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Abstract: We show presence a special torse-forming vector field (a particular form of torse-forming of
a vector field) on generalized Robertson—-Walker (GRW) spacetime, which is an eigenvector of the de
Rham-Laplace operator. This paves the way to showing that the presence of a time-like special torse-
forming vector field ¢ with potential function p on a Lorentzian manifold (M, g), dimM > 5, which
is an eigenvector of the de Rham Laplace operator, gives a characterization of a GRW-spacetime. We
show that if, in addition, the function {(p) is nowhere zero, then the fibers of the GRW-spacetime
are compact. Finally, we show that on a simply connected Lorentzian manifold (M, ¢) that admits a
time-like special torse-forming vector field ¢, there is a function f called the associated function of ¢. It
is shown that if a connected Lorentzian manifold (M, g), dimM > 4, admits a time-like special torse-
forming vector field ¢ with associated function f nowhere zero and satisfies the Fischer-Marsden
equation, then (M, g) is a quasi-Einstein manifold.

Keywords: generalized Robertson-Walker spacetime; special torse-forming vector fields; de Rham—
Laplace operator; quasi-Einstein manifold

MSC: 83F05; 53C25

1. Introduction

It is well known that through cosmological considerations the space being homoge-
neous and isotropic in the large scale, picks the Robertson-Walker metrics. It amounts to
the fact that an n-dimensional spacetime, n > 3, acquires the form I x, N, with metric
¢ = —dt? + ¢*g, where I is an open interval, ¢ is a smooth positive function defined on
I,and (N,3) is an (n — 1)-dimensional Riemannian manifold of constant curvature. An
n-dimensional generalized Robertson-Walker spacetime (GRW-spacetime) is [ x, N, with
metric ¢ = —dt?> + ¢?g, where (N,3) is an (n — 1)-dimensional Riemannian manifold
(cf. [1,2]). An interesting characterization of GRW-spacetime was obtained by Chen (cf. [3]),
by proving that a Lorentzian manifold (M, g) admits a non-trivial time-like concircular
vector field, if, and only if, it is a GRW-spacetime. Additionally, for interesting characteriza-
tions of GRW-spacetimes using torse-forming vector fields and Weyl tensors, we refer to
(cf. [4,5]).

A concircular vector field ¢ on a semi-Riemannian manifold (M, g) satisfies:

Vué=pU, UeXx(M),

where p is a scalar, V is a Levi-Civita connection, and X(M) is the Lie algebra of smooth
vector fields on M (cf. [5-7]). For other characterizations of GRW-spacetimes, we refer to
(cf. [2,3,8,9)).
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Yano generalized concircular vector fields by introducing a torse-forming vector field
on semi-Riemannian manifold (M, g) (cf. [10]), defined by:

Vug = pU +a(U)E, U e X(M), (1)

where « is a 1-form called the torsed 1-form. Naturally, if « = 0, then a torse-forming
vector field is a concircular vector field. These vector fields are also used in characterizing
a GRW-spacetime (cf. [2,4]). In [11], Chen considered an interesting special class of torse-
forming vector field, requiring ¢ to be nowhere zero and satisfying a(¢) = 0, that is the
torse-forming vector field is perpendicular to the dual-vector field to torsed form «, called
torqued vector fields.

In the present paper, we introduce on a Lorentzian manifold a special type of torse-
forming vector field. A unit time-like torse-forming vector field ¢ on a Lorentzian manifold
(M, g) is said to be a special torse-forming vector field if it satisfies:

Vug = p(U+5(U)S), U e X(M), @

where p is a non-zero function and # is 1-form dual to {. We call p the potential function
of the special torse-forming vector field . Note that for a special torse-forming vector
field, using Equation (1), we have a(U) = —py(U), that is ¢ is a torse-forming vector field,
which is parallel to the vector field dual & as opposed to the torqued vector field where ¢ is
orthogonal to the vector field dual «. Moreover, from the definition of special torse-forming
vector field ¢ on a Lorentzian manifold, it follows that under no situation, it reduces to a
concircular vector field.

We study the role of a time-like special torse-forming vector field ¢ on a Lorentzian
manifold (M, g) in characterizing GRW-spacetimes. It is achieved by using the de Rham—
Laplace operator [ (cf. [12]) and a time-like special torse-forming vector field ¢ with
potential function p on a connected Lorentzian manifold (M, g), dimM > 5, through
showing that [J§ = ¢¢ holds for a smooth function o, if, and only if, (M, g) is a GRW-
spacetime (see Theorem 1). We also show that if the function ¢(p) is nowhere zero on M,
then the fibers of GRW-spacetime I x, N are compact (see Theorem 2).

If ¢ isaspecial torse-forming vector field on a simply connected Lorentzian manifold
(M, g), then the dual-1-form 7 is closed (see Equation (15)), and, therefore, there is a
function f such that # = df. Thus, the special torse-forming vector field ¢ on a simply
connected Lorentzian manifold (M, g) satisfies { = Vf, call this function f the associated
function of ¢. Recall that a Lorentzian manifold (M, g) is said to be a quasi-Einstein
manifold (cf. [13]) if its Ricci tensor has the following expression:

Ric = fig+ LB ® B, ®3)

where f1, fo are scalars and B is a 1-form on M. Exact solutions of the Einstein field
equations can provide very important information about quasi-Einstein manifolds. For
example, the Robertson-Walker spacetimes are quasi-Einstein manifolds. For this reason,
the study of quasi-Einstein manifolds is important. It is shown that if the associated
function f of the special torse-forming vector field ¢ on a simply connected Lorentzian
manifold (M, g), dimM > 4, satisfies (i) f is nowhere zero and (ii) f is a solution of
the Fischer-Marsden equation, then (M, ) is a quasi-Einstein manifold (see Theorem 3).
Additionally, it is shown that if the scalar curvature T of a simply connected Lorentzian
manifold (M, g), dimM > 4, is a constant and possesses a special torse-forming vector field
¢ with potential function p and associated function f satisfying the above two conditions,
then the potential function p is an eigenfunction of the Laplace operator A (see Corollary 1).
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2. Preliminaries

Let ¢ be a smooth function on an n-dimensional connected Lorentzian (M, g). The
Hessian operator H,, is defined by:

Hy(V) = VyVg, Ve x(M), @
where V¢ is the gradient of ¢ and Hessian Hess(¢) is defined by (cf. [14]):
Hess(¢) (U, Ua) = g(Hy(Uh), W), Ui, Us € X(M). )
The Laplacian Ag of the function ¢ is given by A¢ = div(V¢), and it satisfies:
A = trH,. (6)

Let ¢ be a time-like special torse-forming vector field on a Lorentzian (M, g). Then,
using the expression for the curvature tensor field

R(Fl,Fz)Fg, = vFlszFi% — VFZVHFS — V[PLFZ]F:;, Fi,F, F € X(M)
and Equation (2), we compute:
R(Fi, B)¢ = Fi(p)E — E(p)Fy + (Fi(p)y(F2) — Ex(0)y(F1)E + 0*((B2) Fy — 11 (F1) Ba).

Above equation gives expression for the Ricci tensor Ric of the Lorentzian manifold
(M, 8):

Rie(V,8) = —(n =4)V(p) + (2(0) + (1 =3)0 )n(V), V € X(M). )

Note that the Ricci operator Q of the Lorentzian manifold (M, g) is given by Ric(U, V) =
¢(QU, V), U € X(M), and, therefore, Equation (7) implies:

Qz = —(n—4)Vp+ (&(p) + (n—3)p*)¢ ®)
and:
Rie(¢,&) = —(n=3)(&(p) +p?). ©)

The Laplace operator A acting on vector fields on the Lorentzian manifold (M, g) is
defined by:

n
AU =Y (Vo Vo U = Vi, U), UEX(M), (10)
i=1

where {v1,...,v,} is a local orthonormal frame on M. The de Rham-Laplace operator []
on the Lorentzian manifold (M, g) is [ : X(M) — X(M) given by (cf. [12]):

DU =AU+ QU, U e X(M). (11)

Lemma 1. Let ¢ be a time-like special torse-forming vector on an n-dimensional Lorentzian
manifold (M, ) with potential function p. Then:

[OF = —(n—5)Vp +2(n — 2)0*¢.
Proof. Using Equation (2), for U € X(M), we have:

VuVué — Vyyué = U(p)U + U(p)n (U)E + p*|U[*¢ + 20%7 (U)*E + o> (U)U.
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Since ¢ is a time-like unit vector field, choosing a local frame {vy,...,v,-1,i} on M,
where v;,i =1,...,n — 1 are spacelike unit vector fields in the above equation, to conclude:

ag=Vp— (&) = (n—=1)p?)2.
Thus, using Equations (8) and (11) with the above equation, we conclude:
O = —(n—5)Vp +2(n—2)0%¢.
O

3. Characterizing GRW Spacetimes

Consider an n-dimensional GRW-spacetime M = I x, N with metric § = —dt* + ¢°g.
Then, ¢ = % is a time-like unit vector field on (M, g). Let V be the Levi-Civita connection
on (M,g). Then, fora U € X(M), we have U = h{ + E, E € X(N). If we denote by 1 = dt,
then (U) = ¢(U,{) = —h, where () = g(&, &) = —1. Using fundamental equations for
the warped product (cf. [8]), we have:

Vug = Vigaet = Vet = {0 = £ n) - Sy

9
Thus,
Vug = p(U + y(U)2), U € X(M), p—?, 12)

this proves, ¢ is a special torse-forming vector field on the GRW-spacetime (M, g). Now,
using the expression for the Ricci tensor for the warped product I x, N (cf. [8]), we have:

Ric(¢,E) =0, E e X(N),

which implies Q(&) = A¢ for a smooth function A on I. Furthermore, choosing a local
frame {vy,...,v,-1} on N, we have a local orthonormal frame {¢,vy,...,v,-1} on M.
Then, using Equation (12), we have V& = 0, Vy,¢ = pv;, v;(p) = 0, and:

Vvivviﬂf - va]ivi, V,’;V@@' - 0
Furthermore, using Equation (12), we have:
Vvvivi(f = P(Vv,-vz‘ + g(Vv,Uz‘/ C)g) = pvl’;‘vi - pg(vi, Vvig)g = pv?)ivi - Pzg-

Thus, the rough Laplace operator A acting on ¢ is given by:

n—1
A= (VeVee = Vv,e8) + ¥ (Vo Vol = Vo) = (1= 1)p%
i=1
Now, we see that the de Rham-Laplace operator [-] acting on ¢ is given by:

0z = ((n =1 +2)e.

Hence, GRW-spacetime (M, g) admits a special torse-forming vector field ¢, which is
an eigenvector of the de Rham-Laplace operator 1.

Theorem 1. An n-dimensional connected Lorentzian manifold (M, g), n > 5, is a GRW-spacetime
I X N, if, and only if, it admits a time-like special torse-forming vector field ¢, which is an
eigenvector of the de Rham—Laplace operator on (M, g).
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Proof. Let (M, g) be a connected Lorentzian manifold, n > 5, ¢ be a time-like special
torse-forming vector field on (M, g) with [I¢ = A¢, A being a scalar. We denote by V the
Levi—Civita connection on (M, g); using Equation (2), we have:

Vel =0. (13)
Define a smooth distribution D on M by:
D={UcX(M):nU) =0} (14)
Note that Equation (2) gives:
dn(U, V) = g(Vug, V) —g(Vy&,U) =0, U,V € X(M), (15)

thatis the dual-1-form 7 to § is closed. Thus, for E, F € D, wehave([E, F]) = —dy(E,F) =0,
thatis [E, F] € D, proving that the distribution D is integrable. Let N be a leaf of D. Then,
N is a hypersurface of M with unit normal ¢. Using Equation (2), we observe that for
E € X(N),

Ve = pE, (16)

that is the shape operator S of N is given by:
S(E) = —pE, E € X(N). (17)
Now, as LI = A, where A is a scalar on M, using Lemma 1, we get:
— (n—=5)Vp +2(n —2)p*¢ = AZ. (18)
On taking the inner product in above equation with ¢ yields

A= (n—5)&p) +2(n —2)p>

and substituting this value of A in Equation (18), we have:

—(n—=5)Vp = (n-5)¢(p)¢. (19)

Above equation on taking the inner product with E € X(N), gives (n —5)E(p) =0,
and the assumption n > 5 implies E(p) = 0, that is p is a constant on the hypersurface N.
Therefore, Equation (17) implies that N is a totally umbilical hypersurface of M. Moreover,
the orthogonal complementary distribution D to D is one-dimensional spanned by ¢,
and by Equation (13), the integral curves of the distribution D are geodesics on M. Thus,
(M, g) is the warped product I x, N (cf. [15]), thatis (M, ) is a GRW-spacetime.

Conversely, we have already seen that a GRW-spacetime I x, N admits a special
torse-forming vector field ¢, which is an eigenvector of [1. [J

In the above result we have seen that the presence of a time-like special torse-forming
vector field ¢ on a Lorentzian manifold (M, g) satisfying [I¢ = A¢ for scalar A is a GRW-
spacetime I X, N. It is interesting to observe if in addition ¢(p) is nowhere zero, then this
condition has effect on the topology of N.

Theorem 2. Let ¢ be a time-like special torse-forming vector field with potential function p on an
n-dimensional complete and connected Lorentzian manifold (M, g), n > 5. If & is an eigenvector
of the de Rham—Laplace operator on (M, g) and the function {(p) is nowhere zero, then (M, g) is
GRW-spacetime I x y, N, with N compact.
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Proof. Let ¢ be a time-like special torse-forming vector field on a Lorentzian manifold
(M, g), n > 5, with { being an eigenvector of the de Rham Laplace operator on (M, g) and
the function ¢(p) # 0 everywhere on M. Since n > 5, Equation (19) implies:

Vp =—¢(p)¢. (20)

As ¢ is a time-like unit vector field and ¢(p) is nowhere zero, the above equation
implies that Vp is nowhere zero on M. Therefore, the potential function p : M — E is
a submersion, and each fiber Fy = p~1{p(x)}, x € M, is an (n — 1)-dimensional smooth
manifold; as {p(x)} is compact in E, we obtain that F, is compact. Consider a smooth
vector field:

¢
)
that has no zeros on M. Then, it follows that u(p) = —1 and u has a local flow {¢s}
that satisfies:
p(¢s(x)) = o(x) —s. (21)

Recall the escape Lemma (cf. [16]), which states that if -y is a integral curve of u whose
maximal domain is not all of E, then the image of y cannot lie in any compact subset of M.
Using the escape lemma and Equation (21) on a complete and connected M, we obtain that
u is complete and has global flow {¢;}. Now, define f : E x Fx — M by:

f(s,u) = ¢s(u), u € Fy.

Then, f is smooth, and for each u € M, we find s € E such that ¢ (1) = y € F,, satisfying
u = ¢_s(y). Thus, f(—s,y) = u, thatis f is an on-to map. We observe that, on taking
(s1,u1), (s2,v2) in E x Fy satisfying f(s1,u1) = f(s2,u2), we have ¢s, (111) = ¢s, (12), and
using Equation (21), we obtain p(u1) —s; = p(up) — s2. As ug, up € Fy, p(u1) = p(uz),
and we obtain s; = sy. Thus, using ¢s, (11) = ¢s,(12), we arrive at uy = up, thatis f is
one-to-one. Furthermore, we have:

fHu) = (=s,y) = (=s,¢s(u)),

which is smooth. Hence, f : E x Fy — M is a diffeomorphism, where F; is a compact
subset of M. Using Theorem 3.1, we see that [ x N is diffeomorphic to E x Fy, and as the
open interval I is diffeomorphic to E, the fiber N must be diffeomorphic to Fy. As Fy is
compact, we obtain that N is compact. O

4. Lorentzian Manifolds as Quasi-Einstein Manifolds

Fischer-Marsden considered the following differential equation on a semi-Riemannian
manifold (M, g) (cf. [17]):
(Af)g + fRic = Hess(f), (22)

where f is a smooth function on M. We call the above differential equation the Fischer—
Marsden equation. This differential equation is closely associated with Einstein spaces. A
generalization of Einstein manifolds was considered in [13], where the authors defined
quasi-Einstein manifolds. A semi-Riemannian manifold (M, g) is said to be a quasi-Einstein
manifold if its Ricci tensor satisfies Equation (3). In this section, we use a unit time-like
special torse-forming vector field ¢ on a Lorentzian manifold (M, g) to find conditions
under which (M, g) is a quasi-Einstein manifold.

Let ¢ be a time-like special torse-forming vector field on a simply connected Lorentzian
manifold (M, g). On using Equations (2) and (15), we have di = 0, that is 7 is a closed
1-form and M is simply connected # = df (exact) for a smooth function f on M. Thus,
for a time-like special torse-forming ¢ on a simply connected Lorentzian manifold (M, g),
we have:

¢=Vf (23)
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and we call the smooth function f in Equation (23) the associated function of ¢.

Theorem 3. Let ¢ be a time-like special torse-forming vector field on an n-dimensional sim-
ply connected Lorentzian manifold (M, g), n > 4, with potential function p and associated
function f. If f is a nowhere zero solution of the Fischer-Marsden equation, then (M, g) is a
quasi-Einstein manifold.

Proof. Using Equations (2) and (23), we have:

Hy(U) = p(U +5(U)E),
which implies:
Hess(f) = pg+pn @1, Af =(n—3)p. (24)
Since f satisfies Fischer-Marsden equation, using Equations (22) and (24), we have:

fRic=—(n—4)pg+pn 1. (25)

As f is nowhere zero, we have:

Ric = —(n—4)(pf")g+ (of ") n.
Hence, (M, g) is a quasi-Einstein manifold. [

If simply connected Lorentzian manifold (M, g) has scalar curvature T = trQ, using
above result we have the following result that gives a relation between p and f of the
time-like special torse-forming vector field ¢ on (M, g).

Corollary 1. Let ¢ be a time-like special torse-forming vector field on an n-dimensional simply
connected Lorentzian manifold (M, g), n > 4, with potential function p and associated function f.
If f is a solution of the Fischer—Marsden equation, then:

P= e

In particular, if the scalar curvature T of (M, g) is a constant, then the potential function p is
an eigenfunction of the Laplace operator A.

Proof. Let ¢ be a time-like special torse-forming vector field on a simply connected
Lorentzian manifold (M, g), n > 4, with potential function p and associated function
f. Suppose f satisfies Equation (22). Then, Equation (25), gives

fr=—(n-4)(n-2)p—p=—(n-3).

Hence,
T
O aapt
Now, if T is a constant, then the above equation in view of Equation (24) implies:
T
Ap=———p,

that is the potential function p is an eigenfunction of A. [
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