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Abstract: The numerical assessment of reconstructed aortic valves competence and leaflet design
optimization rely on both coaptation characteristics and the diastolic valve configuration. These
characteristics can be evaluated by the shell or membrane formulations. The membrane formulation
is preferable for surgical aortic valve neocuspidization planning since it is easy to solve. The results
on coaptation zone sensitivity to the anisotropy of aortic leaflet material are contradictive, and there
are no comparisons of coaptation characteristics based on shell and membrane models for anisotropic
materials. In our study, we explore for the first time how the reduced model and anisotropy of
the leaflet material affect the coaptation zone and the diastolic configuration of the aortic valve. To
this end, we propose the method to mimic the real, sutured neo-leaflet, and apply our numerical
shell and membrane formulations to model the aortic valve under the quasi-static diastolic pressure
varying material stiffness and anisotropy directions. The shell formulation usually provides a lesser
coaptation zone than the membrane formulation, especially in the central zone. The material stiffness
does influence the coaptation zone: it is smaller for stiffer material. Anisotropy of the leaflet material
does not affect significantly the coaptation characteristics, but can impact the deformed leaflet
configuration and produce a smaller displacement.

Keywords: aortic valve; coaptation; shell; membrane; mathematical modeling; finite element method

1. Introduction

Aortic valve disease is among the most common cardiovascular conditions that affect
elderly people. According to the recent studies [1], about 4.9 million and 2.7 million elderly
patients are diagnosed with aortic stenosis in Europe and North America, respectively. Y.
Do et al. demonstrated that the 5 year overall survival of untreated patients with moderate
aortic stenosis is only 52.3% [2]. About 28% of patients with severe aortic stenosis undergo
aortic valve replacement. This corresponds to 12,129 procedures in the U.S. between 2008
and 2016 [3]. However, the estimated need for aortic valve surgery is suggested to exceed
200,000 in North America and 300,000 in Europe. In 2018, the number of procedures was
increased up to 73,255 in the U.S. [4]

Cost-efficient treatment of aortic valve disease is demanded. Transcatheter aortic valve
implantation (TAVI) has gained popularity and is now performed at twice the rate of the
conventional surgical aortic valve replacement (SAVR) [4]. Nevertheless, SAVR remains the
pivotal strategy for younger patients and concomitant surgery. According to the current
guidelines, patients < 60 years old should receive mechanical prostheses, whereas patients

Mathematics 2021, 9, 2193. https://doi.org/10.3390/math9182193 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-9936-8379
https://orcid.org/0000-0002-1612-9648
https://doi.org/10.3390/math9182193
https://doi.org/10.3390/math9182193
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9182193
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9182193?type=check_update&version=2


Mathematics 2021, 9, 2193 2 of 23

> 65–70 years necessitate receiving biological prostheses [5]. However, recent meta-analyses
and observational studies [6–10] have considered biological prostheses to be a reasonable
alternative for patients < 60 years since lifelong anticoagulation is avoided and the risk of
bleeding decreases. Nevertheless, higher reoperation rates after bioprosthetic aortic valve
replacement prevent its exclusive use.

In 1964, V.O. Björk and G. Hultquist reported the first results of the use of fresh au-
tologous pericardium for aortic leaflets replacement [11]. Neo-leaflets function appeared
to be poor due to their rapid calcification. J.W. Love et al. proposed to treat chemically
autologous pericardium with a 0.6% glutaraldehyde solution (Carpentier’s solution) [12],
and the use of fixed autologous pericardium for aortic valve replacement became quite
effective. Ozaki et al. established their “aortic valve neocuspidization” (AVNeo) tech-
nique based on autopericardium [13], which gained widespread interest and has become
frequently performed. The authors developed their own sizers for the measurement of
intercommissural distances and a template for neo-leaflets of appropriate sizes.

A recent meta-analysis by U. Benedetto et al. compared AVNeo with a number of
bioprosthetic valves and the Ross procedure [14]. The authors concluded that AVNeo has
a low risk of valve-related events. Moreover, AVNeo has a number of advantages: the
avoidance of anticoagulation, a low transvalvular pressure gradient, an increased effective
orifice area, minor regurgitation, normal aortic annulus and aortic root dimensions during
cardiac cycle, low degradation and calcification, reproducibility, and a low cost [14–17].

Nevertheless, a number of drawbacks were described. As early as 1960,
W.H. Muller, Jr. et al. warned not to make the neo-leaflets too large to avoid covering
the coronary orifices [18]. Currently, this concern has become even more relevant, due to
potential TAVI after AVNeo [19]. Moreover, it was shown that echocardiography reveals
neo-leaflet trombosis in 12.5% of patients after AVNeo [20], which is probably caused
by the large surface of the neo-leaflets. To avoid these complications, one could make
the neo-leaflets as small as sufficiently possible for normal aortic valve function without
regurgitation. A number of criteria of normal function in the native aortic valve or after its
reconstruction were described [21–25]: central coaptation height > 4 mm, effective coap-
tation height > 9 mm, coaptation zone above ventriculo-aortic junction, no billowing, no
prolapse, and no residual regurgitation. The more the criteria are met, the better the results
of the aortic valve reconstruction yielded. Numerical methods could be used for evaluating
the appropriate size and shape of aortic valve neo-leaflets according to specific anatomical
features of the aortic root of the particular patient in order to meet the majority of criteria
of normal aortic valve function.

Optimal neo-leaflets design based on mathematical modeling is a long-standing prob-
lem in terms of bioprosthetic valve development (e.g., [26–28]) or autopericardium based
neocuspidization procedure (e.g., [29]). The approaches are different in terms of the for-
mulation for the elastic structure (membrane, shell or solid), material models used for
describing the mechanical behavior of the leaflet and estimated values as a result of mathe-
matical modeling (see review [30]). Estimated values are usually coaptation characteristics
and mechanical stress in the leaflets during diastole. The coaptation characteristics indi-
cate the valve competence and the stress associated with valve durability. In the present
study, we focus on coaptation of the aortic valve under quasi-static diastolic pressure since,
usually, stress fields are addressed in the literature.

Lower computational complexity makes reduced models for valve closure, such as
membrane (e.g., [29,31,32] (Table 1 of [32])) or shell formulations ([32–35] (Table 1 of [32])),
very popular. A leaflet optimization procedure based on the membrane formulation can
be attractive in routine clinical practice, due to fast solution at the surgical planning stage.
There is a promising result of using membrane formulation [29]; however, one should
compare the shell and membrane formulations, taking into account the impact of the leaflet
material. The first attempt was made in our preliminary study [36]: accounting for the
bending stiffness reduces significantly the coaptation area for isotropic materials. However,
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the shell formulation is sensitive to the initial configuration, which was not physiological
in [36].

The impact of anisotropy is presented in the literature, but the results are contradictive.
In [28], the authors varied the orientation of anisotropy, and for 3D solid finite element
discretization, obtained insignificant changes of the coaptation area, which depends mainly
on the leaflet design. A comparison of isotropic and anisotropic membrane models was
carried out in [31]. According to their results, the coaptation area increases significantly in
the case of anisotropic materials. However, the result is in doubt since the authors used
different stress–strain curves to obtain parameter models for isotropic and anisotropic cases.
Another comparison between orthotropic and isotropic shell models was presented in [37]
for the pulmonary valve, which is similar to the aortic valve. Anisotropy does influence
the deformed leaflet configuration, and displacement of an anisotropic leaflet is less than
that of an isotropic one. Coaptation characteristics and diastolic valve configuration based
on anisotropic shell and membrane models have not been compared yet.

We are interested in neocuspidization, using glutaraldehyde-treated human au-
topericardium. There is a lack of data on mechanical behavior on this tissue, due to
the lack of a sufficient number of human samples. There is no consensus opinion on
isotropy/anisotropy [38,39] and changing mechanical properties after the chemical
treatment (stiffer/softer) [40,41]. Therefore, studying the impact of the leaflet mate-
rial on the coaptation characteristics becomes more essential when one develops a
mathematical model for the autopericardium neocuspidization procedure.

In the present paper, we study how model formulations and material stiffness/anisotropy
influence the coaptation area and the deformed leaflet configuration. To this end, we apply
numerical shell and membrane formulations to solve quasi-static problems of the aortic
valve under diastolic pressure, varying the material stiffness and anisotropy directions. We
propose a method to mimic the real, sutured neo-leaflet since shell formulation is sensitive
to the initial leaflet configuration. Numerical shell formulation is based on rotation-free
elements and nodal hyperelastic forces, and is thoroughly described by [36]; membrane
formulation is based on nodal hyperelastic forces [42]. In the present study, we apply both
formulations in the case of anisotropic material characterized by the fiber dispersion Gasser–
Ogden–Holzapfel (GOH) model. The GOH model was used previously to describe native
human pericardium [43] and leaflets of bioprosthetic heart valves made of glutaraldehyde-
treated bovine pericardium [31,44]. Varying the parameters of the GOH model, such as the
fiber dispersion, shear modulus and mean fiber direction, we consider different anisotropic
and isotropic materials.

Numerical simulation is a widely used tool for design leaflet optimization, and it is
useful at the surgical planning stage. That is why reduced models are preferable, but it
is necessary to estimate how the model formulation influences the calculated coaptation
characteristics. At the same time, the treated autopericardium seems to be efficient material
for new aortic leaflets but its mechanical properties are still under investigation. In our
study, we want to scrutinize how the reduced (shell/membrane) model and the leaflet
material affects the coaptation zone and the diastolic configuration of the aortic valve. The
results of such sensitivity analyses are important to develop the technology of aortic valve
neocuspidization based on mathematical modeling.

The paper is organized as follows. We introduce parameterization of the leaflet
geometry and describe our method in Section 2. In Section 3, we study the sensitivity of
coaptation characteristics to the model formulation and material stiffness and anisotropy.
In Section 4, we discuss our results and future work.

2. Materials and Methods
2.1. Geometry of Leaflet Design

The aortic leaflet has an attachment edge, or suturing line, which sutures the cusps to
the aortic root, and a free edge, which coapts with adjacent cusps. The initial configuration
of the sutured leaflet is produced by the following stages (Figure 1).
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(a) The 2D attachment line (b) The 3D template before suturing (c) Sutured template

Figure 1. Pipeline for constructing sutured leaflet.

1. We define the leaflet attachment line as a curve on a plane, using four geometric
parameters R , φ, Hc, Hb (Figure 2), where Hc is the height of the comissures, Hb + Hc
is the leaflet height, R is the radius of the base and the comissures (cylinder), and φ
characterizes the angle between the surfaces of the two neighboring leaflets.

The line is defined by the following function:

rb(t) = (xb(t), yb(t)) =


(
− l

2 , Hc(1− t)
)

, t ∈ [0; 1](
l
2 sin π(t−2)

2 ,−Hb cos π(t−2)
2

)
, t ∈ (1; 3)(

l
2 , Hc(t− 3)

)
, t ∈ [3; 4]

(1)

where l = Rφ. Thus, the attachment line on a plane consists of two straight line
segments AB and DE of length Hc and a part of ellipse BCD.

Figure 2. Attachment line on a plane.

2. We construct the 3D attachment line (in 3D space) by mapping the curve on a plane (1)
to a circular cylinder of radius R (Figure 3),

rc(t) = (xc(t), yc(t), zc(t)) =


xc(t) = R cos(xb(t)/R),
yc(t) = R sin(xb(t)/R),
zc(t) = yb(t).

(2)
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Figure 3. Attachment line on a cylinder.

3. We form the 3D leaflet template by extruding a vector v along the 3D attachment line
(Figure 4). The direction of the vector v is given by an angle ω, v = (sin ω, 0, cos ω)T .
The template surface Ωtemplate is the union of line segments started at points rc(t) (2)
with length

d(t) =
Hc − zc(t)

cos ω
· {0.8 + 0.15 · b(t− 2, 1, 0.5)}, b(t, tm, w) =

e−(t/w)2 − e−(tm/w)2

1− e−(tm/w)2 . (3)

Thus each point x of Ωtemplate may be associated with two parameters: t, t̂ = (x−A, v).

In order to define fiber directions on the leaflet, we map the 3D surface Ωtemplate to the
unfolded template Ω′template on the plane P passing through the point A = rc(t = 0)
with normal v. Any point x ∈ Ωtemplate with parameters (t, t̂) is mapped to x′ ∈ Ω′template
with coordinates (t, t̂).

4. We suture the 3D template and obtain its more realistic initial configuration by
solving an auxiliary problem on the leaflet deformation (Figure 1c). For details, we
refer to Section 3.1. The initial configuration mimics the sutured leaflets during
neocuspidization procedure.

Thus five geometric parameters are utilized to define the initial leaflet geometry: R , φ,
Hc, Hb and ω.

Figure 4. The 3D leaflet template before suturing.

2.2. Kinematics of Shell

We consider deformation of a thin, hyperelastic shell. We suggest that the normal to
the reference mid-surface remains normal as the shell deforms (Kirchhoff–Love assump-
tion) [45].

For compact set A ⊂ R2, let mapping Ψ : A → Ω0 ∈ R3 describe the mid-surface
for an initial configuration. A shell at the initial configuration (before deformation) S0 is
defined as the following:

S0 = {X ∈ R3|X(ξ1, ξ2, ξ3) = Ψ(ξ1, ξ2) + ξ3N(ξ1, ξ2), where (ξ1, ξ2) ∈ A, ξ3 ∈ [−H/2, H/2]}, (4)
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where N is the unit normal to the mid-surface of S0 and H is an initial thickness of the shell.
The current (deformed) configuration St of the shell is given by the following:

St = {x ∈ R3|x(ξ1, ξ2, ξ3) = ψ(ξ1, ξ2) + ξ3λn(ξ1, ξ2), where (ξ1, ξ2) ∈ A, ξ3 ∈ [−H/2, H/2]}, (5)

where ψ : A → Ωt ∈ R3 defines the mid-surface of St, n is the unit normal to the mid-
surface of St, λ = Hde f /H characterizes the change in thickness, and Hde f is the thickness
of the deformed shell St .

The convective coordinate systems for the initial and the current configurations re-
spectively are the following:

Gβ =
∂X
∂ξβ

= Ψ,β + ξ3N,β, β = 1, 2, G3 =
∂X
∂ξ3 = N, (6)

gβ =
∂x
∂ξβ

= ψ,β + ξ3(λn),β, β = 1, 2, g3 =
∂x
∂ξ3 = λn. (7)

Here and after, we denote the partial derivative ∂ f /∂ξβ by f,β.
The geometry of the mid-surface is characterized by the metric tensor with the follow-

ing components:

aβγ = gβ|ξ3=0 · gγ|ξ3=0 = ψ,β ·ψ,γ, β, γ = 1, 2, (8)

and the curvature tensor with the following components:

κβγ = −ψ,βγ · n =
1
2

(
ψ,β · n,γ + ψ,γ · n,β

)
, β, γ = 1, 2. (9)

The deformation gradient F is defined as follows:

F =
∂x
∂X

=
3

∑
i=1

gi ⊗Gi, (10)

where a⊗ b ≡ abT , Gi =
3
∑

j=1
(G−1)ijGj, matrix G has entries Gij = Gi ·Gj.

The right Cauchy–Green deformation tensor C = FTF = ∑3
i,j=1

(
gi · gj

)
Gi ⊗Gj in the

theory of thin shells is reduced to the strain measure as follows [45,46]:

C =
2

∑
β,γ=1

cβγGβ ⊗Gγ + λ2N⊗N, cβγ = aβγ + 2λξ3κβγ, (11)

which suggest the following matrix representation with respect to basis {G1, G2, N}

C =

c11 c12 0
c12 c22 0
0 0 CN

.

Thus, the deformation tensor C can be split into two parts: the surface (in-plane) part
CS = ∑2

β,γ=1 cβγGβ ⊗Gγ and the out-of-plane part CN = λ2N⊗N.
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2.3. Hyperelasticity

We consider hyperelastic shells for which there exists an elastic potential W(C) such
that the second Piola–Kirchhoff stress tensor S is defined as the following [47]:

S = 2
∂W
∂C =

3

∑
i,j=1

sijGi ⊗Gj, sij = 2
∂W
∂cij

. (12)

To describe the mechanical behavior of the shell, we use the fiber dispersion
Gasser–Ogden–Holzapfel (GOH) model [48] (Equations (2.25) and (2.26)). The GOH
model was used previously to describe the native human pericardium [43] and leaflets of
bioprosthetic heart valves made of glutaraldehyde-treated bovine pericardium [31,44]. Its
elastic potential is the following:

W(C) = µ/2
(

I(3d)
1 − 3

)
+ ψ1

GST + ψ2
GST , (13)

ψα
GST =


k1

2k2

{
exp k2(I∗4,α − 1)2 − 1

}
, I∗4,α > 1

0, I∗4,α ≤ 1
(14)

I(3d)
1 = tr C, I(3d)

2 =
(
(trC)2 − trC2

)
/2, I(3d)

3 = detC = (detF)2, (15)

I∗4,α = κ I(3d)
1 + (1− 3κ)I(3d)

4,α , I(3d)
4,α = C : (Mα ⊗Mα), (16)

where α = 1, 2, Mα is the unit vector of the mean fiber direction before deformation
(Mα, N) = 0, κ is the dispersion parameter, usually restricted to [0, 1/3]. By varying param-
eter κ, one can obtain different anisotropic (κ 6= 1/3) and isotropic (κ = 1/3) materials.

For incompressible hyperelastic shells I(3d)
3 = 1 and the surface invariants I1 =

tr CS, J2 = detCS, I4,α = CS : (Mα ⊗Mα) define the 3D invariants as follows [49]:

I(3d)
1 = I1 + J−2, I(3d)

2 = J2 + I1 J−2, I(3d)
4,α = I4,α, α = 1, 2. (17)

and the GOH elastic potential (13) as follows:

W(C) = Ŵ(I1, J, I4,α) = µ/2(I1 + J−2 − 3) + ψ1 + ψ2, (18)

ψα =


k1

2k2

{
exp k2(I∗4,α − 1)2 − 1

}
, I∗4,α > 1

0, I∗4,α ≤ 1,
(19)

where α = 1, 2, I∗4,α = κ(I1 + J−2) + (1 − 3κ)I4,α. These equations are similar to [50]
(Equations (40)–(43)).

The constitutive relations for the incompressible hyperelastic shell according to (12)
are in the form of the plane stress state as follows:

S =
2

∑
α,β=1

sαβGα ⊗Gβ, (20)

sαβ = 2
∂Ŵ
∂cαβ

= 2

(
∂Ŵ
∂I1

(G−1)αβ +
J
2

∂Ŵ
∂J

(C−1
S )αβ +

2

∑
γ=1

∂Ŵ
∂I4,γ

(Mγ ⊗Mγ)αβ

)
, (21)

where (B)αβ denotes αβ-entry of matrix B.
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2.4. Weak Formulation

We consider the equilibrium of a thin shell under mixed boundary conditions. Let the
boundary of the mid-surface ∂Ωt be split into two parts, ∂Ωt = Γu(t)∪ Γσ(t), Γu(t) = Γu(t).
The boundary conditions are the following:

u = w̄ on Γu(t), Tnt = t̄ on Γσ(t), (22)

where u = x− X is the mid-surface displacement, nt is the unit outward normal to ∂Ωt,
T = (1/ detF) FSFT is the Cauchy stress tensor, and w̄ and t̄ are the given displacement
and tension on corresponding boundaries.

For weak formulation, we use the virtual work principle [51]: find u ∈ H̃1(Ωt),
H̃1(Ωt) :=

{
v ∈ (H1(Ωt))3, v = w̄ on Γu(t)

}
such that

δU − δWext = 0, (23)

δU = δ

(∫
S0

Ŵ(I1(∇u), J(∇u), I4,1(∇u), I4,2(∇u))dV
)

, (24)

δWext =
∫

Γσ(t)
t̄ · δu dt +

∫
Ωt

b · δu ds, (25)

where b is the external forces density.
We can rewrite (23)–(25) taking into account (11) and (20) as follows:

δU =
∫

Ω0

l : δa(∇u)ds +
∫

Ω0

m : δκ(∇u)ds, (26)

l = (l11, l22, l12)
T , lij =

∫ H/2

−H/2
sij dξ3, (27)

m = (m11, m22, m12)
T , mij =

∫ H/2

−H/2
sijλξ3dξ3, (28)

a = (a11, a22, 2a12)
T , κ = (κ11, κ22, 2κ12)

T . (29)

The in-plane membrane behavior is represented by the first term in (26), whereas the
bending part is characterized by the second term in (26). We use the nodal hyperelastic force
method [42] to discretize the membrane part and the approach proposed by Oñate et al. [46]
to discretize the bending part. Details of the method are presented in [36]; here, we recall
its main constituents.

2.5. Discretization

Let the initial mid-surface configuration Ω0 be given as a consistent triangular mesh. We
apply the linear finite elements for the membrane part and the rotation-free bending elements
for the shell bending part to the approximate solution of Equations (23), (25) and (26).

Let the deformation of a triangle TP with vertices P1, P2, P3 into a triangle TQ with
vertices Q1, Q2, Q3 be defined via mapping x(X) (see Figure 5a). We denote the areas of
undeformed triangle TP and deformed triangle TQ by AP and AQ, respectively. One of the
surface invariants is the Jacobian of the deformation J = AQ/AP. The unit normal to the
plane of triangle TQ is denoted by n.
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Figure 5. (a) Deformation of triangle. (b) Patch of elements consisting of the central triangle TP and
three adjacent elements. The figure from [36].

If MP
α is a given direction of anisotropy on the triangle TP, this direction is mapped on

triangle TQ to the following:

MQ
α =

FMP
α

||FMP
α ||

,

where F is the deformation gradient, which can be computed from [42] as follows:

F = QDT
P, (30)

and matrices Q and DP are formed by the following vectors:

Q = (Q1, Q2, Q3); DP = (D1, D2, D3), Di =
1

2Ap
nP × (P(i+1)%3+1 − Pi%3+1), (31)

and operator %3 defines division modulo 3, and nP is 3D normal to TP.

2.5.1. Discretization of the Membrane Part

We discretize the membrane part of the deformation of TP by the following:

δUh
m =

∫
TP

l : δa(∇uh)ds, (32)

where uh is a linear finite element displacement and the corresponding nodal force for the
j-th node of triangle TP is the following:

Fm
j (TP) = −

∂Uh
m

∂Qj
= −APH

∂Ŵh|ξ3=0

∂Qj
. (33)

Here, the elastic potential Ŵh|ξ3=0 is constant over TP since it is computed from the
linear displacement uh.
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2.5.2. Discretization of Bending Part

We discretize the bending part of the deformation of TP by rotation-free triangular
shell elements [46].

δUh
b =

∫
TP

m : δκ(∇uh)ds. (34)

The curvature tensor is obtained from nodal displacements of a patch of elements ΠP
composed of the central triangle (TP) and three adjacent triangles (Figure 5b triangles 1,2,3).

Bending forces at the i-th node of the patch ΠP are defined by the following:

Fb
i = −AP

δUh
b

δQi
, i = 1, . . . , 6, (35)

and contribution of the patch ΠP to the nodal bending forces is the following:

(Fb
1, Fb

2, Fb
3, Fb

4, Fb
5, Fb

6) = −APn⊗ (mTBb), (36)

where Bb is the curvature matrix [46] (EBST case).

2.5.3. External Forces

We introduce leaflet contact forces to prevent interpenetration of the leaflets. To
reduce the computational complexity of the contact force evaluation, we add virtual
contact surfaces, following [28,33].

Let P be a plane with outward normal nP and R be a point on P . For the Qi node,
we define the contact (collision) force as follows:

Fi,contact =
η1 ∑i Ai

3
f (d) nP , d = (Qi − R) · nP , f (d) = max

(
1− 2d

η2
, 0
)

. (37)

Here, f (d) is a penalty function, coefficient η2 characterizes the threshold distance,
and coefficient η1 characterizes the contact force value; ∑i Ai is the sum of areas of all
oriented triangles sharing the Qi node at the current configuration.

In order to account for the impact of leaflet suturing, at the finial stage of the initial
configuration search, we introduce nodal suturing forces, which orient boundary triangular
elements to be tangent to the aortic surface. Let T be a boundary triangular element with
vertices A, B, C, e ≡ xB − xA be the sutured edge, and a tangent vector b ⊥ e be given
(see Figure 6).

The suturing force Fsut acts only on vertex C to shift it to the position C′ and rotate T
to new position ABC′. Let q be the unit altitude vector of T and nT be the unit outward
normal for T. Let ϕT ∈ [−π

2 , 3π
2 ] be the solution of the following system:{

b · q = cos ϕT ,
b · nT = −sign(K) sin ϕT ,

(38)

where K is a suturing force parameter for K > 0, and ϕT is the angle between vectors b
and q.

The suturing force applied to vertex C (Figures 6 and 7) is defined by the following:

Fsut = K f (ϕT)||e||nT , f (ϕ) =


3− cos ϕ, ϕ ∈ [−π

2 , 0]
1 + cos ϕ, ϕ ∈ [0, π]

(− cos ϕ)− 1, ϕ ∈ [π, 3π
2 ]

(39)
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Figure 6. Sketch for defining the nodal suturing force Fsut.

Figure 7. Dependence of the nodal suturing force Fsut on the angle ϕ.

2.5.4. Discretized Equilibrium Equations

The equilibrium Equations (23)–(29) form a nonlinear system for new positions Qi. We
assemble contributions of all triangles TP and obtain the static equilibrium for the i-th node
as follows:

∑
TP∈Σi

(Fm
i (TP) + Fi,ext(TP)) + ∑

patch∈Πi

Fb
i = 0, (40)

Fi,ext(TP) =
∫

Γσ(t)∩TQ

t̄λi ds +
∫

TQ

bλi dx,

here, Σi is the set of triangles sharing the i-th node, Πi is the set of patches containing the
i-th node, and λi are the barycentric coordinates of a material point X ∈ TP.

The nonlinear system of algebraic Equation (40) is as follows:

F (Q) = 0, (41)

and is solved by combination of the inexact Newton method and relaxation method
described below.

2.5.5. Computational Algorithms

A physiologically relevant initial leaflet configuration accounting suturing via suturing
forces with variable coefficient K in (39) is computed by Algorithm 1. The auxiliary
deformation problem is solved by the above shell finite element model, and the algebraic
systems are solved by the inexact Newton method with line search from KinSol [52]. The
stopping criterion for nonlinear problems is the reduction of the residual by a factor of 107.
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Algorithm 1 Algorithm of suturing leaflet

1: Set initial value of suturing force parameter K ← 1.
2: As the initial approximation, we specify the current configuration of the sutured leaflet.
3: repeat
4: Solve the auxiliary deformation problem with the initial approximation.
5: Set K ← 2 · K
6: until maxT(sin ϕT) < εsew = 0.01, where maximum is searched among all sutured

triangles T and the angle ϕT is given in (38)–(39).

The result of the application of Algorithm 1 is demonstrated in Figure 8. The obtained
leaflet configuration after suturing (sutured configuration) is the initial configuration for
finding the diastolic state of the reconstructed aortic valve. Further, we neglect all residual
stresses, i.e., the initial (sutured) configuration is assumed to be stress free and load free.

Figure 8. Initial template before suturing (left). Template after suturing (right).

To solve the system of nonlinear Equation (41), we combine the relaxation method
and the Newton method (Algorithm 2) for the following reasons. The Newton method is
effective for convex problems and stiff materials and fails to converge for soft materials,
especially in membrane formulation. On the contrary, the relaxation method is efficient
for soft materials, especially in membrane formulation and is slow for stiff materials. The
combined method seeks to exploit the merits of both approaches.

Algorithm 2 Combined Newton and relaxation methods

1: Set the number of iteration for relaxation method Nrelax and initial relaxation parameter
λ = λ0

2: while Residual norm > 10−4 do
3: Perform Nrelax iterations by relaxation method with varying λ
4: Apply the inexact Newton method until convergence or stagnation (see KinSol [52]

stop conditions)
5: end while

For the Newton method, we use the inexact Newton method with the line search strat-
egy from package Kinsol [52] with parameters FuncNormTol = 10−4 mN, ScaledStepTol
= 10−5, MaxSetupCalls = MaxSubSetupCalls = 1. For solving linear system, we use the
iterative solver BiCGStab with preconditioner MPT_ILUC from platform INMOST [53].
The relaxation method is described by Algorithm 3 with λ0 = 10−4 m/N for membrane
and λ0 = 10−6 m/N for shell, Nrelax = 1000. Note that Nrelax should be decreased for the
stiff material and increased for a soft material.
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Algorithm 3 Algorithm of relaxation method

1: On Input: Maximal number of iteration Nrelax, variable parameter of relaxation λ,
threshold εabs = 10−4, initial guess x0, residual function f(x).

2: Set Nbad = 15; rscl = 0.8; rbad = 3
3: i← 0, λ0 = λ, nbad ← 0
4: Compute Ri = ||f(xi)|| as residual norm at the i-th iteration
5: while Ri > εabs and i < Nrelax do . Definition of ’bad’ iteration are lines 5–8
6: if λ · Ri > rbad · λ0 · R0 then
7: λi ← λ0R0/Ri

8: nbad ← nbad + 1
9: else

10: λi ← λ
11: end if
12: if nbad ≥ Nbad then
13: λ← rsclλ
14: nbad ← 0
15: end if

16: xi+1 = xi + λi · f(xi)
17: i← i + 1
18: end while

3. Test Problems and Results
3.1. Setting the Problems

In all numerical experiments, we consider the template with parameters R = 15 mm,
Hc = 1.5 mm, Hb = 15 mm, the thickness of leaflet H = 0.4 mm, ω = − 2π

9 radians and
φ = 2π

3 − 0.4 radians, where 0.4 radians corresponds to suturing indent ([54] (Figure 2b)).
For the 3D surface Ωtemplate we generate three quasi-uniform unstructured triangular

grids with mesh sizes h1 = 0.5 mm, h2 = h1/2, h2 = h1/4. The comparisons of the
coaptation characteristics computed on these meshes indicate that the mesh convergence is
achieved on the coarse grid. All presented results correspond to the mesh size h1.

As with the auxiliary problem for suturing, we consider the deformation of an isotropic
neo-Hookean shell with elastic potential for the shell as ψNHK = µ/2(I1 + J−2 − 3) under
a constant pressure of 90 mmHg, µ = 900 kPa and a leaflet thickness of Ht = 0.8 mm. The
leaflet thickness is increased in order to obtain a more smooth configuration in the vicinity
of the suturing line. A homogenous Dirichlet boundary condition for displacements is
applied at the suturing line. In order to avoid an undesirable initial configuration, we
apply contact forces (37) at three contact (penalty) surfaces presented in Figure 9:

Plane MN: nP = (1, 0, 0)T , R = (0.2R, 0, 0)T , λ1 = 270 mmHg, λ2 = 0.01R;

Plane AM: nP = (sin π
3 , cos π

3 , 0)T , R = (0, 0, 0)T , λ1 = 360 mmHg, λ2 = 0.01R;

Plane NE: nP = (− sin π
3 , cos π

3 , 0)T , R = (0, 0, 0)T , λ1 = 360 mmHg, λ2 = 0.01R.

The obtained by Algorithm 1 leaflet configuration after suturing (sutured configura-
tion) is the stress-free and load-free initial configuration for finding the diastolic state of
the reconstructed aortic valve.
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Figure 9. Schematic representation of contact (penalty) planes by segments AM, MN, and NE.
The pink area is the allowed area for the sutured leaflet configuration. In fact, the cylindrical surface
is not a constraint, and during the simulation, the template can freely go beyond it.

To compute the diastolic configuration of the closed aortic valve, we consider defor-
mation of the sutured leaflet under constant diastolic pressure of P = 90 mmHg. The leaflet
material is described by GOH model (18) with varying parameters µ ∈ {900, 3000} kPa,
k1 = 1100 kPa, k2 = 1000, κ ∈ {0.2, 0.29, 1/3}, θ ∈ {0, π

8 , π
4 , 3π

8 , π
2 }, where M1 =

cos θex + sin θey, M2 = cos θex − sin θey, ex, ey are Cartesian vectors. Most of the model
parameters are taken from [44] and correspond to the glutaraldehyde-treated bovine peri-
cardium. (There is a lack of information on the fixed human pericardium.)

The suturing line is assumed to be clamped. The clamped boundary in shell formu-
lation is treated, following [46]. We evaluate the curvature tensor from the condition of
vanishing linearized moments in the case of close-to-boundary incomplete patches [36].
We solve the equilibrium state problems both in shell and membrane formulations.

Taking into account the symmetry of the problem, we consider the deformation of
only one leaflet with two contact (penalty) planes:

Left: nP = (sin π
3 , cos π

3 , 0)T , R = (0, 0, 0)T , λ1 = 1.1 · 90 mmHg, λ2 = 0.01R;

Right: nP = (− sin π
3 , cos π

3 , 0)T , R = (0, 0, 0)T , λ1 = 1.1 · 90 mmHg, λ2 = 0.01R.

The leaflet in the initial configuration, the two contact planes, and the boundary
conditions are presented in Figure 10.

Figure 10. Boundary conditions for leaflet: left contact plane (blue); right contact plane (red); clamped
attachment line (black); free edge (green).

3.2. Configuration of the Closed Valve

We study the influence of the model formulation, material stiffness and anisotropy on
the deformed leaflet configuration by varying the shear modulus µ, the fiber dispersion κ
and mean fiber direction θ.
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The model formulation (membrane or shell) significantly influences the deformed
shape (see Figures 11 and 12 for isotropic cases, and Figures 13 and 14 for anisotropic cases).
In particular, displacements of the free edge and belly region are significantly smaller for
the shell model.

Figure 11. Isotropic, membrane, µ = 900 kPa. Initial configuration (green); deformed configura-
tion (red).

Figure 12. Isotropic, shell, µ = 900 kPa. Initial configuration (green); deformed configuration (red).

Figure 13. Anisotropic, µ = 900 kPa, κ = 0.2, θ = 0. Initial configuration (green); deformed shell
(red); deformed membrane (blue).
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Figure 14. Anisotropic, µ = 3000 kPa, κ = 0.29, θ = π/4. Initial configuration (green); deformed
shell (red); deformed membrane (blue).

The comparisons of the isotropic and anisotropic materials in the scope of one model
are presented in Figures 15–18. The anisotropy influence is more prominent for soft
materials, and in some cases, anisotropy leads to significantly smaller vertical displacement
of the free edge and the belly region, compared to the isotropic cases (e.g., κ = 0.2, θ = 0
on Figures 15 and 16). Similar conclusions are derived from the comparison of closed
pulmonary valves for orthotropic and isotropic materials [37] (Figure 4c,d). However,
for stiff materials (µ = 3000 kPa, Figures 17 and 18), there are no significant differences
between isotropic and anisotropic cases for both membrane and shell models.

Figure 15. Membrane, µ = 900 kPa; isotropic (red); anisotropic κ = 0.29, θ = π/4 (green); anisotropic κ = 0.2, θ = 0 (blue).

Figure 16. Shell, µ = 900 kPa; isotropic (red); anisotropic κ = 0.29, θ = π/4 (green); anisotropic κ = 0.2, θ = 0 (blue).
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Figure 17. Membrane, µ = 3000 kPa; isotropic (red); anisotropic κ = 0.29, θ = π/4 (green); anisotropic κ = 0.2, θ = 0 (blue).

Figure 18. Shell, µ = 3000 kPa; isotropic (red); anisotropic κ = 0.29, θ = π/4 (green); anistropic κ = 0.2, θ = 0 (blue).

3.3. Coaptation Profiles and Coaptation Characteristics

In Figure 19, we present the coaptation area Acpt for different model parameters and
model formulations.

The coaptation zone is a set of points in the leaflet for which its sign distance to
a penalty plane does not exceed 0.01R. Both material stiffness and model formulation
influence Acpt: it is smaller for the shell model. However, there are no decisive trends for
how it is affected by anisotropy that agrees with the observation [28] (Figure 7).

The deviation between shell and membrane models is the most prominent for a stiffer
material (Figure 20); the conclusion is supported by the analysis of the coaptation profiles
(Figures 21–24).

In the scope of one model formulation, the anisotropy degree (variable κ, Figures 23 and 24)
and anisotropy direction (variable θ, Figures 21 and 22) do not significantly influence the
coaptation profile. The results are more notable if we change the model formulation, especially
for stiffer material (µ = 3000 kPa). In all the considered cases, the shell formulation reduces the
coaptation area and lengthens the coaptation zone along the free edge.



Mathematics 2021, 9, 2193 18 of 23

Figure 19. Coaptation area for different model parameters and model formulations.
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Figure 20. Difference of coaptation area (membrane-shell) for different model parameters.

Figure 21. Coaptation profiles for µ = 900 kPa, κ = 0.29, varied θ on the unfolded template. Profiles
for membrane are almost the same except the central zone; profiles for shell are almost the same.
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Figure 22. Coaptation profiles for µ = 3000 kPa, κ = 0.29, varied θ on the unfolded template. Profiles
for shell are superimposed on each other; profiles for membrane are almost the same.

Figure 23. Coaptation profiles for µ = 900 kPa, θ = π/4, varied κ on the unfolded template.

Figure 24. Coaptation profiles for µ = 3000 kPa, θ = π/4, varied κ on the unfolded template. Profiles
for shell are superimposed on each other; profiles for membrane are almost the same.

4. Discussion

Both the competence of the reconstructed aortic valves and design leaflet optimization
rely on the coaptation characteristics and diastolic valve configuration. These characteristics
can be evaluated by the shell or membrane formulations. Some authors insist that “in-plane
and flexural mechanical properties of the leaflets play an important role in the valvular
function” [33] and thus, one should use the shell formulation. Others suggest that the
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membrane is a feasible approximation: “we model the native leaflets and pericardium
as membranes, assuming negligible flexural stiffness. This is supported by data showing
bending stresses at least an order of magnitude smaller than in-plane stresses” [29]. For
surgical neocuspidization planning, the membrane formulation is more preferable since
it is easy to solve. However, it has to be validated by physical experiments. Moreover,
the lack of solid knowledge on the mechanical properties of glutaraldehyde-treated human
pericardium hampers the implementation of numerical models in clinical practice.

In our study, we want to explore how the reduced (shell/membrane) model and the
leaflet material affects the coaptation zone and the diastolic configuration of the aortic
valve. Additionally, we propose a method to compute the leaflet initial configuration,
mimicking the real sutured neo-leaflet.

According to our results, the coaptation characteristics are sensitive to the model
formulation, especially for stiff materials. The coaptation heights difference is larger (up
to 1–2 mm) in the central zone of coaptation. The shell formulation provides usually a
lesser coaptation zone than the membrane formulation. A discrepancy of 1–2 mm may
be of the order of the central coaptation height. The future leaflet design optimization
procedure should account for such a discrepancy. The area of the coaptation zone based on
shell formulation is less than that based on membrane formulation: the difference for soft
materials (µ = 900 kPa) is up to 8% and for stiff materials (µ = 3000 kPa) is up to 16%.

Anisotropy of the leaflet material does not affect significantly the coaptation charac-
teristics; this result is similar to that of [28]. Anisotropy can impact the deformed leaflet
configuration and produce smaller displacement. For some anisotropy directions, the
displacement of the free edge and the belly region are significantly smaller compared to the
isotopic case; this result agrees with similar findings for the pulmonary valve [37]. The ma-
terial stiffness does influence the coaptation zone: it is smaller for stiffer material. Therefore,
the study of mechanical properties of the treated human pericardium is highly demanded.

The limitation of our study is using contact planes instead of true leaflets contact,
which reduces the computational complexity. Due to the symmetry, it is believed that the
results would not change if one considers coaptation of all three leaflets. Validation of our
mathematical models by physical experiments is to be performed. This is related to our
future work.
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