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Abstract: We show presence a special torse-forming vector field (a particular form of torse-forming of
a vector field) on generalized Robertson–Walker (GRW) spacetime, which is an eigenvector of the de
Rham–Laplace operator. This paves the way to showing that the presence of a time-like special torse-
forming vector field ξ with potential function ρ on a Lorentzian manifold (M, g), dimM > 5, which
is an eigenvector of the de Rham Laplace operator, gives a characterization of a GRW-spacetime. We
show that if, in addition, the function ξ(ρ) is nowhere zero, then the fibers of the GRW-spacetime
are compact. Finally, we show that on a simply connected Lorentzian manifold (M, g) that admits a
time-like special torse-forming vector field ξ, there is a function f called the associated function of ξ. It
is shown that if a connected Lorentzian manifold (M, g), dimM > 4, admits a time-like special torse-
forming vector field ξ with associated function f nowhere zero and satisfies the Fischer–Marsden
equation, then (M, g) is a quasi-Einstein manifold.

Keywords: generalized Robertson–Walker spacetime; special torse-forming vector fields; de Rham–
Laplace operator; quasi-Einstein manifold
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1. Introduction

It is well known that through cosmological considerations the space being homoge-
neous and isotropic in the large scale, picks the Robertson–Walker metrics. It amounts to
the fact that an n-dimensional spacetime, n > 3, acquires the form I ×ϕ N, with metric
g = −dt2 + ϕ2g, where I is an open interval, ϕ is a smooth positive function defined on
I, and (N, g) is an (n− 1)-dimensional Riemannian manifold of constant curvature. An
n-dimensional generalized Robertson–Walker spacetime (GRW-spacetime) is I ×ϕ N, with
metric g = −dt2 + ϕ2g, where (N, g) is an (n − 1)-dimensional Riemannian manifold
(cf. [1,2]). An interesting characterization of GRW-spacetime was obtained by Chen (cf. [3]),
by proving that a Lorentzian manifold (M, g) admits a non-trivial time-like concircular
vector field, if, and only if, it is a GRW-spacetime. Additionally, for interesting characteriza-
tions of GRW-spacetimes using torse-forming vector fields and Weyl tensors, we refer to
(cf. [4,5]).

A concircular vector field ξ on a semi-Riemannian manifold (M, g) satisfies:

∇Uξ = ρU, U ∈ X(M),

where ρ is a scalar, ∇ is a Levi–Civita connection, and X(M) is the Lie algebra of smooth
vector fields on M (cf. [5–7]). For other characterizations of GRW-spacetimes, we refer to
(cf. [2,3,8,9]).
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Yano generalized concircular vector fields by introducing a torse-forming vector field
on semi-Riemannian manifold (M, g) (cf. [10]), defined by:

∇Uξ = ρU + α(U)ξ, U ∈ X(M), (1)

where α is a 1-form called the torsed 1-form. Naturally, if α = 0, then a torse-forming
vector field is a concircular vector field. These vector fields are also used in characterizing
a GRW-spacetime (cf. [2,4]). In [11], Chen considered an interesting special class of torse-
forming vector field, requiring ξ to be nowhere zero and satisfying α(ξ) = 0, that is the
torse-forming vector field is perpendicular to the dual-vector field to torsed form α, called
torqued vector fields.

In the present paper, we introduce on a Lorentzian manifold a special type of torse-
forming vector field. A unit time-like torse-forming vector field ξ on a Lorentzian manifold
(M, g) is said to be a special torse-forming vector field if it satisfies:

∇Uξ = ρ(U + η(U)ξ), U ∈ X(M), (2)

where ρ is a non-zero function and η is 1-form dual to ξ. We call ρ the potential function
of the special torse-forming vector field ξ. Note that for a special torse-forming vector
field, using Equation (1), we have α(U) = −ρη(U), that is ξ is a torse-forming vector field,
which is parallel to the vector field dual α as opposed to the torqued vector field where ξ is
orthogonal to the vector field dual α. Moreover, from the definition of special torse-forming
vector field ξ on a Lorentzian manifold, it follows that under no situation, it reduces to a
concircular vector field.

We study the role of a time-like special torse-forming vector field ξ on a Lorentzian
manifold (M, g) in characterizing GRW-spacetimes. It is achieved by using the de Rham–
Laplace operator � (cf. [12]) and a time-like special torse-forming vector field ξ with
potential function ρ on a connected Lorentzian manifold (M, g), dimM > 5, through
showing that �ξ = σξ holds for a smooth function σ, if, and only if, (M, g) is a GRW-
spacetime (see Theorem 1). We also show that if the function ξ(ρ) is nowhere zero on M,
then the fibers of GRW-spacetime I ×ϕ N are compact (see Theorem 2).

If ξ is a special torse-forming vector field on a simply connected Lorentzian manifold
(M, g), then the dual-1-form η is closed (see Equation (15)), and, therefore, there is a
function f such that η = d f . Thus, the special torse-forming vector field ξ on a simply
connected Lorentzian manifold (M, g) satisfies ξ = ∇ f , call this function f the associated
function of ξ. Recall that a Lorentzian manifold (M, g) is said to be a quasi-Einstein
manifold (cf. [13]) if its Ricci tensor has the following expression:

Ric = f1g + f2β⊗ β, (3)

where f1, f2 are scalars and β is a 1-form on M. Exact solutions of the Einstein field
equations can provide very important information about quasi-Einstein manifolds. For
example, the Robertson–Walker spacetimes are quasi-Einstein manifolds. For this reason,
the study of quasi-Einstein manifolds is important. It is shown that if the associated
function f of the special torse-forming vector field ξ on a simply connected Lorentzian
manifold (M, g), dimM > 4, satisfies (i) f is nowhere zero and (ii) f is a solution of
the Fischer–Marsden equation, then (M, g) is a quasi-Einstein manifold (see Theorem 3).
Additionally, it is shown that if the scalar curvature τ of a simply connected Lorentzian
manifold (M, g), dimM ≥ 4, is a constant and possesses a special torse-forming vector field
ξ with potential function ρ and associated function f satisfying the above two conditions,
then the potential function ρ is an eigenfunction of the Laplace operator ∆ (see Corollary 1).
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2. Preliminaries

Let ϕ be a smooth function on an n-dimensional connected Lorentzian (M, g). The
Hessian operator Hϕ is defined by:

Hϕ(V) = ∇V∇ϕ, V ∈ X(M), (4)

where ∇ϕ is the gradient of ϕ and Hessian Hess(ϕ) is defined by (cf. [14]):

Hess(ϕ)(U1, U2) = g
(

Hϕ(U1), U2
)
, U1, U2 ∈ X(M). (5)

The Laplacian ∆ϕ of the function ϕ is given by ∆ϕ = div(∇ϕ), and it satisfies:

∆ϕ = trHϕ. (6)

Let ξ be a time-like special torse-forming vector field on a Lorentzian (M, g). Then,
using the expression for the curvature tensor field

R(F1, F2)F3 = ∇F1∇F2 F3 −∇F2∇F1 F3 −∇[F1,F2]F3, F1, F2, F3 ∈ X(M)

and Equation (2), we compute:

R(F1, F2)ξ = F1(ρ)F2 − F2(ρ)F1 + (F1(ρ)η(F2)− F2(ρ)η(F1))ξ + ρ2(η(F2)F1 − η(F1)F2).

Above equation gives expression for the Ricci tensor Ric of the Lorentzian manifold
(M, g):

Ric(V, ξ) = −(n− 4)V(ρ) +
(

ξ(ρ) + (n− 3)ρ2
)

η(V), V ∈ X(M). (7)

Note that the Ricci operator Q of the Lorentzian manifold (M, g) is given by Ric(U, V) =
g(QU, V), U ∈ X(M), and, therefore, Equation (7) implies:

Qξ = −(n− 4)∇ρ +
(

ξ(ρ) + (n− 3)ρ2
)

ξ (8)

and:
Ric(ξ, ξ) = −(n− 3)

(
ξ(ρ) + ρ2

)
. (9)

The Laplace operator ∆ acting on vector fields on the Lorentzian manifold (M, g) is
defined by:

∆U =
n

∑
i=1

(
∇vi∇vi U −∇∇vi vi U

)
, U ∈ X(M), (10)

where {v1, . . . , vn} is a local orthonormal frame on M. The de Rham–Laplace operator �
on the Lorentzian manifold (M, g) is � : X(M)→ X(M) given by (cf. [12]):

�U = ∆U + QU, U ∈ X(M). (11)

Lemma 1. Let ξ be a time-like special torse-forming vector on an n-dimensional Lorentzian
manifold (M, g) with potential function ρ. Then:

�ξ = −(n− 5)∇ρ + 2(n− 2)ρ2ξ.

Proof. Using Equation (2), for U ∈ X(M), we have:

∇U∇Uξ −∇∇UUξ = U(ρ)U + U(ρ)η(U)ξ + ρ2‖U‖2ξ + 2ρ2η(U)2ξ + ρ2η(U)U.
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Since ξ is a time-like unit vector field, choosing a local frame {v1, . . . , vn−1, ξ} on M,
where vi, i = 1, . . . , n− 1 are spacelike unit vector fields in the above equation, to conclude:

∆ξ = ∇ρ−
(

ξ(ρ)− (n− 1)ρ2
)

ξ.

Thus, using Equations (8) and (11) with the above equation, we conclude:

�ξ = −(n− 5)∇ρ + 2(n− 2)ρ2ξ.

3. Characterizing GRW Spacetimes

Consider an n-dimensional GRW-spacetime M = I ×ϕ N with metric g = −dt2 + ϕ2g.
Then, ξ = d

dt is a time-like unit vector field on (M, g). Let ∇ be the Levi–Civita connection
on (M, g). Then, for a U ∈ X(M), we have U = hξ + E, E ∈ X(N). If we denote by η = dt,
then η(U) = g(U, ξ) = −h, where η(ξ) = g(ξ, ξ) = −1. Using fundamental equations for
the warped product (cf. [8]), we have:

∇Uξ = ∇hξ+Eξ = ∇Eξ =
ξ(ϕ)

ϕ
E =

ξ(ϕ)

ϕ
(U − hξ) =

ξ(ϕ)

ϕ
(U + η(U)ξ).

Thus,

∇Uξ = ρ(U + η(U)ξ), U ∈ X(M), ρ =
ξ(ϕ)

ϕ
, (12)

this proves, ξ is a special torse-forming vector field on the GRW-spacetime (M, g). Now,
using the expression for the Ricci tensor for the warped product I ×ϕ N (cf. [8]), we have:

Ric(ξ, E) = 0, E ∈ X(N),

which implies Q(ξ) = λξ for a smooth function λ on I. Furthermore, choosing a local
frame {v1, . . . , vn−1} on N, we have a local orthonormal frame {ξ, v1, . . . , vn−1} on M.
Then, using Equation (12), we have ∇ξξ = 0, ∇vi ξ = ρvi, vi(ρ) = 0, and:

∇vi∇vi ξ = ρ∇vi vi, ∇ξ∇ξ ξ = 0.

Furthermore, using Equation (12), we have:

∇∇vi vi ξ = ρ(∇vi vi + g(∇vi vi, ξ)ξ) = ρ∇vi vi − ρg(vi,∇vi ξ)ξ = ρ∇vi vi − ρ2ξ.

Thus, the rough Laplace operator ∆ acting on ξ is given by:

∆ξ =
(
∇ξ∇ξ ξ −∇∇ξ ξ ξ

)
+

n−1

∑
i=1

(
∇vi∇vi ξ −∇∇vi ui ξ

)
= (n− 1)ρ2ξ.

Now, we see that the de Rham–Laplace operator � acting on ξ is given by:

�ξ =
(
(n− 1)ρ2 + λ

)
ξ.

Hence, GRW-spacetime (M, g) admits a special torse-forming vector field ξ, which is
an eigenvector of the de Rham–Laplace operator �.

Theorem 1. An n-dimensional connected Lorentzian manifold (M, g), n > 5, is a GRW-spacetime
I ×ϕ N, if, and only if, it admits a time-like special torse-forming vector field ξ, which is an
eigenvector of the de Rham–Laplace operator on (M, g).
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Proof. Let (M, g) be a connected Lorentzian manifold, n > 5, ξ be a time-like special
torse-forming vector field on (M, g) with �ξ = λξ, λ being a scalar. We denote by ∇ the
Levi–Civita connection on (M, g); using Equation (2), we have:

∇ξ ξ = 0. (13)

Define a smooth distribution D on M by:

D ={U ∈ X(M) : η(U) = 0}. (14)

Note that Equation (2) gives:

dη(U, V) = g(∇Uξ, V)− g(∇Vξ, U) = 0, U, V ∈ X(M), (15)

that is the dual-1-form η to ξ is closed. Thus, for E, F ∈ D, we have η([E, F]) = −dη(E, F) = 0,
that is [E, F] ∈ D, proving that the distribution D is integrable. Let N be a leaf of D. Then,
N is a hypersurface of M with unit normal ξ. Using Equation (2), we observe that for
E ∈ X(N),

∇Eξ = ρE, (16)

that is the shape operator S of N is given by:

S(E) = −ρE, E ∈ X(N). (17)

Now, as �ξ = λξ, where λ is a scalar on M, using Lemma 1, we get:

− (n− 5)∇ρ + 2(n− 2)ρ2ξ = λξ. (18)

On taking the inner product in above equation with ξ yields

λ = (n− 5)ξ(ρ) + 2(n− 2)ρ2

and substituting this value of λ in Equation (18), we have:

− (n− 5)∇ρ = (n− 5)ξ(ρ)ξ. (19)

Above equation on taking the inner product with E ∈ X(N), gives (n− 5)E(ρ) = 0,
and the assumption n > 5 implies E(ρ) = 0, that is ρ is a constant on the hypersurface N.
Therefore, Equation (17) implies that N is a totally umbilical hypersurface of M. Moreover,
the orthogonal complementary distribution D⊥ to D is one-dimensional spanned by ξ,
and by Equation (13), the integral curves of the distribution D⊥ are geodesics on M. Thus,
(M, g) is the warped product I ×ϕ N (cf. [15]), that is (M, g) is a GRW-spacetime.

Conversely, we have already seen that a GRW-spacetime I ×ϕ N admits a special
torse-forming vector field ξ, which is an eigenvector of �.

In the above result we have seen that the presence of a time-like special torse-forming
vector field ξ on a Lorentzian manifold (M, g) satisfying �ξ = λξ for scalar λ is a GRW-
spacetime I ×ϕ N. It is interesting to observe if in addition ξ(ρ) is nowhere zero, then this
condition has effect on the topology of N.

Theorem 2. Let ξ be a time-like special torse-forming vector field with potential function ρ on an
n-dimensional complete and connected Lorentzian manifold (M, g), n > 5. If ξ is an eigenvector
of the de Rham–Laplace operator on (M, g) and the function ξ(ρ) is nowhere zero, then (M, g) is
GRW-spacetime I ×ϕ N, with N compact.
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Proof. Let ξ be a time-like special torse-forming vector field on a Lorentzian manifold
(M, g), n > 5, with ξ being an eigenvector of the de Rham Laplace operator on (M, g) and
the function ξ(ρ) 6= 0 everywhere on M. Since n > 5, Equation (19) implies:

∇ρ = −ξ(ρ)ξ. (20)

As ξ is a time-like unit vector field and ξ(ρ) is nowhere zero, the above equation
implies that ∇ρ is nowhere zero on M. Therefore, the potential function ρ : M → E is
a submersion, and each fiber Fx = ρ−1{ρ(x)}, x ∈ M, is an (n− 1)-dimensional smooth
manifold; as {ρ(x)} is compact in E, we obtain that Fx is compact. Consider a smooth
vector field:

u = − ξ

ξ(ρ)

that has no zeros on M. Then, it follows that u(ρ) = −1 and u has a local flow {φs}
that satisfies:

ρ(φs(x)) = σ(x)− s. (21)

Recall the escape Lemma (cf. [16]), which states that if γ is a integral curve of u whose
maximal domain is not all of E, then the image of γ cannot lie in any compact subset of M.
Using the escape lemma and Equation (21) on a complete and connected M, we obtain that
u is complete and has global flow {φs}. Now, define f : E× Fx → M by:

f (s, u) = φs(u), u ∈ Fx.

Then, f is smooth, and for each u ∈ M, we find s ∈ E such that φs(u) = y ∈ Fx, satisfying
u = φ−s(y). Thus, f (−s, y) = u, that is f is an on-to map. We observe that, on taking
(s1, u1), (s2, v2) in E× Fx satisfying f (s1, u1) = f (s2, u2), we have φs1(u1) = φs2(u2), and
using Equation (21), we obtain ρ(u1)− s1 = ρ(u2)− s2. As u1, u2 ∈ Fx, ρ(u1) = ρ(u2),
and we obtain s1 = s2. Thus, using φs1(u1) = φs2(u2), we arrive at u1 = u2, that is f is
one-to-one. Furthermore, we have:

f−1(u) = (−s, y) = (−s, φs(u)),

which is smooth. Hence, f : E × Fx → M is a diffeomorphism, where Fx is a compact
subset of M. Using Theorem 3.1, we see that I × N is diffeomorphic to E× Fx, and as the
open interval I is diffeomorphic to E, the fiber N must be diffeomorphic to Fx. As Fx is
compact, we obtain that N is compact.

4. Lorentzian Manifolds as Quasi-Einstein Manifolds

Fischer–Marsden considered the following differential equation on a semi-Riemannian
manifold (M, g) (cf. [17]):

(∆ f )g + f Ric = Hess( f ), (22)

where f is a smooth function on M. We call the above differential equation the Fischer–
Marsden equation. This differential equation is closely associated with Einstein spaces. A
generalization of Einstein manifolds was considered in [13], where the authors defined
quasi-Einstein manifolds. A semi-Riemannian manifold (M, g) is said to be a quasi-Einstein
manifold if its Ricci tensor satisfies Equation (3). In this section, we use a unit time-like
special torse-forming vector field ξ on a Lorentzian manifold (M, g) to find conditions
under which (M, g) is a quasi-Einstein manifold.

Let ξ be a time-like special torse-forming vector field on a simply connected Lorentzian
manifold (M, g). On using Equations (2) and (15), we have dη = 0, that is η is a closed
1-form and M is simply connected η = d f (exact) for a smooth function f on M. Thus,
for a time-like special torse-forming ξ on a simply connected Lorentzian manifold (M, g),
we have:

ξ = ∇ f (23)
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and we call the smooth function f in Equation (23) the associated function of ξ.

Theorem 3. Let ξ be a time-like special torse-forming vector field on an n-dimensional sim-
ply connected Lorentzian manifold (M, g), n > 4, with potential function ρ and associated
function f . If f is a nowhere zero solution of the Fischer–Marsden equation, then (M, g) is a
quasi-Einstein manifold.

Proof. Using Equations (2) and (23), we have:

H f (U) = ρ(U + η(U)ξ),

which implies:
Hess( f ) = ρg + ρη ⊗ η, ∆ f = (n− 3)ρ. (24)

Since f satisfies Fischer–Marsden equation, using Equations (22) and (24), we have:

f Ric = −(n− 4)ρg + ρη ⊗ η. (25)

As f is nowhere zero, we have:

Ric = −(n− 4)
(

ρ f−1
)

g +
(

ρ f−1
)

η ⊗ η.

Hence, (M, g) is a quasi-Einstein manifold.

If simply connected Lorentzian manifold (M, g) has scalar curvature τ = trQ, using
above result we have the following result that gives a relation between ρ and f of the
time-like special torse-forming vector field ξ on (M, g).

Corollary 1. Let ξ be a time-like special torse-forming vector field on an n-dimensional simply
connected Lorentzian manifold (M, g), n ≥ 4, with potential function ρ and associated function f .
If f is a solution of the Fischer–Marsden equation, then:

ρ = − τ

(n− 3)2 f .

In particular, if the scalar curvature τ of (M, g) is a constant, then the potential function ρ is
an eigenfunction of the Laplace operator ∆.

Proof. Let ξ be a time-like special torse-forming vector field on a simply connected
Lorentzian manifold (M, g), n ≥ 4, with potential function ρ and associated function
f . Suppose f satisfies Equation (22). Then, Equation (25), gives

f τ = −(n− 4)(n− 2)ρ− ρ = −(n− 3)2ρ.

Hence,
ρ = − τ

(n− 3)2 f .

Now, if τ is a constant, then the above equation in view of Equation (24) implies:

∆ρ = − τ

(n− 3)
ρ,

that is the potential function ρ is an eigenfunction of ∆.
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