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Abstract: Load leveling problems and energy storage systems can be modeled in the form of Volterra
integral equations (VIE) with a discontinuous kernel. The Lagrange–collocation method is applied
for solving the problem. Proving a theorem, we discuss the precision of the method. To control the
accuracy, we apply the CESTAC (Controle et Estimation Stochastique des Arrondis de Calculs) method
and the CADNA (Control of Accuracy and Debugging for Numerical Applications) library. For this
aim, we apply discrete stochastic mathematics (DSA). Using this method, we can control the number
of iterations, errors and accuracy. Additionally, some numerical instabilities can be identified. With
the aid of this theorem, a novel condition is used instead of the traditional conditions.

Keywords: Volterra integral equations; Lagrange–collocation method; discrete stochastic mathemat-
ics; CESTAC method; CADNA library

1. Introduction

Consider the following VIE:

y(x) = f (x) +
M

∑
p=1

λp

∫ βp(x)

βp−1(x)
kp(x, t)y(t)dt, a ≤ x, t ≤ b, (1)

where the kernel kp(x, t) is discontinuous along continuous curves βp, p = 1, 2, ..., M
and f (0) = 0, β0 = a, βM = x ≤ b. This problem has many applications in engineering,
especially in power systems. In [1], the authors tried to find the parametric solution of
VIEs of the first kind. In [2], the authors presented a dynamical study of this problem for
applying energy storage (see, for example, [3–5] and the reference therein). In [6,7], the
system of VIEs with discontinuous kernels was illustrated. In [8–11], some applications of
VIEs to load forecasting and charge/discharge storage controls were analyzed.

There are several methods for solving IEs of the first and second kind, such as the Ado-
mian decomposition method [12], homotopy perturbation method [13], matrix method [14],
Taylor collocation method [15,16], homotopy analysis transform method [17,18], homotopy
analysis method [19–21], regularization method [22–24], Sinc–collocation method [25,26]
and many more [27–30]. The Lagrange–collocation method is one of the most accurate
and easily applicable methods for solving different problems. This method was applied
for solving time tempered fractional diffusion equations [31], Volterra–Fredholm integral
equations [32], multi-frequency oscillatory second-order differential equations [33], high
order boundary value problems [34], Hammerstein integral equations [35] and others.
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It should be mentioned that for solving mathematical and engineering problems, we
apply the methods, using floating-point arithmetic (FPA). In general form, the precision of
these methods should be obtained, using the following condition:

|y(x)− yn(x)| ≤ ε, (2)

which depends on the exact solution y(x), the approximate solution yn(x) and ε. Finding
the exact solution and the optimal ε are the main difficulties of the mentioned condition.
Without having the optimal ε, extra iterations are produced.

In order to avoid theses problems, we apply the DSA and a novel termination cri-
terion instead of (2). To this aim, the CESTAC method and the CADNA library are han-
dled. Additionally, we do not need to apply the condition (2) and we have the following
novel condition:

|yn(x)− yn−1(x)| ≤ @.0, (3)

where @.0 is the informatical zero, which can be produced only in the CESTAC method.
This sign shows the equality between the number of common significant digits (NCSDs) of
yn(x) and yn−1(x). For the first time, Laporte and Vignes [36,37] applied this method, and a
research group in France developed it [38]. By using this technique, we can find the optimal
results, iterations and error of the presented scheme. The CADNA library is the software
to write all the CESTAC codes. In this library, we apply C, C++, Fortran or ADA codes. In
addition, the Linux operating system should be applied for running the CADNA library.
Dynamical control of the Adomian decomposition method [12], homotopy perturbation
method [13], homotopy analysis method [20,21,39,40], numerical integration rules [41–45],
Sinc–collocation method [25,26], homotopy regularization method [24], Taylor–collocation
method [15,16] and many others [46], are some of applications of the mentioned technique.

The rest of the paper is organized as follows: Section 2 focuses on solving the VIE (1),
applying the Lagrange–collocation method. Additionally, the error analysis theorem is
proved. The CESTAC method and the CADNA library are discussed in Section 3 to validate
the obtained numerical results. The main theorem of the method is proved to apply the
novel condition (3). In Section 4, we solve some examples and validate the results using the
mentioned technique. Based on this procedure, we are able to find the optimal iteration,
approximation and error, which are the main novelties of this study. In Section 5, we
provide some conclusions.

2. Lagrange–Collocation Method

Let

y(x) ' yn(x) =
n

∑
j=0

yjlj(x), a ≤ x ≤ b, (4)

be the approximate solution of Equation (1) where

lj(x) =
n

∏
k=0,k 6=j

x− xk
xj − xk

, j = 0, 1, . . . , n,

for nodes a = x0 < . . . < xn = b. Replacing (4) into (1) leads to the following:

n

∑
j=0

yjlj(x) = f (x) +
n

∑
j=0

M

∑
p=1

λp

∫ βp(x)

βp−1(x)
kp(x, t)yjlj(t)dt. (5)

Substituting the collocation nodes xi = a + ( b−a
n )i, i = 0, 1, . . . , n in Equation (5), we

obtain the following:
n

∑
j=0

aijyj = f (xi), i = 0, 1, . . . , n, (6)

where
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aij = lj(xi)−
M

∑
p=1

λp

∫ βp(xi)

βp−1(xi)
kp(xi, t)yjlj(t)dt, i, j = 0, 1, . . . , n.

Thus, solving the following system,

AY = F, (7)

where
A = (aij)(n+1)(n+1),

Y = (y0, y1, . . . , yn)
T ,

F = ( f (x0), f (x1), . . . , f (xn))
T ,

the n-th order approximate solution of the VIE with discontinuous kernel (1) based on the
Lagrange polynomials can be obtained in the form of yn(x) = ∑n

j=0 yjlj(x).

Theorem 1. Let f (x) be a function defined on [a, b] and kp, p = 1, 2, . . . , M be sufficiently smooth
continuous on [a, b]× [a, b]. Let y(x) be the exact solution of (1), which is assumed to be arbitrarily
differentiable, and yn(x) the n-th order Lagrange collocation solution of (7). We obtain the following:

‖y(x)− yn(x)‖∞ ≤
S

(n + 1)!
max

a≤x≤b
|y(n+1)(x)|+ C max

a≤xj≤b
|e(xj)|

where S = maxa≤x≤b |wn+1(x)|, C = ‖l‖∞ = maxa≤x≤b{|l0(x)|, |l1(x)|, . . . , |ln(x)|}, e(xj) =
y(xj)− yn(xj).

Proof. For the exact and approximate solutions y(x) and yn(x), we obtain the following:

‖y(x)− yn(x)‖∞ ≤ ‖y(x)− ln(x)‖∞ + ‖ln(x)− yn(x)‖∞,

where

ln(x) =
n

∑
j=0

y(xj)lj(x), yn(x) =
n

∑
j=0

yjlj(x)

are the interpolation function and the approximate solution of (1), respectively.
By writing the remainder term of the interpolation polynomial as Rn(x) = y(x)−

ln(x) = y(n+1)

(n+1)! wn+1(x), we can write the following:

|Rn(x)| ≤ 1
(n + 1)!

max
a≤x≤b

|y(n+1)(x)| max
a≤x≤b

|wn+1(x)| = S
(n + 1)!

max
a≤x≤b

|y(n+1)(x)|. (8)

By denoting δn = (e(x0), e(x1), . . . , e(xj), . . . , e(xn))T and l = (l0(x), l1(x), . . . , ln(x))T ,
we obtain the following:

|ln(x)− yn(x)| =
∣∣∣∣∣ n

∑
j=0

(y(xj)− yj)lj(x)

∣∣∣∣∣ = |δnl| ≤ ‖δn‖∞‖l‖∞ ≤ C‖δn‖∞, (9)

where e(xj) = y(xj)− yn(xj).
Using Equations (8) and (9), we can write the following:

‖y(x)− yn(x)‖∞ ≤ 1
(n+1)! maxa≤x≤b |y(n+1)(x)|max |wn+1(x)|+ ‖l‖∞‖δn‖∞

= S
(n+1)! maxa≤x≤b |y(n+1)(x)|+ C maxa≤xj≤b |e(xj)|.
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3. CESTAC Method and CADNA Library

In order to apply the CESTAC method, we need to use the SA; generally, we utilize this
method to control the accuracy of numerical and iterative methods for solving mathematical
and engineering problems [47,48].

Assume that B is a set of representable values by a computer; for s∗ ∈ R, we can
produce S∗ ∈ B with α mantissa bits of the binary FPA as the following:

S∗ = s∗ − ρ2E−αφ, (10)

where ρ shows the sign, 2−αφ demonstrates the missing segment of the mantissa, and E is
the binary exponent of the result. Changing α from 24 to 53, we can change the precision
from a single to double form [49,50]. Let φ be a stochastic variable, which is uniformly
distributed on [−1, 1]. Making a perturbation on the last mantissa bit of s∗, we have the
mean (µ) and the standard deviation (σ) for S∗. Repeating the process for k-times, we have
k samples of S∗ as follows:

Φ = {S∗1 , S∗2 , ..., S∗k}.

Now we can find the mean and standard deviation values as the following:

S̃∗ =
∑k

i=1 S∗i
k

, σ2 =
∑k

i=1(S
∗
i − S̃∗)2

k− 1
.

Thus, we are able to find the NCSDs between S∗ and S̃∗ as the following:

CS̃∗ ,S∗ = log10

√
k
∣∣S̃∗∣∣

τδσ
,

where τδ is the value of T distribution, as the confidence interval is 1− δ with k− 1 freedom
degree. When we have

S̃∗ = 0,

or
CS̃∗ ,S∗ ≤ 0,

the algorithm is stopped by showing S∗ = @.0. It shows that we have equality between the
NCSDs of S̃∗ and S∗.

The main difference between this method and other methods is applying the CADNA
library instead of mathematical packages, such as MATLAB, Mathematica, Maple. In order
to apply this library, we need to use the LINUX operating system. Additionally, we should
write all codes using C, C++, FORTRAN or ADA. Applying this method and the library,
we can find the optimal approximation, optimal step of the method, optimal error and
some of numerical instabilities. They are the main advantages of our method, compared to
other methods.

In order to apply the CADNA library, the following sample can be applied:

# include <cadna.h>
cadna_init(-1)
double−st (float−st) Parameter;
Main Part
printf (" Parameter= %s \n ",Strp(Parameter));
cadna−end();

The function "Strp" should be applied to show the NCSDs. Thus, when the NCSDs
become zero, we will see the informatical zero sign @.0, and the algorithm will be stopped.
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Definition 1 ([51]). Let s1 and s2 be two real numbers. The NCSDs for s1 and s2 can be defined
as follows:

Cs1,s2 =


log10

∣∣∣∣ s1 + s2

2(s1 − s2)

∣∣∣∣ = log10

∣∣∣∣ s1

s1 − s2
− 1

2

∣∣∣∣, s1 6= s2,

+∞, otherwise.

(11)

Theorem 2. Assume that y(t) is the exact solution of the second kind VIE (1), and yn(t) is its approx-
imate solution which is obtained using the Lagrange–collocation method. Then, we have the following:

Cyn(t),y(t) − Cyn(t),yn+1(t) = O
(

1
(n + 1)!

)
. (12)

Proof. Applying Definition 1, we can write the following:

Cyn(t),yn+1(t) = log10

∣∣∣∣ yn(t) + yn+1(t)
2(yn(t)− yn+1(t))

∣∣∣∣ = log10

∣∣∣∣ yn(t)
yn(t)− yn+1(t)

− 1
2

∣∣∣∣
= log10

∣∣∣∣ yn(t)
yn(t)− yn+1(t)

∣∣∣∣+ log10

∣∣∣∣1− 1
2yn(t)

(yn(t)− yn+1(t))
∣∣∣∣

= log10

∣∣∣∣ yn(t)
yn(t)− yn+1(t)

∣∣∣∣+O(yn(t)− yn+1(t)).

Since

yn(t)− yn+1(t) = yn(t)− y(t)− (yn+1(t)− y(t)) = En(t)− En+1(t),

using Theorem 1, we obtain the following:

O(yn(t)− yn+1(t)) = O(En(t)− En+1(t)) = O
(

1
(n + 1)!

)
+O

(
1

(n + 2)!

)
= O

(
1

(n + 1)!

)
.

Therefore, we have the following:

Cyn(t),yn+1(t) = log10

∣∣∣∣ yn(t)
yn(t)− yn+1(t)

∣∣∣∣+O( 1
(n + 1)!

)
. (13)

Furthermore, we have the following:

Cyn(t),y(t) = log10

∣∣∣∣ yn(t) + y(t)
2(yn(t)− y(t))

∣∣∣∣ = log10

∣∣∣∣ yn(t)
yn(t)− y(t)

− 1
2

∣∣∣∣
= log10

∣∣∣∣ yn(t)
yn(t)− y(t)

∣∣∣∣+O(yn(t)− y(t))

= log10

∣∣∣∣ yn(t)
yn(t)− y(t)

∣∣∣∣+O( 1
(n + 1)!

)
.

(14)

By using Equations (13) and (14), we have the following:
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Cyn(t),y(t) − Cyn(t),yn+1(t) = log10

∣∣∣∣ yn(t)
yn(t)− y(t)

∣∣∣∣− log10

∣∣∣∣ yn(t)
yn(t)− yn+1(t)

∣∣∣∣+O( 1
(n + 1)!

)

= log10

∣∣∣∣ yn(t)− y(t)
yn(t)− yn+1(t)

∣∣∣∣+O( 1
(n + 1)!

)

= log10

∣∣∣∣∣∣
O
(

1
(n+1)!

)
O
(

1
(n+1)!

)
∣∣∣∣∣∣+O

(
1

(n + 1)!

)

= O
(

1
(n + 1)!

)
and we obtain the following:

Cyn(t),y(t) − Cyn(t),yn+1(t) = O
(

1
(n + 1)!

)
.

Approaching n to infinity, we have O
(

1
(n+1)!

)
→ 0 and the following:

Cyn(t),y(t) = Cyn(t),yn+1(t).

4. Numerical Examples

In this section, some examples of VIEs with a discontinuous kernel are discussed.
We use the mentioned method using both arithmetics, the FPA and the DSA. In addition,
we apply both conditions (2) and (3), and finally, we compare the results to show several
benefits of the DSA.

Example 1. Consider the following second kind VIE as follows:

y(x) = f (x) +
∫ x

7

0
xty(t)dt +

∫ 2x
7

x
7

(x− 1)y(t)dt + 3
∫ 4x

7

2x
7

y(t)dt +
∫ x

4x
7

(x + t)y(t)dt,

where the following holds:

f (x) = ex − 3e
2x
7 (−1 + e

2x
7 )− e

4x
7

(
1− 11x

7

)
− e

x
7

(
−1 + e

x
7

)
(−1 + x)

−
(

1 +
1
7

e
x
7 (−7 + x)

)
x− ex(−1 + 2x).

Figure 1a shows the comparison between solutions, and Figure 1b shows the error. The results of the
FPA can be found in Tables 1 and 2. In Table 2, the steps of the method are obtained for various ε.
The optimal results are presented in Table 3. According to this table, we have the following:

nopt = 6,
yopt(0.2) = 1.22140,
erroropt = 0.29× 10−4.
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0.2 0.4 0.6 0.8 1.0
x

1.5

2.0

2.5

y(x)

yn(x)

y(x)

0.2 0.4 0.6 0.8 1.0
x

1.×10-14

2.×10-14

3.×10-14

4.×10-14

5.×10-14

6.×10-14

Error

(a) (b)

Figure 1. (a) Comparison between the solutions—(b) error of Example 1 for n = 10.

Table 1. Applying the FPA for Example 1 with ε = 10−5 and x = 0.2.

n yn(x) |y(x)− yn(x)|
1 3.62968015670776367188 2.40827751159667968750
2 1.20426642894744873047 0.01713633537292480469
3 1.22232985496520996094 0.00092709064483642578
4 1.22137403488159179688 0.00002872943878173828
5 1.22140347957611083984 0.00000071525573730469

Table 2. Applying the FPA to find n for various ε and x = 0.2.

ε ε << 10−8 ε = 10−8 ε = 10−5 ε = 10−3 ε = 10−1 ε >> 10−1

n >> 7 7 5 3 2 1

Table 3. Results of the CESTAC method for Example 1 and x = 0.2.

n yn(x) |yn(x)− yn−1(x)| |yn(x)− y(x)|
1 3.629679 3.629679 2.408277
2 1.204266 2.425413 0.17136× 10−1

3 1.222329 0.1806× 10−1 0.926× 10−3

4 1.221374 0.955× 10−3 0.28× 10−4

5 1.221403 0.29× 10−4 @.0
6 1.22140 @.0 @.0

Example 2. Consider the following problem:

y(x) = f (x) +
∫ x

9

0
(x2 − t)y(t)dt +

∫ 5x
9

x
9

y(t)dt + 2
∫ 8x

9

5x
9

y(t)dt +
∫ x

8x
9

y(t)dt,

where

f (x) = x3 − 10031x4

26244
+

x5

295245
− x6

26244
.

Figure 2 shows the comparative graphs between solutions and also the error function. The
results of the FPA for ε = 10−1 and x = 0.8 are given in Table 4. Table 5 discusses the iterations
for various ε. In Table 6, we can find the optimal results as the following:

nopt = 4,
yopt(0.8) = 0.511999.
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0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

y(x)

yn(x)

y(x)

0.2 0.4 0.6 0.8 1.0
x

5.×10-17

1.×10-16

1.5×10-16

2.×10-16

Error

(a) (b)

Figure 2. (a) Comparison between the solutions—(b) error function for n = 10.

Table 4. Applying the FPA for Example 1 with ε = 10−1 and x = 0.8.

n yn(x) |y(x)− yn(x)|
1 1.90282404422760009766 1.39082407951354980469
2 0.52353602647781372070 0.01153600215911865234

Table 5. Applying the FPA to find n for various ε and x = 0.8.

ε ε << 10−5 ε = 10−5 ε = 10−3 ε = 10−1 ε = 0.5 ε >> 0.5

n >> 6 6 4 2 1 1

Table 6. Results of the CESTAC method for Example 2 and x = 0.8.

n yn(x) |yn(x)− yn−1(x)| |y(x)− yn(x)|
1 1.902823 1.902823 1.390824
2 0.523535 1.379288 0.11536× 10−1

3 0.5119998 0.11536× 10−1 @.0
4 0.511999 @.0 @.0

Example 3. Consider the following VIE:

y(x) = f (x) +
∫ x

3

0
(1 + x− t)y(t)dt +

∫ x

x
3

y(t)dt,

where
f (x) = −1− x− cos

x
3
+

1
3
(3 + 2x) cos

x
3
+ cos x + sin

x
3
+ sin x.

The accuracy and efficiency of the method are shown in Figure 3 by plotting the comparative
graph and the error function for n = 10 and x = 0.6. The numerical results of the FPA are presented
in Tables 7 and 8. Additionally, in Table 9 the numerical results of the DSA are presented. We
obtain the following:

nopt = 8,
yopt(0.6) = 0.564641.
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0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

y(x)

yn(x)

y(x)

0.2 0.4 0.6 0.8 1.0
x

1.×10-14

2.×10-14

3.×10-14

4.×10-14

5.×10-14

Error

(a) (b)

Figure 3. (a) Comparison between the solutions—(b) error function for n = 10.

Table 7. Applying the FPA for Example 1 with ε = 10−6.

n yn(x) |y(x)− yn(x)|
1 0.44520121812820434570 0.11944127082824707031
2 0.56538361310958862305 0.00074112415313720703
3 0.56462234258651733398 0.00002014636993408203
4 0.56462532281875610352 0.00001716613769531250
5 0.56464219093322753906 0.00000029802322387695

Table 8. Applying the FPA to find n for various ε and x = 0.2.

ε ε << 10−6 ε = 10−6 ε = 10−3 ε = 10−1 ε = 0.5 ε >> 0.5

n >> 5 5 2 1 1 1

Table 9. Results of the CESTAC method for Example 3 and x = 0.6.

n yn(x) |yn(x)− yn−1(x)| |y(x)− yn(x)|
1 0.4452011 0.4452011 0.119441
2 0.565383 0.120182 0.7411 × 10−3

3 0.564622 0.7612 × 10−3 0.20 × 10−4

4 0.5646252 0.2 × 10−5 0.17 × 10−4

5 0.564642 0.16 × 10−4 @.0
6 0.564640 0.1 × 10−5 0.1 × 10−5

7 0.5646428 0.2 × 10−5 @.0
8 0.564641 @.0 0.5 × 10−6

5. Conclusions

The VIE with a discontinuous kernel was studied. We applied the Lagrange–collocation
method for solving the problem. The accuracy of the method was discussed by proving the
error analysis theorem. The optimal results were obtained using the CESTAC method and
the CADNA library. Additionally, the optimal results, such as the optimal step, approxi-
mation and error, were found. Comparing the results between the Lagrange–collocation
method using the FPA and the SA, we can see that the SA has more advantages in compari-
son with the FPA.
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