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Abstract: Reversible data hiding in encrypted images (RDHEI) is a technology which embeds secret
data into encrypted images in a reversible way. In this paper, we proposed a novel high-capacity
RDHEI method which is based on the compression of prediction errors. Before image encryption,
an adaptive linear regression predictor is trained from the original image. Then, the predictor is
used to obtain the prediction errors of the pixels in the original image, and the prediction errors are
compressed by Huffman coding. The compressed prediction errors are used to vacate additional
room with no loss. After image encryption, the vacated room is reserved for data embedding. The
receiver can extract the secret data and recover the image with no errors. Compared with existing
approaches, the proposed method efficiently improves the embedding capacity.

Keywords: reversible data hiding; image encryption; linear regression; Huffman coding

1. Introduction

Reversible data hiding (RDH) is a technology that allows the reversible embedding
of secret data into various carriers (such as digital images, texts, and videos) with no
obvious distortion [1,2]. With the development of cloud services, more and more images
are being stored and addressed in the cloud instead of user terminals. This brings the
problem of privacy protection for the users. Image encryption is the most widely used
technology to ensure the content security of image content. Currently, image encryption
schemes are usually based on stream cipher [3], public key cryptosystem [4], or chaotic
system [5]. Therefore, methods have been proposed that allow reversible data hiding in
encrypted images, which allows the cloud (data hider) to embed secret data into encrypted
images reversibly without image decryption. To date, the proposed RDHEI methods can be
classified into three categories, i.e., (1) reserving room before image encryption (RRBE), (2)
creating room by encryption (CRBE), and (3) vacating room after image encryption (VRAE).

In the RRBE method, the original image is pre-processed to vacate additional room
before the image is encrypted. The vacated room is reserved after the image is encrypted,
and this room can be used by the data hider for embedding data. Ma et al. [6] proposed the
first RRBE method, and it divided the original image into a smooth area and a complex area.
The least significant bits (LSBs) of the complex area are embedded into the smooth area
using RDH methods for plaintext images, so that the spare LSBs can be used for embedding
data after the image is encrypted. Based on Ma et al.’s method, several improved methods
have been proposed [7–10]. In [7], the image was divided into three parts, and a more
efficient RDH scheme was used for embedding LSBs. In [8], bicubic interpolation and
partitioned local histogram shift were used for embedding LSBs. In [9], a reversible contrast
mapping scheme was used for image partition, and the GRCM algorithm was used for
embedding LSBs. In [10], the Paillier cryptosystem was used for image encryption, and
a mirroring ciphertext group scheme was used so that the secret data could be extracted
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from encrypted images or decrypted images. In [11], some pixels were selected from the
original image, and they were estimated by their surrounding pixels to generate estimation
errors. Histogram shift was used to modify these estimation errors for embedding data.
In [12], an interpolation technique in [13] was used to generate interpolation error of
pixels, and a designed histogram shift scheme was used for embedding data. In [14],
the image was divided into patches, and each patch was encoded by the patches-level
sparse coding to vacate additional room. In [15], the most significant bit (MSB) planes
of the image were divided into non-overlapping blocks, and each block was encoded by
a designed sparse matrix coding scheme to vacate room. In [16], an MSB predictor was
designed to vacate room in the MSB plane of the original image. In [17], an MSB plane
rearrangement scheme and extended run-length coding were used jointly to compress the
MSB planes for additional room. In [18], the median edge detector (MED) was used to
predict multi-MSBs of each pixel, and a set of Huffman coding-based labels was used to
label the prediction result of each pixel for additional room. In [19], the image was divided
into non-overlapping blocks, and an adaptive reversible integer transformation was used
for each block to vacate embedding room.

In the CRBE methods, embedding room was created based on the designed image
encryption scheme. At present, the idea that is used most extensively is that the image
encryption scheme partially keeps the redundancy of the original image in the encrypted
image. In [20–31], different block-level image encryption schemes were used to maintain
the spatial correlation inside the blocks of the encrypted image. In [20], the image was
encrypted by a stream encryption scheme that consisted of block-level permutation and
block-level bit-XOR. The proposed histogram shifting-based RDH methods can be used
directly on the encrypted image. In [21], a cross division image encryption scheme was used
to keep spatial correlation in cross blocks, and a difference histogram shifting scheme was
used for hiding data. In [22], a pixel value ordering scheme was designed to embed data
into the 2 × 2 encrypted blocks. In [23], a block-level prediction-error expansion scheme
was used to embed data into the 2 × 2 encrypted blocks. In [24], a run-length coding
compression and a matrix compression were used to compress 2 × 2 encrypted blocks
to create room for embedding data. In [25], a multi-level histogram shifting scheme was
used for each encrypted block to embed data. In [26–28], different encoding schemes were
used to compress the MSB planes of each encrypted block. In [29,30], for each encrypted
block, one pixel was used to label the other pixels, so that additional bits could be spared
for embedding data in the other pixels. In [31], a block histogram modification scheme
was used to embed data into the LSB planes of each encrypted block. In [32,33], specific
image encryption schemes were designed to transfer the redundancy of the original image
into the encrypted image. In [32], a reversible image transformation scheme was used to
encrypt images. After the images were encrypted, they were transformed other plaintext
images as encrypted images, and traditional RDH methods can be used directly on the
encrypted images. In [33], a reversible image reconstruction scheme was used to encrypt
images. The original image was reconstructed into a meaningless redundancy image on
which the traditional RDH methods were available.

In VRAE methods, the encrypted image has no spatial correlation or redundancy. The
reversibility relies on the spatial correlation of the decrypted image. In [34], the image
was divided into non-overlapping blocks. To embed one bit into one block, the three LSBs
of half of the pixels in the block were flipped. At the receiver’s side, first, the image was
decrypted and then a smoothness estimator was used for each block to identify the flipped
pixels so that the image could be recovered and the embedded bits could be extracted. This
method was improved in [35–38]. In [35], an improved smoothness estimator and a side
match scheme were used to reduce errors in the extraction of data and the recovery of
images. In [36], a more precise estimator and a smoothness difference ordering scheme
were used. In [37], the data embedding scheme was improved to reduce distortion, and a
content-based predictor was used to estimate the smoothness. In [38], the data embedding
scheme was improved, and an estimation scheme that used multiple judgements was used
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to reduce the error rate. In [39], an LSB-swap scheme was used for embedding data to
improve capacity. In [40], a public key modulation mechanism was used for embedding
data, and a support vector machine (SVM) classifier was used for the extraction of data and
to recover the image. In [41], pixels were divided into same-size groups for embedding
data, and a designed predictor was used to recover the images. The method was extended
in [42,43] for higher capacity. In [44], the LSBs of the image were compressed by using a
compression matrix for embedding room, and an LSB predictor was used for the recovery
of the compressed bits. The methods in [45,46] improved the method in [44]. In [45], the
LSB planes of the pixels were divided into three subsets and compressed by three different
compression matrices, and three different predictors were used in three rounds to recover
the images. In [46], the images were divided into smooth blocks and complex blocks, and
only the LSBs of the smooth blocks were compressed. In [47,48], LDPC encoding was used
to directly compress the encrypted bits, and the uncompressed bits were used to recover
the images.

Because these three types of the RDHEI methods embed secret data and achieve
reversibility in completely different ways, the RRBE, CRBE, and VRAE methods cannot be
replaced with each other. In RRBE methods, so far, the existing methods use the redundancy
and spatial correlation of the original image to vacate room for embedding data. Some
methods vacate room by lossless compression [14–18]. In these methods, the key point is
how to efficiently encode the redundancy information by fewer bits.

Aiming to design a more efficient encoding scheme to vacate larger capacity, in this
paper, a novel RRBE RDHEI method was proposed based on linear regression and Huffman
coding. Due to the lightweight and fast training of linear regression models, the cost of
training a specific linear regression model for an original image is acceptable. The linear
regression model can be used as a pixel predictor. Based on the predictor, most of the
prediction errors of the pixels are concentrated in a small range centered on 0. These
prediction errors can be encoded efficiently by using Huffman coding. By using the
predictor, the Huffman codeword table, and the encoded prediction errors, a significant
amount of room can be vacated in the original image for embedding data without losing
information. The main contributions of the proposed method are as follows:

(1) A scheme is proposed for vacating high-capacity data hiding room in the original
image, and the scheme is based on linear regression and Huffman coding. The scheme
can work effectively for images that contain large complex regions.

(2) A novel RRBE RDHEI method is proposed based on the scheme of vacating room.
Compared with the existing RDHEI methods, the proposed method can use redun-
dancy of the original image more efficiently to vacate larger room for data embedding.
The experimental results show that the proposed method can achieve a higher em-
bedding rate and better visual quality than the related methods. The extraction of
data extraction and the recovery of images are separable and error-free.

The rest of this paper is organized as follows. Section 2 presents the details of the
proposed method. Section 3 shows the experimental results and provides a comparison of
the proposed method with existing methods. Section 4 presents our conclusions concerning
the proposed method.

2. Proposed Method

In this section, the details of the proposed RDHEI method are presented. Figure 1
shows the framework of the proposed method. The content owner first trains a linear
regression model from the original image. By using the linear regression model and
Huffman coding, embedding room is vacated in the original image. Then, the image is
encrypted and sent to the data hider. The data hider retrieves the embedding room and
embeds secret data into it. At the receiver’s side, the data hiding key is used to retrieve the
secret data, and image encryption key is used to recover the original image.
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2.1. Content Owner’s Work
2.1.1. Generating of the Linear Regression-Based Predictor

In the proposed method, to vacate a large amount of embedding room, an accurate
pixel predictor is required to generate concentrated prediction errors. To generate the
predictor, a linear regression model is trained based on the original image. Figure 2 shows
that the linear regression model predicts one pixel by using its three neighboring pixels,
and the predicted value is calculated as follows:

px = w0 + w1 p1 + w2 p2 + w3 p3. (1)
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To acquire the applicable four coefficients, i.e., w0, w1, w2, and w3, for the original
image, the linear regression model in Equation (1) is trained using the training dataset that
was constructed from the original image. The training dataset was constructed as follows.
Figure 3 shows that the original image is divided into two parts, i.e., (1) the reference pixels
that contain all pixels in the first row and the first column of the original image and (2) the
predictable pixels that contain the other pixels of the original image. Denoting the training
set as D = {X; Y}, Figure 2 shows that the target set Y consists of all predictable pixels,
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and the feature set X consists of the three neighbor pixels of each predictable pixel. For an
original image that has the size of H ×W, the training set D = {X; Y} is constructed as:

D =
{

pi,j, pi,j+1, pi+1,j; pi+1,j+1
∣∣1 ≤ i ≤ H − 1, 1 ≤ j ≤W − 1

}
, (2)

where pi,j is the pixel at the coordinates (i, j) of the original image.
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Based on the training set D, a linear regression model LM = {w0, w1, w2, w3} can
be trained by any linear regression algorithm. Using the model LM as the predictor, the
prediction errors of all predictable pixels can be calculated and encoded to vacate room in
the original image. The details are provided in Section 2.1.2.

2.1.2. Vacating Room for Hiding Data

Using the linear regression predictor LM = {w0, w1, w2, w3}, which is trained from
the original image, the predicted value pe

i,j of the predictable pixel pi,j is calculated by:

pe
i,j = round(w0 + w1 pi−1,j−1 + w2 pi−1,j + w3 pi,j−1) , where 2 ≤ i ≤ H, 2 ≤ j ≤W. (3)

The prediction error ei,j of pi,j is calculated by:

ei,j = pi,j − pe
i,j, where 2 ≤ i ≤ H, 2 ≤ j ≤W. (4)

For a standard 8-bit grayscale image, the range of ei,j is [−255, 255]. However, in most
cases, pe

i,j is close to pi,j, so the most prediction errors are concentrated in a small range
around 0. Figure 4 shows the prediction error histograms of Baboon and Lena (Figure 5b,f in
Section 4). As shown in the figure, the prediction errors are highly concentrated. Therefore,
all of the prediction error information of the image has a lot of redundancy and can be
compressed efficiently. For each predictable pixel pi,j, the original value can be calculated
by the predicted value pe

i,j, and the prediction error ei,j. If all of the reference pixels maintain
their original values, all of the predictable pixels can be recovered, row by row, using the
predictor LM and the prediction errors. Therefore, all of the predictable pixels in the
original image can be replaced by the predictor LM and the compressed prediction errors
to vacate room for hiding data without losing any information.
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In the proposed method, the prediction errors are compressed by Huffman coding.
Huffman coding is a variable length code scheme which construct the codewords with
the shortest average code length according to the probability of the appearance of each
character. The predictor LM and the compressed prediction errors are stored in the MSBs
of the predictable pixels, and the LSBs of the predictable pixels are used by the data hider
for embedding secret data after the image has been encrypted.

For an original image I sized H ×W, the detail procedure of vacating room is as
follows:

Step 1: Calculate all the prediction errors e2,2, e2,3, . . . , eH,W−1, eH,W according to Equa-
tions (1) and (2) using the predictor LM.

Step 2: According to the value distribution of the prediction errors, encode all of the
prediction errors using Huffman coding. Connect all the encoded prediction errors row by
row to form the bitstream BSpe = C(e2,2)C(e2,3) . . . C(eH,W−1)C(eH,W), where C

(
ei,j

)
is the

Huffman codeword of ei,j.
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Step 3: Construct the Huffman codebook of the encoded prediction errors. The
codebook CB = {N, (V1, L1, C1), (V2, L2, C2), . . . , (VN , LN , CN)}, where N is the number of
Huffman codewords, Vi is the value of the prediction error, Li is the length of the codeword,
and Ci is the codeword of Vi.

Step 4: From the most significant bit (MSB) plane to the lower bit plane, embed the
length information L, the predictor LM, the Huffman codebook CB, and the encoded
prediction error bitstream BSpe into the MSBs of all of the predictable pixels. The remnant
bits of the predictable pixels are used as data hiding room at the data hider’s side.

Figure 6 shows an example of vacating room in a 5× 5 image. To simplify the state-
ment, we assumed that the trained linear regression-based predictor LM = {w0 = 0, w1 = 0,
w2 = 1, w3 = 0} and that its binary representation is (0010)2. Using the predictor LM, the
prediction errors of the predictable pixels were calculated and compressed by Huffman
coding. In the Huffman codebook, 2 bits are used for N, 3 bits are used for Vi (the first
bit is the sign bit, and the last two bits are the absolute value), and 2 bits are used for Li.
After encoding the prediction errors and constructing the Huffman codebook, the length
information, the codebook, and the encoded prediction error bitstream are embedded
into 8th, 7th, and 6th MSB planes of the predictable pixels, and the rest of the bits of the
predictable pixels can be used for embedding data.
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2.1.3. Image Encryption

After vacating room, the vacated image is encrypted by a stream cipher. Using the
encryption key Ken, eight pseudo-random, ri,j,1, ri,j,2, . . . , ri,j,8, are generated for each pixel
pi,j in the vacated image. Decompose pi,j into 8 bits bi,j,1, bi,j,2, . . . , bi,j,8 as follows:

bi,j,k = pi,j/2k−1 mod 2, where k = 1, 2, . . . , 8. (5)

pi,j is encrypted into Ei,j as follows:

ei,j,k = bi,j,k ⊕ ri,j,k, k = 1, 2, . . . 8 (6)

Ei,j =
8

∑
k=1

ei,j,k × 2k−1 (7)
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After the image is encrypted, a certain number of the LSBs of the predictable pixels are
replaced with capacity information to enable the data hider to obtain room for hiding data.
Finally, the pre-processed encrypted image can be sent to the data hider for embedding the
secret data.

In the proposed method, an image sized H ×W is encrypted bit by bit with a pseudo-
random binary sequence of length H ×W × 8. In the binary sequence, each bit has almost
the same possibility of being 0 or 1. Therefore, without the encryption key, the attacker
should test 2H×W×8 possible binary sequences to find out the correct decrypted image from
the encrypted image. For the standard grayscale image sized 512× 512, the number of
possible binary sequences is 22097152—it is almost impossible to test all possible sequences
within an acceptable time. Therefore, the image encryption of the proposed method is
strong enough to protect the content security.

2.2. Data Hider’s Work

When the data hider receives the encrypted image from the content owner, the data
hider can obtain room for hiding data by extracting the capacity information from the LSBs
of the encrypted image. All of the bits in the data hiding room can be used for embedding
data. The secret data are embedded into the data hiding room by bit substitution. Using the
data hiding key Khide, the data hider pseudo-randomly selects the bits in the data hiding
room (from the LSB plane to the higher bit plane) and replaces these bits with the secret
data. To enhance the security of the secret data, they also can be encrypted before being
embedded into the data hiding room. The key used to encrypt the secret data must be
shared in advance by the data hider and the data receiver.

2.3. Receiver’s Work

The receiver acquires the marked encrypted image that contains the secret data from
the data hider. Using different keys, the receiver can retrieve the embedded data from the
image without decryption, recover the original image, or generate a marked decrypted
image that contains the secret data and is highly similar to the original image.

(1) Data Extraction. When the receiver has the data hiding key Khide, the receiver can
extract the embedded data directly from the marked encrypted image. First, the
receiver extracts the capacity information to obtain the room that is available for
hiding data. Then, the receiver uses Khide to extract the bits in the data hiding room
to obtain the embedded data.

(2) Image Recovery. When the receiver has the image encryption key Ken, the receiver
can reconstruct the original image or generate a marked decrypted image with
the embedded data. The detailed procedure is as follows: Step 1: Decrypt the
marked encrypted image by Ken. Step 2: Extract the predictor LM = {w0, w1, w2, w3},
the Huffman codebook CB, and the encoded prediction error bitstream BSpe from
the MSBs of the decrypted predictable pixels. Step 3: According to the Huffman
codebook CB, decode the bitstream BSpe, into the original prediction errors PE =
{e2,2, e2,3, . . . . . . , eH,W−1, eH,W}. Step 4: Use the predictor LM, the prediction errors
PE and the reference pixels to retrieve the original values of all predictable pixels row
by row and column by column. Step 5: In the decrypted image, if all predictable pixels
are recovered directly to their original values, the original image is reconstructed with
no error; if only the MSBs of the predictable pixels that were modified for vacating
room (Section 2.1.2) are recovered according to the original values, the marked de-
crypted image is generated, which is highly similar to the original image, and it still
keeps the embedded data in the LSB planes.

3. Experimental Results and Comparison

In this section, the experimental results and comparisons are provided to verify the
effectiveness of the proposed method. The experiments were performed on eight standard
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test images, as shown in Figure 5 [49]. The typical and state-of-the-art RDHEI methods
in [15,17,18,21,34,41] were used as the competitors.

Figure 7 shows the encrypted image, the marked encrypted image, the marked de-
crypted image, and the recovered image of Lena in the proposed method. Figure 7b is
the encrypted image after the image has been preprocessed and encrypted. Figure 7c is
the marked encrypted image with the embedding rate of 1 bpp after embedding the data.
Figure 7d is the marked decrypted image generated from Figure 7c. The PSNR value of
Figure 7d is 51.10 dB. Figure 7e is the recovered image, which is the same as Figure 7a.
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Table 1 shows the embedding rates of the proposed method and the methods in [15,17,
18,21,34,41] on the eight test images in Figure 5. The embedding rates are measured by bit
per pixel (bpp), i.e., the ratio of the number of secret bits to the number of image pixels. In
the proposed method, 128 bits were used to represent the linear regression-based predictor
(32 bits for each coefficient), and 9 bits and 5 bits were used to represent the prediction error
value and the length of the Huffman codeword, respectively, in the Huffman codebook.
In Zhang’s method [34], the block size was set to 4× 4. In Wu and Sun’s method [41],
the pixel group consisted of seven pixels, and the 6th LSB plane was used for embedding
data. Because extracted-bit errors may occur in Zhang’s method [34] and in Wu and Sun’s
method [41], the pure embedding rates in these methods are calculated by multiplying
the original embedding rate by (1− H(p))× ERO, where ERO is the original embedding
rate, and H(p) is the binary entropy for the extract-bit error rate p [15]. As shown in the
table, the proposed method for the eight images can achieve higher embedding rate than
the other methods. For the images that contain large smooth regions, such as Airplane,
Crowd, and Lena, the proposed method can achieve embedding rates higher than 3.4 bpp.
For the images containing many complex regions, such as Baboon, the proposed method
still works efficiently to achieve an embedding rate higher than 1.7 bpp, which is much
higher than the other methods. Since the proposed method directly respectively trains the
specific linear regression-based predictor for each original image, the predictor can be more
accurate than the conventional predictor for all imagesm such as median edge detector. In
smooth images such as Airplane, the predictor can be very precise. The prediction errors
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can be highly concentrated in a small range so that they can be compressed efficiently.
In complex images such as Baboon, it is hard to predict pixel values precisely, and the
prediction errors cannot be as concentrated as those in smooth images. However, the
predictor still reduces the errors as much as possible for higher capacity. Therefore, the
proposed method can efficiently use the redundancy of the original image to vacate large
room for data embedding.

Table 1. Comparison of embedding rates for the eight test images.

Images Airplane Baboon Barbara Couple Crowd Lena Man Peppers

Zhang [34] 0.034 0.005 0.017 0.017 0.029 0.030 0.014 0.019
Wu and Sun [41] 0.070 0.066 0.070 0.070 0.070 0.070 0.070 0.070

Li et al. [21] 0.698 0.223 0.404 0.732 0.761 0.770 0.558 0.741
BBE [15] 2.204 0.568 1.319 1.287 1.735 1.819 1.607 1.820

Chen et al. [17] 2.340 0.535 1.409 1.398 1.947 1.944 1.678 1.879
Yin et al. [18] 3.092 1.098 1.902 2.385 3.004 2.614 2.175 2.299

Proposed 3.711 1.745 2.408 3.021 3.545 3.413 2.733 3.088

Table 2 shows an average time of the proposed method in training linear regression-
based predictor, vacating room, image encryption, and data hiding (1 bpp). The exper-
imental environment is a computer with Intel i9-10920X 3.5GHz CPU, 32GB RAM, and
MATLAB R2017a. As shown in the table, training a linear regression-based predictor on an
original image for vacating room is quick and practical.

Table 2. Comparison of embedding rates for the eight test images (second).

Images Airplane Baboon Barbara Couple Crowd Lena Man Peppers

Linear regression 0.063 0.065 0.067 0.066 0.065 0.065 0.066 0.066
Vacating room 3.168 4.266 4.392 3.787 3.140 3.390 4.420 3.473

Image encryption 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008
Data hiding(1 bpp) 0.117 0.117 0.117 0.117 0.117 0.117 0.117 0.117

Figures 8 and 9 show the comparison of the marked decrypted image quality mea-
sured by peak signal to noise ratio (PSNR) in the proposed method and the methods
in [15,17,18,21,34,41]. PSNR is a standard for image distortion evaluation. PSNR higher
than 40 dB means that the quality of the marked decrypted image is very close to the
original image. PSNR value is calculated by

PSNR = 10× log10
(2n − 1)2

MSE
(8)

where MSE is the mean square error between all pixel values of the original image and the
marked decrypted image. Yin et al.’s method [15] is not included in the comparison because,
according to its original publication, the method directly embeds secret data into MSB
planes. After image decryption, the method cannot generate a marked decrypted image.
As shown in the figure, the proposed method can achieve a relatively high visual quality
at high embedding rates. The average PSNR of the proposed method was 51 dB/44 dB
when the embedding rate was 1 bpp/2 bpp. For different embedding rates, the PSNRs
of the proposed method are higher than those of the methods in [21,34,41], and they are
almost the same as the PSNRs of BBE [15] and Chen et al.’s method [17]. This is because
the proposed method embeds the secret bits in the LSB planes by bit substitution, which is
the same as BBE [15] and Chen et al.’s method [17].
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4. Conclusions

In this paper, a new, high-capacity RRBE RDHEI method is proposed that is based
on linear regression and Huffman coding. Before image encryption, a linear regression-
based predictor is generated from the original image. Using the predictor, most prediction
errors are concentrated in a small range, and they are compressed efficiently by Huffman
coding. By substituting the original information of the predicted pixels with the compressed
prediction errors and the auxiliary information, a large-capacity embedding room is made
available. Compared with the related works, the proposed method can achieve higher
embedding capacity, and vacate room efficiently for images with different contents.

In future works, we will consider designing more accurate predictors, and introducing
these predictors into the RRBE RDHEI for higher capacity. Additionally, we will con-
sider designed high-capacity CRBE RDHEI methods, which are based on prediction error
compression schemes, specific image encryption schemes, and high accurate predictors.
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