
“sphs” is multimodal (see panel (e) of Figure 15). It is difficult to fit with models such
complex shapes exactly; nevertheless, the overall trend was well captured. Again, it
is worth noting that return movements to the ambulance station are not so critical for
the quality of service provided by the EMS and are often combined with various types of
poorly predictable detours. To gain better insights into the differences in the performance of
models, we calculated values of the KL divergence, DKL; see Table 8. At the movement level,
values DKL confirm that initial movements (“sps_sp” and “sphs_sp”) were fitted by models
better than other movements. No model performed the best for all types of movements,
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and the performances of the models were very similar. Moreover, the DKL values for the
models are comparable to the values obtained for randomisations of the default model,
L1_A1_R1_1–L1_A1_R1_5. In Figure 16, we compare the probability density functions of
the durations of entire trips resulting from models with the test data. The models fit the
test data very well. The values of the KL divergence in Table 8 confirm the good fit.

Figure 15. The probability density functions of movement duration. Each panel (a–e) corresponds to a different movement
type of “sps” and “sphs” trips (indicated by the x-axis label). The default settings, i.e., L1_A1_R1, are compared with test
data, a linear model (L2), empirical probabilities (L3), the allocation of emergency cases to the closest hospital (A2), closest
hospital-specific empirical probability distributions (A3), and shortest path routing (R2).
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Figure 16. The probability density functions of trip duration. Panel (a) corresponds to “sps” and
panel (b) to “sphs” trips. Five randomisations of default settings, i.e., L1_A1_R1_1 to L1_A1_R1_5,
are compared with linear model (L2), empirical probabilities (L3), the allocation of emergency cases
to the closest hospital (A2), closest hospital-specific empirical probability distributions (A3), shortest
path routing (R2), the model presented in [46,47], and test data.

Table 8. Values DKL of the KL divergence measuring the differences between the probability density
functions of duration for generated movements (left) and generated trips (right), and trips in the test
dataset. The row averages of DKL values for movements are presented in column D̄KL.

Model
Movement Trip

sps_sp sps_ps sphs_sp sphs_ph sphs_hs D̄KL sps sphs

L1_A1_R1_1 0.012 0.075 0.026 0.039 0.178 0.066 0.013 0.006

L1_A1_R1_2 0.010 0.075 0.024 0.036 0.180 0.065 0.019 0.007

L1_A1_R1_3 0.014 0.071 0.028 0.038 0.212 0.073 0.016 0.007

L1_A1_R1_4 0.015 0.065 0.030 0.041 0.184 0.067 0.014 0.006

L1_A1_R1_5 0.012 0.072 0.026 0.039 0.187 0.067 0.010 0.005

L1_A1_R2 0.012 0.072 0.022 0.037 0.156 0.060 0.018 0.008

L1_A2_R1 0.012 0.066 0.025 0.058 0.229 0.078 0.017 0.004

L1_A3_R1 0.012 0.066 0.025 0.043 0.153 0.060 0.011 0.006

L2_A1_R1 0.007 0.072 0.034 0.044 0.174 0.066 0.012 0.010

L3_A1_R1 0.020 0.072 0.017 0.030 0.092 0.046 0.022 0.006

In addition, we applied the Kolmogorov–Smirnov (K-S) test to investigate the hypoth-
esis that values of the lengths and durations of movements and trips fit such values in the
test dataset. The results of the K-S test are presented in Tables S1–S5 of the Supplementary
Information File. In the majority of cases, the hypothesis H0 was not rejected. The rejected
cases are associated with the times during movements when the ambulance was returning
to the station. For the model L1_A2_R1, the hypothesis was also rejected for the times
during movements where a patient was being transported to the hospital.

Overall, regarding the length and the duration, the differences between models’
variants are small. Hence, the best choice appears to be a simple and less data-demanding
model. From this perspective, the default model L1_A1_R1 is a reasonable choice.
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4.4. Use of the Data Models in Simulations and Optimisations

Researchers and practitioners can use the proposed modelling framework in optimi-
sations and simulations of EMS to improve the validity of models. The benefits of the
proposed model against assumptions applied in optimisation and simulation models of
EMS were visible in several comparisons presented in the paper. For example, Figure 10d
shows a weak correlation between the travel times of movements and estimated travel
times provided by HERE REST API. Hence, we can expect that travel time estimates pro-
vided by HERE REST API would lead to pure models. In [22], visits of hospitals were
excluded in numerical analysis. Similarly, optimisation models based on the p-median
approach excluded hospital visits [17,18]. In Figure 6, we showed that trips that included
visits to hospitals were dominant. Excluding the visits to hospitals when modelling ambu-
lance trips would undoubtedly lead to a significant difference in the distributions of the
durations and lengths of movements (trips), as is visible in Figures 14–16. In Figure 16, we
added a comparison with the state-of-the-art model presented in [46,47]. We found a good
fit for “sps” trips; the model [46,47] only very slightly overestimated the number of trips
with very short durations. For “sphs” trips, model [46,47] systematically overestimated
the duration. Thus, this comparison confirmed the superiority of our models. Hence, we
recommend EMS researchers to apply (if possible) valid models derived from data, rather
than models based on assumptions derived from incomplete data or common sense.

In simulations, realistic ambulance trips that well fit the spatiotemporal properties of
real trips can be generated in the same way as validation trips in Section 4.3. Several com-
ponents of the modelling framework can be used in optimisation models. In the p-median
or p-centre-based optimisation models [4], the costs associated with the assignment of
patients to ambulance stations or hospitals can be more precisely estimated by considering
the probabilities of the most frequent trip patterns presented in Section 4.2.1. Furthermore,
descriptions of the dependencies of emergency occurrences in the population, introduced
in Section 4.2.2, can be used to estimate the spatial distribution of the EMS demand better.
Empirical probability distributions describing allocation of ambulances to emergency cases
(Section 4.2.3) can be used to model such allocations realistically for location optimisations.
Analyses of the routing (Section 4.2.4) and travel time (Section 4.2.5) can be used in the
coverage type of optimisation models, where valid estimates of times required to reach
patients are crucial.

5. Conclusions

A modelling framework able to reproduce some statistical spatiotemporal characteris-
tics of emergency ambulance trips was proposed in this paper. More specifically, a unique
GPS-based dataset describing the operation of ambulances was collected. A rule-based
procedure was designed and applied to extract a set of ambulance trips from GPS-based
measurements. A series of models capturing the main spatiotemporal characteristics of am-
bulance trips was created and fitted on the training dataset. Selected modelling alternatives
were compared and evaluated using the test dataset. The results of numerical experiments
demonstrated that the models satisfactorily capture the statistical distributions describing
the lengths and durations of ambulance trips. The Kullback–Leibler divergence reached
values in the range from 0.007 to 0.129 for travelled distances and from 0.004 to 0.229 for
travel times. The K-S test at the significance level of 0.05 accepted the fit in the vast majority
of cases.

The differences between model variants were small; hence, the best choice appears to
be a simple and less data-demanding model. Thus, a reasonable choice is the default model
L1_A1_R1, and applying the following modelling choices: exponential dependency on the
population density to locate emergency cases; emergency cases being allocated to hospitals
following the empirical probabilities of allocating a station to the 1st, 2nd, and 3rd closest
hospitals (etc.); and ambulances being routed using fastest paths. This is an important
contribution that opens new research perspectives, as spatiotemporal characteristics of
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emergency trips represent an important input to pursue the operational excellence of
EMS systems.

The proposed models are dependent on publicly available tools and data, and hence
are simple to use. Together with models, we also presented the parameter values. Thus,
models can be easily used by other researchers or practitioners to support modelling efforts
in the EMS domain. Generated ambulance trips can be used to optimise the operation of
the EMS or assess the suitability of the EMS design, e.g., to determine a suitable number
of ambulances, the scheduling of ambulance crew shifts, or the appropriate number of
ambulance stations and their locations.

Limitations and Future Research

Several important limitations are inherited from our modelling assumptions. The ma-
jority of operations (e.g., transport and provision of the service) are considered to be
independent, and possible dependencies—e.g., the dependence of the provision time on
the ambulance crew—are neglected. To keep the models easily applicable, some possibly
relevant determinant factors (e.g., the use of blue lights and sirens) were been considered
in this paper. All the data were collected in the Žilina region, where only several medium-
sized and small municipalities are located. The whole area is mountainous, and only
valleys are inhabited. This has a profound impact on the shape of the road network and
thus on emergency trips. Both urban and rural areas are present and served by ambulances.
Thus, the presented results are primarily applicable to similar landscapes—e.g., Bolzano
(Italy), Arecibo (Portoriko), and Medford (USA, Oregon). Our results should not be gener-
alised to flatlands, highly urbanised areas, or other types of high-density population areas.
Nevertheless, the applied modelling techniques are universal and can be applied to data
from an arbitrary region.

Our models will bring direct practical benefits, as they will be implemented in a
simulation model of EMS [46,47] that has been previously used in several applications. An
important part of further investigations should be quantifying improvements resulting
from data-centric modelling by using optimisation and simulation models. Future work
will involve using determinant factors and modelling techniques to better predict locations
of emergency cases. In addition, future work will explore which modelling techniques
can provide the best predictions of ambulance trajectories and ambulance travel times.
Further research could focus on the exploration of possibilities regarding how to design
data-centric approaches to optimise the structure of EMS, or on the study of delays of
ambulances at signalised and unsignalised intersections from GPS-based measurements.
Point processes could be applied, e.g., to destinations, or other components, to model the
spatial characteristics of ambulance trips.
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